Mathematics Curriculum

Topic A Real Numbers

N-RN.A.1, N-RN.A.2, N-Q.A.2, F-IF.B.6, F-BF.A.1a, F-LE.A.2

Focus Standards:	N-RN.A.1	Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals	
		in terms of rational exponents. For example, we define $5^{\frac{1}{3}}$ to be the cube root of 5 because we want $(5^{\frac{1}{3}})^3 = 5^{(\frac{1}{3})^3}$ to hold, so $(5^{\frac{1}{3}})^3$ must equal 5.	
		because we want $\begin{pmatrix} 5^3 \end{pmatrix} = 5^{(3)}$ to hold, so $\begin{pmatrix} 5^3 \end{pmatrix}$ must equal 5.	
	N-RN.A.2	Rewrite expressions involving radicals and rational exponents using the properties of exponents.	
	N-Q.A.2	Define appropriate quantities for the purpose of descriptive modeling. *	
	F-IF.6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. \star	
	F-BF.A.1a	Write a function that describes a relationship between two quantities. *	
		Determine an explicit expression, a recursive process, or steps for calculation from a context	
	F-LE.A.2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).*	
Instructional Days:	6		
Lesson 1:	Integer Expon	ents (E) ¹	
Lesson 2:	Base 10 and Scientific Notation (P)		
Lesson 3:	Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$? (S)		
Lesson 4:	Properties of Exponents and Radicals (P)		
Lesson 5:	Irrational Expo	pnents—What are $2^{\sqrt{2}}$ and 2^{π} ? (S)	
Lesson 6:			

¹Lesson Structure Key: P-Problem Set Lesson, M-Modeling Cycle Lesson, E-Exploration Lesson, S-Socratic Lesson

In Topic A, students prepare to generalize what they know about various function families by examining the behavior of exponential functions. One goal of the module is to show that the domain of the exponential function, $f(x) = b^x$, where b is a positive number not equal to 1, is all real numbers. In Lesson 1, students review and practice applying the laws of exponents to expressions in which the exponents are integers. Students first tackle a challenge problem on paper folding that is related to exponential growth and then apply and practice applying the laws of exponents to rewriting algebraic expressions. They experiment, create a table of values, observe patterns, and then generalize a formula to represent different measurements in the folded stack of paper as specified in **F-LE.A.2**. They also use the laws of exponents to work with very large and very small numbers.

Lesson 2 sets the stage for the introduction of base-10 logarithms in Topic B of the module by reviewing how to express numbers using scientific notation, how to compute using scientific notation, and how to use the laws of exponents to simplify those computations in accordance with **N-RN.A.2**. Students should gain a sense of the change in magnitude when different powers of 10 are compared. The activities in these lessons prepare students for working with quantities that increase in magnitude by powers of 10 and by showing them the usefulness of exponent properties when performing arithmetic operations. Similar work is done in later lessons relating to logarithms. Exercises on distances between planets in the solar system and on comparing magnitudes in other real-world contexts provide additional practice with arithmetic operations on numbers written using scientific notation.

Lesson 3 begins with students examining the graph of $y = 2^x$ and estimating values as a means of extending their understanding of integer exponents to rational exponents. The examples are generalized to $2^{\frac{1}{n}}$ before generalizing further to $2^{\frac{m}{n}}$. As the domain of the identities involving exponents is expanded, it is important to maintain consistency with the properties already developed. Students work specifically to make sense that $2^{\frac{1}{2}} = \sqrt{2}$ and $2^{\frac{1}{3}} = \sqrt[3]{2}$ to develop the more general concept that $2^{\frac{1}{n}} = \sqrt[n]{2}$. The lesson demonstrates how people develop mathematics (1) to be consistent with what is already known and (2) to make additional progress. Additionally, students practice MP.7 as they extend the rules for integer exponents to rules for rational exponents (**N-RN.A.1**).

Lesson 4 continues the discussion of properties of exponents and radicals, and students continue to practice MP.7 as they extend their understanding of exponents to all rational numbers and for all positive real bases as specified in **N-RN.A.1**. Students rewrite expressions involving radicals and rational exponents using the

properties of exponents (**N-RN.A.2**). The notation $x^{\frac{1}{n}}$ specifically indicates the principal root of x: the positive root when n is even and the real-valued root when n is odd. To avoid inconsistencies in the later work with logarithms, x is required to be positive.

Lesson 5 revisits the work of Lesson 3 and extends student understanding of the domain of the exponential function $f(x) = b^x$, where b is a positive real number, from the rational numbers to all real numbers through the process of considering what it means to raise a number to an irrational exponent (such as $2^{\sqrt{2}}$). In many ways, this lesson parallels the work students did in Lesson 3 to make a solid case for why the laws of exponents hold for all rational number exponents. The recursive procedure that students employ in this lesson aligns with **F-BF.A.1a**. This lesson is important both because it helps to portray mathematics as a coherent body of knowledge that makes sense and because it is necessary to make sure that students understand that logarithms can be irrational numbers. Essentially, it is necessary to guarantee that

Topic A: Real Numbers

exponential and logarithmic functions are continuous functions. Students take away from these lessons an understanding that the domain of exponents in the laws of exponents does indeed extend to all real numbers rather than just to the integers, as defined previously in Grade 8.

Lesson 6 is a modeling lesson in which students practice MP.4 when they find an exponential function to model the amount of water in a tank after t seconds when the height of the water is constantly doubling or tripling and apply F-IF.B.6 as they explore the average rate of change of the height of the water over smaller and smaller intervals. If the height of the water in the tank at time t seconds is denoted by $H(t) = b^{t}$, then the average rate of change of the height of the water on an interval $[T, T + \varepsilon]$ is approximated by $\frac{H(T+\varepsilon)-H(t)}{2} \approx c \cdot H(T)$. Students calculate that if the height of the water is doubling each second, then $c \approx 0.69$, and if the height of the water is tripling each second, then $c \approx 1.1$. Students discover Euler's number, e, by applying repeated reasoning (MP.8) and numerically approximating the base b for which the constant c is equal to 1. Euler's number is used extensively in the future and occurs in many different applications.

New York State Common Core

Mathematics Curriculum

Topic B Logarithms

N-Q.A.2, A-CED.A.1, F-BF.A.1a, F-LE.A.4

Focus Standards:	N-Q.A.2	Define appropriate quantities for the purpose of descriptive modeling.*
	A-CED.A.1	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*
	F-BF.A.1a	Write a function that describes a relationship between two quantities. *
		a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
	F-LE.A.4	For exponential models, express as a logarithm the solution to $ab^{ct} = d$ where a, c , and d are numbers and the base b is 2, 10, or e ; evaluate the logarithm using technology.*
Instructional Days:	9	
Lesson 7:	Bacteria and Exponential Growth (S) 1	
Lesson 8:	The "WhatPower" Function (P)	
Lesson 9:	Logarithms—How Many Digits Do You Need? (E)	
Lesson 10:	Building Logarithmic Tables (P)	
Lesson 11:	The Most Important Property of Logarithms (P)	
Lesson 12:	Properties of Logarithms (P)	
Lesson 13:	Changing the Base (P)	
Lesson 14:	Solving Logarithmic Equations (P)	
Lesson 15:	Why Were Logarithms Developed? (P)	

The lessons covered in Topic A familiarize students with the laws and properties of real-valued exponents. In Topic B, students extend their work with exponential functions to include solving exponential equations numerically and developing an understanding of the relationship between logarithms and exponentials. In Lesson 7, students use an algorithmic numerical approach to solve simple exponential equations that arise from modeling the growth of bacteria and other populations (**F-BF.A.1a**). Students work to develop

¹Lesson Structure Key: P-Problem Set Lesson, M-Modeling Cycle Lesson, E-Exploration Lesson, S-Socratic Lesson

progressively better approximations for the solutions to equations whose solutions are irrational numbers. In doing this, students increase their understanding of the real number system and truly begin to understand what it means for a number to be irrational. Students learn that some simple exponential equations can be solved exactly without much difficulty but that mathematical tools are lacking to solve other equations whose solutions must be approximated numerically.

Lesson 8 begins with the logarithmic function disguised as the more intuitive "WhatPower" function, whose behavior is studied as a means of introducing how the function works and what it does to expressions. Students find the power needed to raise a base *b* in order to produce a given number. The lesson ends with students defining the term *logarithm base b*. Lesson 8 is just a first introduction to logarithms in preparation for solving exponential equations per **F-LE.A.4**; students neither use tables nor look at graphs in this lesson. Instead, they simply develop the ideas and notation of logarithmic expressions, leaving many ideas to be explored later in the module.

Just as population growth is a natural example that gives context to exponential growth, Lesson 9 gives context to logarithmic calculation through the example of assigning unique identification numbers to a group of people. In this lesson, students consider the meaning of the logarithm in the context of calculating the number of digits needed to create student ID numbers, phone numbers, and social security numbers, in accordance with **N-Q.A.2**. This gives students a real-world context for the abstract idea of a logarithm; in particular, students observe that a base-10 logarithm provides a way to keep track of the number of digits used in a number in the base-10 system.

Lessons 10–15 develop both the theory of logarithms and procedures for solving various forms of exponential and logarithmic equations. In Lessons 10 and 11, students discover the logarithmic properties by completing carefully structured logarithmic tables and answering sets of directed questions. Throughout these two lessons, students look for structure in the table and use that structure to extract logarithmic properties (MP.7). Using the structure of the logarithmic expression together with the logarithmic properties to rewrite an expression aligns with the foundational standard **A-SSE.A.2**. While the logarithmic properties are not themselves explicitly listed in the standards, standard **F-LE.A.4** cannot be adequately met without an understanding of how to apply logarithms to solve exponential equations, and the seemingly odd behavior of graphs of logarithmic functions (**F-IF.C.7e**) cannot be adequately explained without an understanding of the properties of logarithms. In particular, in Lesson 11, students discover the "most important property of logarithms": For positive real numbers *x* and *y*, log(xy) = log(x) + log(y). Students also discover the pattern $log_b\left(\frac{1}{x}\right) = -log_b(x)$ that leads to conjectures about additional properties of logarithms.

Lesson 12 continues the consideration of properties of the logarithm function, while remaining focused solely on base-10 logarithms. Its centerpiece is the demonstration of basic properties of logarithms such as the power, product, and quotient properties, which allows students to practice MP.3 and **A-SSE.A.2**, providing justification in terms of the definition of logarithm and the properties already developed. In this lesson, students begin to learn how to solve exponential equations, beginning with base-10 exponential equations that can be solved by taking the common logarithm of both sides of the equation.

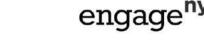
Lesson 13 again focuses on the structure of expressions (A-SSE.A.2), as students change logarithms from one base to another. It begins by showing students how they can make that change and then develops properties of logarithms for the general base b. Students are introduced to the use of a calculator instead of a table in finding logarithms, and then *natural logarithms* are defined: $\ln(x) = \log_e(x)$. One goal of the lesson, in addition to introducing the base e for logarithms, is to explain why, for finding logarithms to any base, the calculator has only LOG and LN keys. In this lesson, students learn to solve exponential equations with any

Topic B: Logarithms

base by the application of an appropriate logarithm. Lessons 12 and 13 both address **F-LE.A.4**, solving equations of the form $ab^{ct} = d$, as do later lessons in the module.

Lesson 14 includes the first introduction to solving logarithmic equations. In this lesson, students apply the definition of the logarithm to rewrite logarithmic equations in exponential form, so the equations must first be rewritten in the form $\log_b(X) = c$, for an algebraic expression X and some constant c. Solving equations in this way requires that students think deeply about the definition of the logarithm and how logarithms interact with exponential expressions. Although solving logarithmic equations is not listed explicitly in the standards, this skill is implicit in standard **A-REI.D.11**, which has students solve equations of the form f(x) = g(x) where f and g can be logarithmic functions. Additionally, logarithmic equations provide a greater context in which to study both the properties of logarithms and the definition, both of which are needed to solve the equations listed in **F-LE.A.4**.

Topic B concludes with Lesson 15, in which students learn a bit of the history of how and why logarithms first appeared. The materials for this lesson contain a base-10 logarithm table. Although modern technology has made logarithm tables functionally obsolete, there is still value in understanding the historical development of logarithms. Logarithms were critical to the development of astronomy and navigation in the days before computing machines, and this lesson presents a rationale for the pre-technological advantage afforded to scholars by the use of logarithms. In this lesson, the case is finally made that logarithm functions are one-to-one (without explicitly using that terminology): If $\log_b(X) = \log_b(Y)$, then X = Y. In alignment with **A-SSE.A.2**, this fact not only validates the use of tables to look up anti-logarithms but also allows exponential equations to be solved with logarithms on both sides of the equation.



Mathematics Curriculum

Topic C Exponential and Logarithmic Functions and their Graphs

F-IF.B.4, F-IF.B.5, F-IF.C.7e, F-BF.A.1a, F-BF.B.3, F-BF.B.4a, F-LE.A.2, F-LE.A.4

Focus Standards:	F-IF.B.4	For a function that models a relationship between two quantities, interpret key
		features of graphs and tables in terms of the quantities, and sketch graphs showing key
		features given a verbal description of the relationship. Key features include:
		intercepts; intervals where the function is increasing, decreasing, positive, or negative;
		relative maximums and minimums; symmetries; end behavior; and periodicity. \star
	F-IF.B.5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship is describes. For example, if the function $h(n)$ gives the number of person-
		hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
	F-IF.C.7e	Graph functions expressed symbolically and show key features of the graph, by hand in
	r-ir.c./e	simple cases and using technology for more complicated cases.*
		Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
	F-BF.A.1a	Write a function that describes a relationship between two quantities. *
		Determine an explicit expression, a recursive process, or steps for calculation from a context.
	F-BF.B.3	Identify the effect on the graph of replacing $f(x)$ by $f(x) + k, k f(x), f(kx)$, and
		f(x + k) for specific values of k (both positive and negative); find the value of k given
		the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
	F-BF.B.4a	Find inverse functions.
		Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2x^3$ or
		$f(x) = (x + 1)/(x - 1)$ for $x \neq 1$.
	F-LE.A.2	Construct linear and exponential functions, including arithmetic and geometric
		sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

Exponential and Logarithmic Functions and their Graphs

F-LE.A.4 For exponential models, express as a logarithm the solution to ab^{c} and d are numbers, and the base b is 2, 10, or e ; evaluate the loga	, ,
technology.	
Instructional Days: 7	
Lesson 16: Rational and Irrational Numbers (S)1	
Lesson 17: Graphing the Logarithm Function (P)	
Lesson 18: Graphs of Exponential Functions and Logarithmic Functions (P)	
Lesson 19: The Inverse Relationship between Logarithmic and Exponential Functions (P)	
Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions (E)	
Lesson 21: The Graph of the Natural Logarithm Function (E)	
Lesson 22: Choosing a Model (P)	

The lessons covered in Topic A and Topic B build upon students' prior knowledge of the properties of exponents, exponential expression, and solving equations by extending the properties of exponents to all real number exponents and positive real number bases before introducing logarithms. This topic reintroduces exponential functions, introduces logarithmic functions, explains their inverse relationship, and explores the features of their graphs and how they can be used to model data.

Lesson 16 ties back to work in Topic A by helping students to further extend their understanding of the properties of real numbers, both rational and irrational (**N-RN.B.3**). This Algebra I standard is revisited in Algebra II so that students know and understand that the exponential functions are defined for all real numbers, and, thus, the graphs of the exponential functions can be represented by a smooth curve. Another consequence is that the logarithm functions are also defined for all positive real numbers. Lessons 17 and 18 introduce the graphs of logarithmic functions and exponential functions. Students compare the properties of graphs of logarithm functions for different bases and identify common features, which align with standards **F-IF.B.4**, **F-IF.B.5**, and **F-IF.C.7**. Students understand that because the range of this function is all real numbers, then some logarithms must be irrational. Students notice that the graphs of $f(x) = b^x$ and $g(x) = \log_b(x)$ appear to be related via a reflection across the graph of the equation y = x.

Lesson 19 addresses standards **F-BF.B.4a** and **F-LE.A.4** while continuing the ideas introduced graphically in Lesson 18 to help students make the connection that the logarithmic function base *b* and the exponential function base *b* are inverses of each other. Inverses are introduced first by discussing operations and functions that can "undo" each other; then, students look at the graphs of pairs of these functions. The lesson ties the ideas back to reflections in the plane from Geometry and illuminates why the graphs of inverse functions are reflections of each other across the line given by y = x, developing these ideas intuitively without formalizing what it means for two functions to be inverses. Inverse functions will be addressed in greater detail in Precalculus.

During all of these lessons, connections are made to the properties of logarithms and exponents. The relationship between graphs of these functions, the process of sketching a graph by transforming a parent function, and the properties associated with these functions are linked in Lessons 20 and 21, showcasing standards **F-IF.C.7e** and **F-BF.B.3**. Students use properties and their knowledge of transformations to explain why two seemingly different functions such as $f(x) = \log(10x)$ and $g(x) = 1 + \log(x)$ have the same

¹Lesson Structure Key: P-Problem Set Lesson, M-Modeling Cycle Lesson, E-Exploration Lesson, S-Socratic Lesson

Exponential and Logarithmic Functions and their Graphs

graph. Lesson 21 revisits the natural logarithm function, and students see how the change of base property of logarithms implies that we can write a logarithm function of any base b as a vertical scaling of the natural logarithm function (or any other base logarithm function we choose).

Finally, in Lesson 22, students must synthesize knowledge across both Algebra I and Algebra II to decide whether a linear, quadratic, sinusoidal, or exponential function will best model a real-world scenario by analyzing the way in which we expect the quantity in question to change. For example, students need to determine whether or not to model daylight hours in Oslo, Norway, with a linear or a sinusoidal function because the data appears to be linear, but, in context, the choice is clear. They model the outbreak of a flu epidemic with an exponential function and a falling body with a quadratic function. In this lesson, the majority of the scenarios that require modeling are described verbally, and students determine an explicit expression for many of the functions in accordance with **F-BF.A.1a**, **F-LE.A.1**, and **F-LE.A.2**.

Exponential and Logarithmic Functions and their Graphs

Mathematics Curriculum

Topic D Using Logarithms in Modeling Situations

A-SSE.B.3c, A-CED.A.1, A-REI.D.11, F-IF.B.3, F-IF.B.6, F-IF.C.8b, F-IF.C.9, F-BF.A.1a, F-BF.1b, F-BF.A.2, F-BF.B.4a, F-LE.A.4, F-LE.B.5

Focus Standards:	A-SSE.B.3c	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
		c. Use the properties of exponents to transform expressions for exponential
		functions. For example the expression 1.15^t can be rewritten as $\left(1.15^{\frac{1}{12}}\right)^{12t} \approx$
		1.012^{12t} to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.
	A-CED.A.1	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
	A-REI.D.11	Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*
	F-IF.B.3	Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n + 1) = f(n) + f(n - 1)$ for $n \ge 1$.
	F-IF.B.6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*
	F-IF.C.8b	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
		b. Use the properties of exponents to interpret expressions for exponential functions. <i>For example, identify percent rate of change in functions such as</i>
		$y = (1.02)^t$, $y = (0.97)^t$, $y = (1.01)^{12t}$, $y = (1.2)^{\frac{t}{10}}$, and classify them as representing exponential growth or decay.
	F-IF.C.9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Using Logarithms in Modeling Situations

	F-BF.A.1	Write a function that describes a relationship between two quantities. *
		a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
		b. Combine standard function types using arithmetic operations. <i>For example, build</i> a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
	F-BF.A.2	Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. *
	F-BF.B.4a	Find inverse functions.
		a. Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2x^3$ or $f(x) = (x + 1)/(x - 1)$ for $x \neq 1$.
	F-LE.A.4	For exponential models, express as a logarithm the solution to $ab^{ct} = d$ where a, c , and d are numbers and the base b is 2, 10, or e ; evaluate the logarithm using technology.
	F-LE.B.5	Interpret the parameters in a linear or exponential function in terms of a context.
Instructional Days:	6	
Lesson 23:	Bean Counting	(M) ¹
Lesson 24:	Solving Expone	ential Equations (P)
Lesson 25:	Geometric Sequences and Exponential Growth and Decay (P)	
Lesson 26:	Percent Rate o	f Change (P)
Lesson 27:	Modeling with	Exponential Functions (M)
Lesson 28:	Newton's Law	of Cooling, Revisited (M)

This topic opens with a simulation and modeling activity where students start with one bean, roll it out of a cup onto the table, and add more beans each time the marked side is up. The lesson unfolds by having students discover an exponential relationship by examining patterns when the data is presented numerically and graphically. Students blend what they know about probability and exponential functions to interpret the parameters a and b in the functions $f(t) = a(b^t)$ that they find to model their experimental data (**F-LE.B.5**, **A-CED.A.2**).

In both Algebra I and Lesson 6 in this module, students had to solve exponential equations when modeling real-world situations numerically or graphically. Lesson 24 shows students how to use logarithms to solve these types of equations analytically and makes the connections between numeric, graphical, and analytical approaches explicit, invoking the related standards **F-LE.A.4**, **F-BF.B.4a**, and **A-REI.D.11**. Students are encouraged to use multiple approaches to solve equations generated in the next several lessons.

In Lessons 25 to 27, a general growth/decay rate formula is presented to students to help construct models from data and descriptions of situations. Students must use properties of exponents to rewrite exponential expressions in order to interpret the properties of the function (**F-IF.C.8b**). For example, in Lesson 27, students compare the initial populations and annual growth rates of population functions given in the forms

¹Lesson Structure Key: **P**-Problem Set Lesson, **M**-Modeling Cycle Lesson, **E**-Exploration Lesson, **S**-Socratic Lesson

Using Logarithms in Modeling Situations

 $E(t) = 281.4(1.0093)^{t-100}$, $f(t) = 81.1(1.0126)^t$, and $g(t) = 76.2(13.6)^{t/10}$. Many of the situations and problems presented here were first encountered in Module 3 of Algebra I; students are now able to solve equations involving exponents that they could only estimate previously, such as finding the time when the population of the United States is expected to surpass a half-billion people. Students answer application questions in the context of the situation and use technology to evaluate logarithms of base 10 and e. Additionally, Lesson 25 begins to develop geometric sequences that are needed for the financial content in the next topic (**F-BF.A.2**). Lesson 26 continues developing the skills of distinguishing between situations that require exponential or linear models (**F-LE.A.1**), and Lesson 27 continues the work with geometric sequences that started in Lesson 25 (**F-IF.B.3**, **F-BF.A.1a**).

Lesson 28 closes this topic and addresses **F-BF.A.1b** by revisiting Newton's law of cooling, a formula that involves the sum of an exponential function and a constant function. Students first learned about this formula in Algebra I, but now that they are armed with logarithms and have more experience understanding how transformations affect the graph of a function, they can find the precise value of the decay constant using logarithms and, thus, can solve problems related to this formula more precisely and with greater depth of understanding.

Using Logarithms in Modeling Situations

Mathematics Curriculum

Topic E Geometric Series and Finance

A-SSE.B.4, F-IF.C.7e, F-IF.C.8b, F-IF.C.9, F-BF.A.1b, F-BF.A.2, F-LE.B.5

Focus Standards:	A-SSE.B.4	Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. <i>For example, calculate mortgage payments</i> .
	F-IF.C.7e	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*
		e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
	F-IF.C.8b	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
		b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y = (1.02)^t$,
		$y = (0.97)^t$, $y = (1.01)^{12t}$, $y = (1.2)^{\frac{t}{10}}$, and classify them as representing exponential growth or decay.
	F-IF.C.9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
	F-BF.A.1b	Write a function that describes a relationship between two quantities. *
		b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
	F-BF.A.2	Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. *
	F-LE.B.5	Interpret the parameters in a linear or exponential function in terms of a context.
Instructional Days:	5	
Lesson 29:	The Mathem	atics Behind a Structured Savings Plan (M) ¹
Lesson 30:	Buying a Car	(M)

¹Lesson Structure Key: P-Problem Set Lesson, M-Modeling Cycle Lesson, E-Exploration Lesson, S-Socratic Lesson

NYS COMMON CORE MATHEMATICS CURRICULUM

Lesson 31:Credit Cards (M)Lesson 32:Buying a House (M)Lesson 33:The Million Dollar Problem (M)

Topic E is a culminating series of lessons driven by MP.4, Modeling with Mathematics. Students apply what they have learned about mathematical models and exponential growth to financial literacy, while developing and practicing the formula for the sum of a finite geometric series. Lesson 29 develops the future value formula for a structured savings plan and, in the process, develops the formula for the sum of a finite geometric series (A-SSE.B.4). The summation symbol, Σ , is introduced in this lesson.

Lesson 30 introduces loans through the context of purchasing a car. To develop the formula for the present value of an annuity, students combine two formulas for the future value of the annuity (**F-BF.A.1b**) and apply the sum of a finite geometric series formula. Throughout the remaining lessons, various forms of the present value of an annuity formula are used to calculate monthly payments and loan balances. The comparison of the effects of various interest rates and repayment schedules requires that students translate between symbolic and numerical representations of functions (**F-IF.C.9**). Lesson 31 addresses the issue of revolving credit such as credit cards, for which the borrower can choose how much of the debt to pay each cycle. Students again sum a geometric series to develop a formula for this scenario, and it turns out to be equivalent to the formula used for car loans. Key features of tables and graphs are used to answer questions about finances (**F-IF.C.7e**).

Lessons 32 and 33 are modeling lessons in which students apply what they have learned in earlier lessons to new financial situations (MP.4). Lesson 32 may be extended to an open-ended project in which students research buying a home and justify its affordability. Lesson 33, the final lesson of the module, is primarily a summative lesson in which students formulate a plan to have \$1,000,000 in assets within a fixed time frame, using the formulas developed in the prior lessons in the topic. Students graph the present value function and compare that with an amortization table, in accordance with **F-IF.C.9**. In both of these lessons, students need to combine functions using standard arithmetic operations (**F-IF.A.1b**).

Student Outcomes

- Students review and practice applying the properties of exponents for integer exponents.
- Students model a real-world scenario involving exponential growth and decay.

Lesson Notes

To fully understand exponential functions and their use in modeling real-world situations, students must be able to extend the properties of integer exponents to rational and real numbers. In previous grades, students established the properties of exponents for integer exponents and worked with radical expressions and irrational numbers such as $\sqrt{2}$.

In this module, the properties of exponents are used to show that for any positive real number b, the domain of the exponential function $f(x) = b^x$ is all real numbers. In Algebra I, students primarily worked with exponential functions where the domain was limited to a set of integers. In the latter part of this module, students are introduced to logarithms, which allow them to find real number solutions to exponential equations. Students come to understand how logarithms simplify computation, particularly with different measuring scales.

Much of the work in this module relies on the ability to reason quantitatively and abstractly (MP.2), to make use of structure (MP.7), and to model with mathematics (MP.4). Lesson 1 begins with a challenge problem where students are asked to fold a piece of paper in half 10 times and construct exponential functions based on their experience (F-LE.A.2). It is physically impossible to fold a sheet of notebook paper in half more than seven or eight times; the difficulty lies in the thickness of the paper compared to the resulting area when the paper is folded. To fold a piece of paper in half more than seven or eight times requires either a larger piece of paper, a very thin piece of paper, or a different folding scheme, such as accordion folding. In 2001, a high school student, Britney Gallivan, successfully folded a very large piece of paper in half 12 times and derived a mathematical formula to determine how large a piece of paper would be required to successfully accomplish this task (http://pomonahistorical.org/12times.htm). Others have tried the problem as well, including the hosts of the television show "MythBusters" (<u>https://www.youtube</u>.com/watch?v=kRAEBbotuIE) and students at St. Mark's High School in Massachusetts (http://www.newscientist.com/blogs/nstv/2012/01/paperfolding-limits-pushed.html). Consider sharing one of these resources with the class at the close of the lesson or after they have completed the Exploratory Challenge. After this challenge, which reintroduces students to exponential growth and decay, students review the properties of exponents for integer exponents and apply them to the rewriting of algebraic expressions (N-RN.A.2). The lesson concludes with fluency practice where students apply properties of exponents to rewrite expressions in a specified form.

Consider having the following materials on hand in case students want to explore this problem in more detail: access to the Internet, chart paper, cash register tape, a roll of toilet paper, origami paper, tissue paper or facial tissues, and rulers.

Lesson 1: Integer Exponents

Classwork

Students begin this lesson by predicting whether they can fold a piece of paper in half 10 times, how tall the folded paper will be, and whether or not the area of paper showing on top is smaller or larger than a postage stamp. They explore the validity of their predictions in the Exploratory Challenge that follows.

Opening Exercise (3 minutes)

Give students a short amount of time to think about and write individual responses. Lead a short discussion with the entire class to poll students on their responses. Record solutions on the board or chart paper for later reference. At this point, most students will probably say that they *can* fold the paper in half 10 times. The sample responses shown below are *not* correct and represent possible initial student responses. Some students may be familiar with this challenge, having seen it discussed on a television program or on the Internet and, consequently, say that a piece of notebook paper cannot be folded in half 10 times. Accept all responses, and avoid excessive explanation or justification of answers at this point.

Opening Exercise provide jue Can you fold a piece of notebook paper in half 10 times? their clain Answers will vary. Although incorrect, many students may initially answer "Yes." paper. How thick will the folded paper be? Answers will vary. The following is a typical student guess: It will be about 1 cm. Will the area of the paper on the top of the folded stack be larger or smaller than a postage stamp? It will be smaller because I will be dividing the rectangle in half 10 times, and since a piece of paper is about 8.5 in. by 11 in., it will be very small when divided in half that many times.

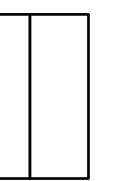
Scaffolding:

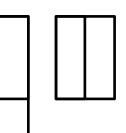
- Demonstrate folding the paper once or twice during the discussion to illustrate what the questions are asking and what is meant by how thick the folded paper will be.
- Ask advanced learners to provide justification for their claims about the thickness of the folded paper.

Discussion (2 minutes)

Students should brainstorm ideas for further exploring these questions to come up with a more precise answer to these questions. At this point, some students are likely folding a piece of notebook paper. On chart paper, record ideas for additional information needed to answer the original questions more precisely.

- How can you be sure of your answers?
 - We could actually fold a piece of paper and measure the height and area on top of the stack. We could determine the thickness of a sheet of notebook paper and then multiply it by the number of folds. We could find the area of the original paper and divide it by 2 successively for each fold.





MP.1

Lesson 1: Integer Exponents

- What additional information is needed to solve this problem?
 - We need to know the thickness of the paper, the dimensions of the original piece of paper, and a consistent way to fold the paper.
 - We need to know the size of a postage stamp.
 - How will you organize your work?
 - We can make a table.

Exploratory Challenge (20 minutes)

MP.1

Students should work on this challenge problem in small groups. Groups can use the suggested scaffolding questions on the student pages, or simply give each group a piece of chart paper and access to appropriate tools such as a ruler, different types of paper, a computer for researching the thickness of a sheet of paper, etc., and start them on the task. Have them report their results on their chart paper. Student solutions will vary from group to group. Sample responses have been provided below for a standard 8.5 in. by 11 in. piece of paper that has been folded in half as shown below.

The size of a small postage stamp is $\frac{7}{8}$ in. by 1 in.

Exploratory Challenge What are the dimensions of your paper? а. The dimensions are 8.5 in. by 11 in. b. How thick is one sheet of paper? Explain how you decided on your answer. A ream of paper is 500 sheets. It is about 2 in. high. Dividing 2 by 500 would give a thickness of a piece of paper to be approximately 0.004 in. c. Describe how you folded the paper. First, we folded the paper in half so that it was 8.5 in. by 5.5 in.; then, we rotated the paper and folded it again so that it was 5.5 in. by 4.25 in.; then, we rotated the paper and folded it again, and so on. Record data in the following table based on the size and thickness of your paper. d. Number of Folds 0 1 2 3 4 Thickness of the Stack (in.) 0.004 0.008 0.016 0.032 0.064 23.375 93.5 46.75 11.6875 5.84375 Area of the Top of the Stack (sq. in.) Number of Folds 5 7 8 9 10 6 Thickness of the Stack (in.) 0.128 0.256 0.512 1.024 2.048 4.096 Area of the Top of the Stack (sq. in.) 2.921875 1.461 0.730 0.365 0.183 0.091 Answers are rounded to three decimal places after the fifth fold. Were you able to fold a piece of notebook paper in half 10 times? Why or why not? e. No. It got too small and too thick for us to continue folding it.

16

engage

Debrief after part (e) by having groups present their solutions so far. At this point, students should realize that it is impossible to fold a sheet of notebook paper in half 10 times. If groups wish to try folding a larger piece of paper, such as a piece of chart paper, or a different thickness of paper, such as a facial tissue, or using a different folding technique, such as an accordion fold, then allow them to alter their exploration. Consider having tissue paper, facial tissues, a roll of toilet paper, chart paper, or cash register tape on hand for student groups to use in their experiments.

After students have made adjustments to their models and tested them, have them write formulas to predict the height and area after 10 folds and explain how these answers compare to their original predictions. Students worked with exponential functions and geometric sequences in Algebra I. Since this situation involves doubling or halving, most groups should be able to write a formula. When debriefing this next section with the entire class, help students to write a well-defined formula. Did they specify the meaning of their variables? Did they specify a domain if they used function notation? They may not have used the same variables shown in the solutions below and should be using specific values for the thickness and area of the paper based on their assumptions during modeling. Students are likely surprised by these results.

- How thick would the stack be if you could fold it 10 times?
- Is the area of the top of the stack smaller or larger than a postage stamp?
- How do these answers compare to your prediction?

f. Create a formula that approximates the height of the stack after *n* folds.

Our formula is $H(n) = T \cdot 2^n$, where T is the thickness of the paper and H(n) is the height after n folds. In this case, T = 0.004 in.

g. Create a formula that will give you the approximate area of the top after *n* folds.

Our formula is $A(n) = A_0 \left(\frac{1}{2}\right)^n$, where A_0 is the area of the original piece of paper and A(n) is the area of the top after n folds. In this case, $A_0 = 93.5$ sq. in.

h. Answer the original questions from the Opening Exercise. How do the actual answers compare to your original predictions?

It was impossible to fold the paper more than 7 times. Using our model, if we could fold the paper 10 times, it would be just over 4 in. thick and less than $\frac{1}{10}$ sq. in., which is much smaller than the area of a postage stamp. Our predictions were inaccurate because we did not consider how drastically the sizes change when successively doubling or halving measurements.

Student groups should present their solutions again. If it did not come up earlier, ask students to consider how they might increase the likelihood that they could fold a piece of paper in half more than seven or eight times.

- What are some ways to increase the likelihood that you could successfully fold a piece of paper in half more than seven or eight times?
 - You could use a thinner piece of paper. You could use a larger piece of paper. You could try different ways of folding the paper.

MP.

Integer Exponents

ALGEBRA II

Scaffolding:

If students are struggling to develop the formulas in their groups, complete the rest of this challenge as a whole class. Students have many opportunities to model using exponential functions later in this module. Write the height and thickness as products of repeated twos to help students see the pattern. For example, after three folds, the height would be $T \cdot 2 \cdot 2 \cdot 2$, where Tis the thickness of the paper.

Lesson 1:

Brittney Gallivan, the high school student who solved this problem in 2001, first folded a very thin sheet of gold foil in half over seven times and then successfully folded an extremely large piece of paper in half 12 times at a local shopping mall. In 2011, students at St. Mark's High School in Massachusetts folded miles of taped-together toilet paper in half 13 times.

Example 1 (5 minutes): Using the Properties of Exponents to Rewrite Expressions

In this example, show students how to represent their expressions using powers of 2. Model this using the folding of a 10 in. by 10 in. square sheet of gold foil. The thickness of gold foil is 0.28 millionth of a meter. The information in this problem is based on the first task Britney accomplished: folding a sheet of gold foil in half twelve times. Of course, her teacher then modified the task and required her to actually use paper (http://www.abc.net.au/science/articles/2005/12/21/1523497.htm). The goal of this example is to remind students of the meaning of integer exponents.

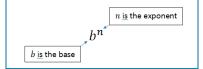
Many students likely see the area sequence as successive divisions by two. For students who are struggling to make sense of the meaning of a negative exponent, model rewriting the expressions in the last column as follows:

$$\frac{100}{2} = 100 \left(\frac{1}{2}\right) = 100 \left(\frac{1}{2}\right)^{1} = 100 \cdot 2^{-1};$$
$$\frac{100}{4} = 100 \left(\frac{1}{4}\right) = 100 \left(\frac{1}{2}\right)^{2} = 100 \cdot 2^{-2};$$
$$\frac{100}{8} = 100 \left(\frac{1}{8}\right) = 100 \left(\frac{1}{2}\right)^{3} = 100 \cdot 2^{-3}.$$

Lesson 1

ALGEBRA II

Use a vocabulary notebook or an anchor chart posted on the wall to remind students of vocabulary words associated with exponents.

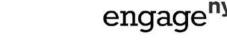


Example 1: Using the Properties of Exponents to Rewrite Expressions

The table below displays the thickness and area of a folded square sheet of gold foil. In 2001, Britney Gallivan, a California high school junior, successfully folded a 100-square-inch sheet of gold foil in half 12 times to earn extra credit in her mathematics class.

Rewrite each of the table entries as a multiple of a power of 2.

Number of Folds	Thickness of the Stack (millionths of a meter)	Thickness Using a Power of 2	Area of the Top (square inches)	Area Using a Power of 2
0	0.28	$0.28 \cdot 2^0$	100	100 · 2 ⁰
1	0.56	$0.28 \cdot 2^1$	50	$100 \cdot 2^{-1}$
2	1.12	$0.28\cdot\mathbf{2^2}$	25	$100 \cdot 2^{-2}$
3	2.24	$0.28\cdot\mathbf{2^{3}}$	12.5	$100 \cdot 2^{-3}$
4	4.48	$0.28\cdot\mathbf{2^4}$	6.25	$100 \cdot 2^{-4}$
5	8.96	$0.28 \cdot 2^5$	3.125	$100 \cdot 2^{-5}$
6	17.92	$0.28 \cdot 2^{6}$	1.5625	$100 \cdot 2^{-6}$



While modeling this example with students, take the opportunity to discuss the fact that exponentiation with positive integers can be thought of as repeated multiplication by the base, whereas exponentiation with negative integers can be thought of as repeated division by the base. For example,

$$4^{24} = \underbrace{4 \cdot 4 \cdot 4 \cdot \dots \cdot 4}_{24 \text{ times}} \quad \text{and} \quad 4^{-24} = \underbrace{\frac{1}{\underbrace{4 \cdot 4 \cdot 4 \cdot \dots \cdot 4}_{24 \text{ times}}}.$$

Alternatively, the meaning of a negative exponent when the exponent is an integer can be described as repeated multiplication by the reciprocal of the base. For example,

$$4^{-24} = \underbrace{\binom{1}{4}\binom{1}{4}\binom{1}{4}\binom{1}{4}\cdots\binom{1}{4}}_{24 \text{ times}}.$$

Interpreting exponents as repeated multiplication or division only makes sense for integer exponents. However, the properties of exponents do apply for any real number exponent.

Example 2 (5 minutes): Applying the Properties of Exponents to Rewrite Expressions

Transition into this example by explaining that many times when working with algebraic and numeric expressions that contain exponents, it is advantageous to rewrite them in different forms (MP.7). One obvious advantage of exponents is that they shorten the length of an expression involving repeated multiplication. Ask students to imagine always having

to write out the product of ten 2's if they wanted to express the number 1,024 as a power of 2. While the exponent notation gives a way to express repeated multiplication succinctly, the properties of exponents also provide a way to make computations with exponents more efficient. Share the properties of exponents below. Have students record these properties in their math notebooks.

The Properties of Exponents

For nonzero real numbers x and y and all integers a and b, the following properties hold.

$$x^{a} \cdot x^{b} = x^{a+b}$$
$$(x^{a})^{b} = x^{ab}$$
$$(xy)^{a} = x^{a}y^{a}$$
$$\frac{x^{a}}{x^{b}} = x^{a-b}$$

(Note: Most cases of the properties listed above hold when x = 0 or y = 0. The only cases that cause problems are when values of the variables result in the expression 0^0 or division by 0.) Ask students to discuss with a partner different ways to rewrite the following expressions in the form kx^n , where k is a real number and n is an integer. Have students share out their responses with the entire class. For each problem, model both approaches. While modeling, make sure to have students verbalize the connections between the methods. Ask volunteers to explain why the rules hold.

Scaffolding:

Lesson 1

ALGEBRA II

Students needing additional practice with exponents can use the following numeric examples that mirror the algebraic expressions in Example 2. Have students work them side by side to help see the structure of the expressions.

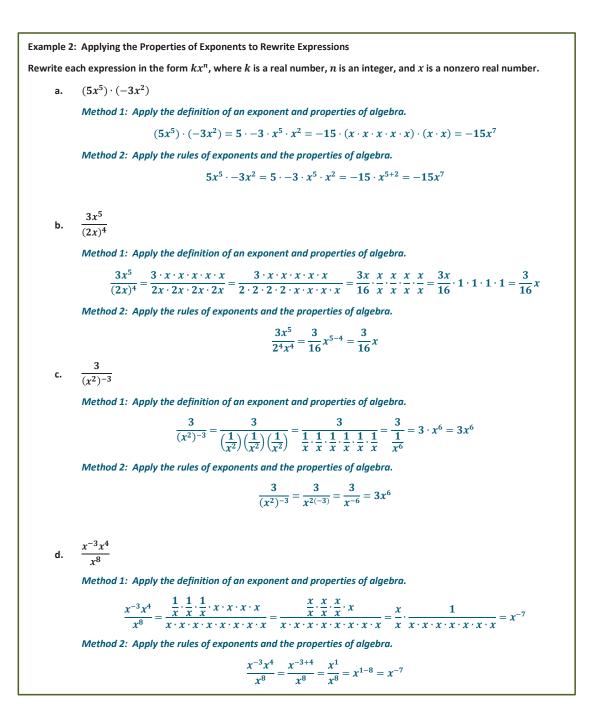
 Write each expression in the form kbⁿ, where k is a real number and b and n are integers.

$$\frac{(5 \cdot 2^{7})(-3 \cdot 2^{2})}{\frac{3 \cdot 4^{5}}{(2 \cdot 4)^{4}}}$$
$$\frac{3}{(5^{2})^{-3}}$$
$$\frac{3^{-3} \cdot 3^{4}}{3^{8}}$$

Lesson 1: Inte

Integer Exponents

engage



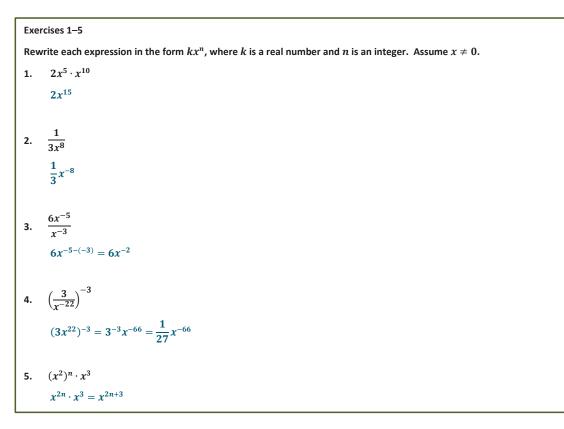
After seeing these examples, students should begin to understand why the properties of exponents are so useful for working with exponential expressions. Show both methods as many times as necessary in order to reinforce the properties with students so that they ultimately rewrite most expressions like these by inspection, using the properties rather than expanding exponential expressions.

Lesson 1: Integer Exponents

engage^{ny}

Exercises 1–5 (5 minutes)

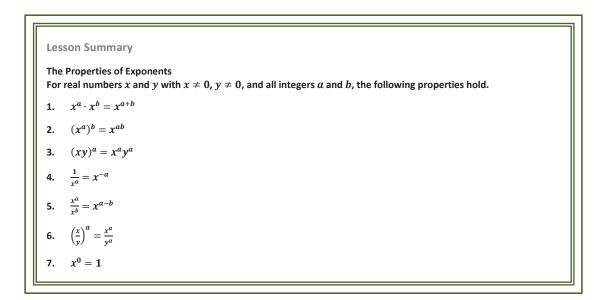
The point of these exercises is to force students to use the properties of exponents to rewrite expressions in the form kx^n . Typical high school textbooks ask students to write expressions with nonnegative exponents. However, in advanced mathematics classes, students need to be able to fluently rewrite expressions in different forms. Students who continue on to study higher-level mathematics such as calculus need to rewrite expressions in this form in order to quickly apply a common derivative rule. The last two exercises are not feasible to work out by expanding the exponent. Use them to assess whether or not students are able to apply the rules fluently even when larger numbers or variables are involved.



Closing (2 minutes)

Have students respond individually in writing or with a partner to the following questions.

- How can the properties of exponents help us to rewrite expressions?
 - They make the process less tedious, especially when the exponents are very large or very small integers.
- Why are the properties of exponents useful when working with large or small numbers?
 - You can quickly rewrite expressions without having to rewrite each power of the base in expanded form.



Exit Ticket (3 minutes)

Integer Exponents

Lesson 1 M3

Name

Date

Lesson 1: Integer Exponents

Exit Ticket

The following formulas for paper folding were discovered by Britney Gallivan in 2001 when she was a high school junior. The first formula determines the minimum width, W, of a square piece of paper of thickness T needed to fold it in half n times, alternating horizontal and vertical folds. The second formula determines the minimum length, L, of a long rectangular piece of paper of thickness T needed to fold it in half n times, always folding perpendicular to the long side.

$$W = \pi \cdot T \cdot 2^{\frac{3(n-1)}{2}} \qquad \qquad L = \frac{\pi T}{6} (2^n + 4)(2^n - 1)$$

- 1. Notebook paper is approximately 0.004 in. thick. Using the formula for the width W, determine how wide a square piece of notebook paper would need to be to successfully fold it in half 13 times, alternating horizontal and vertical folds.
- 2. Toilet paper is approximately 0.002 in. thick. Using the formula for the length L, how long would a continuous sheet of toilet paper have to be to fold it in half 12 times, folding perpendicular to the long edge each time?
- 3. Use the properties of exponents to rewrite each expression in the form kx^n . Then, evaluate the expression for the given value of x.

a.
$$2x^3 \cdot \frac{5}{4}x^{-1}; x = 2$$

b.
$$\frac{9}{(2x)^{-3}}$$
; $x = -\frac{1}{3}$

23

engage

Exit Ticket Sample Solutions

The following formulas for paper folding were discovered by Britney Gallivan in 2001 when she was a high school junior. The first formula determines the minimum width, W, of a square piece of paper of thickness T needed to fold it in half n times, alternating horizontal and vertical folds. The second formula determines the minimum length, L, of a long rectangular piece of paper of thickness T needed to fold it in half n times, always folding perpendicular to the long side.

$$W = \pi \cdot T \cdot 2 \frac{3(n-1)}{2} \qquad L = \frac{\pi T}{6} (2^n + 4)(2^n - 1)$$

1. Notebook paper is approximately 0.004 in. thick. Using the formula for the width *W*, determine how wide a square piece of notebook paper would need to be to successfully fold it in half 13 times, alternating horizontal and vertical folds.

The paper would need to be approximately 3, 294. 2 in. wide: $W = \pi T 2^{\frac{3(13-1)}{2}} = \pi (0.004) 2^{18} \approx 3294.199.$

2. Toilet paper is approximately 0.002 in. thick. Using the formula for the length *L*, how long would a continuous sheet of toilet paper have to be to fold it in half 12 times, folding perpendicular to the long edge each time?

The paper would have to be approximately 17, 581.92 in. long, which is approximately 0.277 mi.:

$$L = \left(\frac{\pi(0.002)}{6}\right)(2^{12} + 4)(2^{12} - 1) = \pi\left(\frac{1}{3000}\right)(4100)(4095) = 5596.5 \,\pi \approx 17,581.92.$$

3. Use the properties of exponents to rewrite each expression in the form kx^n . Then, evaluate the expression for the given value of x.

a.
$$2x^3 \cdot \frac{5}{4}x^{-1}; x = 2$$

 $2\left(\frac{5}{4}\right)x^3x^{-1} = \frac{5}{2}x^2$
When $x = 2, \frac{5}{2}x^2 = \frac{5}{2}(2)^2 = 10.$

b.
$$\frac{1}{(2x)^{-3}}$$
; $x = -\frac{1}{3}$
 $\frac{9}{2^{-3}x^{-3}} = 72x^3$
When $x = -\frac{1}{3}$, $72x^3 = 72\left(-\frac{1}{3}\right)^3 = -\frac{8}{3}$.

24

engage^{ny}

Lesson 1:

Problem Set Sample Solutions

Note to the teacher: Problem 3, part (g), is important for the financial lessons that occur near the end of this module.

- Suppose your class tried to fold an unrolled roll of toilet paper. It was originally 4 in. wide and 30 ft. long. Toilet 1. paper is approximately 0.002 in. thick.
 - Complete each table, and represent the area and thickness using powers of 2. а.

Number of	Thickness
Folds	After <i>n</i> Folds
n	(in.)
0	$0.002 = 0.002 \cdot 2^0$
1	$0.004 = 0.002 \cdot 2^1$
2	$0.008 = 0.002 \cdot 2^2$
3	$0.016 = 0.002 \cdot 2^3$
4	$0.032 = 0.002 \cdot 2^4$
5	$0.064 = 0.002 \cdot 2^5$
6	$0.128 = 0.002 \cdot 2^6$

Number of	Area on Top
Folds	After <i>n</i> Folds
n	(in ²)
0	$1440 = 1440 \cdot 2^0$
1	$720 = 1440 \cdot 2^{-1}$
2	$360 = 1440 \cdot 2^{-2}$
3	$180 = 1440 \cdot 2^{-3}$
4	$90 = 1440 \cdot 2^{-4}$
5	$45 = 1440 \cdot 2^{-5}$
6	$22.5 = 1440 \cdot 2^{-6}$

Create an algebraic function that describes the area in square inches after n folds. b.

 $A(n) = 1440 \cdot 2^{-n}$, where n is a nonnegative integer.

Create an algebraic function that describes the thickness in inches after n folds. c.

 $T(n) = 0.002 \cdot 2^n$, where n is a nonnegative integer.

2. In the Exit Ticket, we saw the formulas below. The first formula determines the minimum width, W, of a square piece of paper of thickness T needed to fold it in half n times, alternating horizontal and vertical folds. The second formula determines the minimum length, L, of a long rectangular piece of paper of thickness T needed to fold it in half n times, always folding perpendicular to the long side.

$$W = \pi \cdot T \cdot 2^{\frac{3(n-1)}{2}} \qquad L = \frac{\pi T}{6} (2^n + 4)(2^n - 1)$$

Use the appropriate formula to verify why it is possible to fold a 10 inch by 10 inch sheet of gold foil in half 13 times. Use 0.28 millionth of a meter for the thickness of gold foil.

Given that the thickness of the gold foil is 0.28 millionth of a meter, we have

Integer Exponents

$$\frac{0.28}{1,000,000} \text{m} \cdot \frac{100 \text{ cm}}{1 \text{ m}} = 0.000028 \text{ cm} \cdot \frac{1 \text{ in}}{2.54 \text{ cm}} = 0.00001102 \text{ in}.$$

Using the formula

$$W = \pi T 2^{\frac{3(n-1)}{2}}$$

with n = 13 and T = 0.00001102, we get

$$W = \pi (0.00001102) 2 \frac{3(13-1)}{2} \approx 9.1$$

Thus, any square sheet of gold foil larger than 9.1 inches by 9.1 inches can be folded in half 13 times, so a 10 inch by 10 inch sheet of gold foil can be folded in half 13 times.

This work is licensed under a

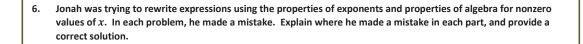
(cc) BY-NC-SA



3. Use the formula from Problem 2 to determine if you can fold an unrolled roll of toilet paper in half more than 10 times. Assume that the thickness of a sheet of toilet paper is approximately 0.002 in. and that one roll is 102 ft. long. First, convert feet to inches. 102 ft. = 1224 in. Then, substitute 0.002 and 10 into the formula for T and n, respectively. $L = \frac{\pi(0.002)}{6}(2^{10} + 4)(2^{10} - 1) = 1101.3$ The roll is just long enough to fold in half 10 times. Apply the properties of exponents to rewrite each expression in the form kx^n , where n is an integer and $x \neq 0$. 4. a. $(2x^3)(3x^5)(6x)^2$ $2 \cdot 3 \cdot 36x^{3+5+2} = 216x^{10}$ b. $\frac{3x^4}{(-6x)^{-2}}$ $3x^4 \cdot 36x^2 = 108x^6$ c. $\frac{x^{-3}x^5}{3x^4}$ $\frac{1}{3}x^{-3+5-4} = \frac{1}{3}x^{-2}$ d. $5(x^3)^{-3}(2x)^{-4}$ $\frac{5}{16}x^{-9+(-4)} = \frac{5}{16}x^{-13}$ e. $\left(\frac{x^2}{4x^{-1}}\right)^{-3}$ $\frac{x^{-6}}{4^{-3}x^3} = 64x^{-6-3} = 64x^{-9}$ 5. Apply the properties of exponents to verify that each statement is an identity. a. $\frac{2^{n+1}}{3^n} = 2\left(\frac{2}{3}\right)^n$ for integer values of *n* $\frac{2^{n+1}}{3^n} = \frac{2^n 2^1}{3^n} = \frac{2 \cdot 2^n}{3^n} = 2 \cdot \left(\frac{2}{3}\right)^n$ b. $3^{n+1} - 3^n = 2 \cdot 3^n$ for integer values of n $3^{n+1} - 3^n = 3^n \cdot 3^1 - 3^n = 3^n (3-1) = 3^n \cdot 2 = 2 \cdot 3^n$ c. $\frac{1}{(3^n)^2} \cdot \frac{4^n}{3} = \frac{1}{3} \left(\frac{2}{3}\right)^{2n}$ for integer values of n $\frac{1}{(3^n)^2} \cdot \frac{4^n}{3} = \frac{1}{3^{2n}} \cdot \frac{(2^2)^n}{3} = \frac{1 \cdot 2^{2n}}{3 \cdot 3^{2n}} = \frac{1}{3} \cdot \left(\frac{2}{3}\right)^{2n}$

Lesson 1: Integer Exponents

engage^{ny}



Jonah's Incorrect Work

MP.3

a.
$$(3x^2)^{-3} = -9x^{-6}$$

b. $\frac{2}{3x^{-5}} = 6x^5$
c. $\frac{2x-x^3}{3x} = \frac{2}{3} - x^3$

In part (a), he multiplied 3 by the exponent -3. The correct solution is $3^{-3}x^{-6} = \frac{1}{27}x^{-6}$.

In part (b), he multiplied 2 by 3 when he rewrote x^{-5} . The 3 should remain in the denominator of the expression. The correct solution is $\frac{2}{2}x^{5}$.

In part (c), he only divided the first term by 3x, but he should have divided both terms by 3x. The correct solution is $\frac{2x}{3x} - \frac{x^3}{3x} = \frac{2}{3} - \frac{x^2}{3}$.

7. If $x = 5a^4$ and $a = 2b^3$, express x in terms of b.

By the substitution property, if $x = 5a^4$ and $a = 2b^3$, then $x = 5(2b^3)^4$. Rewriting the right side in an equivalent form gives $x = 80b^{12}$.

8. If $a = 2b^3$ and $b = -\frac{1}{2}c^{-2}$, express a in terms of c.

By the substitution property, if $a = 2b^3$ and $b = -\frac{1}{2}c^{-2}$, then $a = 2\left(-\frac{1}{2}c^{-2}\right)^3$. Rewriting the right side in an equivalent form gives $a = -\frac{1}{4}c^{-6}$.

9. If $x = 3y^4$ and $y = \frac{s}{2x^3}$, show that $s = 54y^{13}$.

Rewrite the equation $y = \frac{s}{2x^3}$ to isolate the variable s.

$$y = \frac{s}{2x^3}$$
$$2x^3y = s$$

By the substitution property, if $s = 2x^3y$ and $x = 3y^4$, then $s = 2(3y^4)^3 \cdot y$. Rewriting the right side in an equivalent form gives $s = 2 \cdot 27y^{12} \cdot y = 54y^{13}$.

10. Do the following tasks without a calculator.

a. Express 8³ as a power of 2.

$$8^3 = (2^3)^3 = 2^9$$

b. Divide 4^{15} by 2^{10} .

 $\frac{4^{15}}{2^{10}} = \frac{2^{30}}{2^{10}} = 2^{20} \quad \text{or} \quad \frac{4^{15}}{2^{10}} = \frac{4^{15}}{4^5} = 4^{10}$

Lesson 1: Integer Exponents

27

engage

11. Use powers of 2 to perform each calculation without a calculator or other technology.
a.
$$\frac{2^7 \cdot 2^5}{16} = \frac{2^7 \cdot 2^5}{2^4} = 2^{7 \cdot 5^{-4}} = 2^n = 256$$
b.
$$\frac{512000}{3200} = \frac{512 \cdot 1000}{32 \cdot 10} = \frac{2^9}{2^5} \cdot 100 = 2^4 \cdot 100 = 1600$$
12. Write the first five terms of each of the following recursively defined sequences:
a. $a_{n+1} = 2a_n, a_1 = 3$
3. 6, 12, 24, 48
b. $a_{n+1} = (a_n)^2, a_1 = 3$
3. 9, 81, 6561, 43 046 721
c. $a_{n+1} = 2(a_n)^2, a_1 = x$, where x is a real number Write each term in the form kx^n .
 $x, 2x^2, 8x^4, 128x^6, 32768x^{16}$
d. $a_{n+1} = 2(a_n)^{-1}, a_1 = y, (y \neq 0)$ Write each term in the form kx^n .
 $y, 2y^{-1}, y, 2y^{-1}, y$
13. In Module 1, you established the identity $(1 - r)(1 + r + r^2 + \dots + r^{n-1}) = 1 - r^n$, where r is a real number and n is a positive integer.
Use this identity to respond to parts (a)-(g) below.
a. Rewrite the given identity to isolate the sum $1 + r + r^2 + \dots + r^{n-1}$ for $r \neq 1$.
 $(1 + r + r^2 + \dots + r^{n-1}) = \frac{1 - r^n}{1 - r}$
b. Find an explicit formula for $1 + 2 + 2^2 + 2^3 + \dots + 2^{10}$.
 $\frac{1 - 2^{11}}{1 - 2} = 2^{11} - 1$
c. Find an explicit formula for $1 + a + a^2 + a^3 + \dots + a^{10}$ in terms of powers of a.
 $\frac{1 - a^{11}}{1 - a}$
d. Jervy simplified the sum $1 + a + a^2 + a^3 + a^4 + a^5$ by writing $1 + a^{15}$. What did he do wrong?
He assumed that when you add terms with the same base.

Integer Exponents Lesson 1:

Find an explicit formula for $1 + 2a + (2a)^2 + (2a)^3 + \dots + (2a)^{12}$ in terms of powers of a. e.

 $1 - (2a)^{13}$ 1 - 2a

Find an explicit formula for $3 + 3(2a) + 3(2a)^2 + 3(2a)^3 + \dots + 3(2a)^{12}$ in terms of powers of a. f. Hint: Use part (e).

$$3\cdot\left(\frac{1-(2a)^{13}}{1-2a}\right)$$

Find an explicit formula for $P + P(1+r) + P(1+r)^2 + P(1+r)^3 + \dots + P(1+r)^{n-1}$ in terms of powers g. of (1 + r).

$$P\cdot\left(\frac{1-(1+r)^n}{1-(1+r)}\right)=P\cdot\left(\frac{1-(1+r)^n}{-r}\right)$$

This work is derived from Eureka Math [™] and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

engage^{ny}

Student Outcomes

- Students review place value and scientific notation.
- Students use scientific notation to compute with large numbers.

Lesson Notes

This lesson reviews how to express numbers using scientific notation. Students first learned about scientific notation in Grade 8 where they expressed numbers using scientific notation (8.EE.A.3) and computed with and compared numbers expressed using scientific notation (8.EE.A.4). Refer to Grade 8, Module 1, Topic B to review the approach to introducing scientific notation and its use in calculations with very large and very small numbers. This lesson sets the stage for the introduction of base-10 logarithms later in this module by focusing on the fact that every real number can be expressed as the product of a number between 1 and 10 and a power of 10. In the paper-folding activity in the last lesson, students worked with some very small and very large numbers. This lesson opens with these numbers to connect these lessons. Students also compute with numbers using scientific notation and discuss how the properties of exponents can simplify these computations (N-RN.A.2). In both the lesson and the Problem Set, students define appropriate quantities for the purpose of descriptive modeling (N-Q.A.2). The lesson includes a demonstration that reinforces the point that using scientific notation is convenient when working with very large or very small numbers and helps students gain some sense of the change in magnitude when different powers of 10 are compared. This is an excellent time to watch the 9-minute classic film "Powers of 10" by Charles and Ray Eames, available at

<u>https://www.youtube.com/watch?v=0fKBhvDjuy0</u>, which clearly illustrates the effect of adding another zero. The definition of scientific notation from Grade 8, Module 1, Lesson 9 is included after Example 1. Consider allowing students to use a calculator for this lesson.

Classwork

Opening (2 minutes)

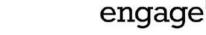
In the last lesson, Example 1 gave the thickness of a sheet of gold foil as 0.28 millionth of a meter. In the Exit Ticket, students calculated the size of a square sheet of paper that could be folded in half thirteen times, and this area was very large. These numbers are used in the Opening Exercise of this lesson. Before students begin the Opening Exercise, briefly remind them of these numbers that they saw in the previous lesson, and tell them that this lesson provides them with a way to conveniently represent very small or very large numbers. If there was not an opportunity to share one of the news stories in Lesson 1, that could be done at this time as well.

Opening Exercise (5 minutes)

Students should work these exercises independently and then share their responses with a partner. Ask one or two students to explain their calculations to the rest of the class. Be sure to draw out the meaning of 0.28 millionth of a meter and how that can be expressed as a fraction of a meter. Check to make sure students know the place value for large numbers such as billions. Students should be able to work the first exercise without a calculator, but on the second exercise, students should definitely use a calculator. If they do not have access to a calculator, give them the number squared, and simply have them write the rounded value.

Opening E	Opening Exercise						
	In the last lesson, you worked with the thickness of a sheet of gold foil (a very small number) and some very large numbers that gave the size of a piece of paper that actually could be folded in half more than 13 times.						
a.	Convert 0.28 millionth of a meter to centimeters, and express your answer as a decimal number.						
	$\frac{0.28}{1,000,000} \text{ m} \cdot \frac{100 \text{ cm}}{1 \text{ m}} = \frac{28}{1,000,000} \text{ cm} = 0.000028 \text{ cm}$						
b.	The length of a piece of square notebook paper that can be folded in half 13 times is 3,294.2 in. Use this number to calculate the area of a square piece of paper that can be folded in half 14 times. Round your answer to the nearest million.						
	$(2 \cdot 3294.2)^2 = 43,407,014.56$						
	Rounded to the nearest million, the area is 43,000,000 square inches.						
c.	Match the equivalent expressions without using a calculator.						
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	$3.5 imes 10^5$ is equal to 350,000.						
	$-6 imes 10^0$ is equal to -6 .						
	$6 imes 10^{-1}$ is equal to 0. 6.						
	$3.5 imes 10^6$ is equal to 3,500,000.						
	3.5×10^{-6} is equal to 0.0000035.						
	-6×10^{0} is equal to -6. 6×10^{-1} is equal to 0.6. 3.5×10^{6} is equal to 3,500,000.						

While reviewing these solutions, point out that very large and very small numbers require students to include many digits to indicate the place value as shown in parts (a) and (b). Also, based on part (c), it appears that integer powers of 10 can be used to express a number as a product.



Example 1 (7 minutes)

Write the following statement on the board, and ask students to consider whether or not they believe it is true. Have them discuss their thoughts with a partner, and then ask for volunteers to explain their thinking.

Every positive decimal number can be expressed as the product of a number between 1 and 10 and a power of 10.

Students should explain that every positive decimal number can be expressed as the product of a number between 1 and 10 and a power of 10. Consider using the following prompts to direct student thinking:

Think of an example of a decimal number between 1 and 10. Write it down.

- Think of a power of 10. Write it down.
 - \sim 100 or 10^2
- What does the word *product* mean?
 - It means the result of multiplying two numbers together.
- Compute the product of the two numbers you wrote down.
 - $2.5 \cdot 10^2 = 2500$

Scaffolding:

- Have students working above grade level write the number 245 as the product of a number and a power of 10 three different ways.
- To challenge students working above grade level, have them make a convincing argument regarding the truth of a statement such as the following:
 - Every decimal number can be expressed as the product of another decimal number and a power of 10.

First, have students share their answers with a partner. Then, put a few of the examples on the board. Finally, demonstrate how to reverse the process to express the following numbers as the product of a number between 1 and 10 and a power of 10. At this point, explain to students that when numbers are written in this fashion, it is said that they are written using *scientific notation*. This is an especially convenient way to represent extremely large or extremely small numbers that otherwise would have many zero digits as placeholders. Make sure to emphasize that using this notation is simply rewriting a numerical expression in a different form, which helps students to quickly determine the size of the number. Students may need to be reminded of place value for numbers less than 1 and writing equivalent fractions whose denominators are powers of 10. The solutions demonstrate how numbers can be expressed using scientific notation.

Example 1

Write each number as a product of a decimal number between 1 and 10 and a power of 10.

```
a. 234,000

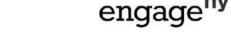
2.34 \cdot 100,000 = 2.34 \times 10<sup>5</sup>

b. 0.0035

\frac{35}{10\,000} = \frac{3.5}{1000} = 3.5 \cdot \frac{1}{1000} = 3.5 \times 10^{-3}
```

c. 532, 100, 000

 $5.321 \cdot 100,000,000 = 5.321 \times 10^8$



32

MP.3

d. 0.000000012

$$\frac{12}{10,000,000} = \frac{1.2}{1,000,000} = 1.2 \cdot \frac{1}{1,000,000} = 1.2 \times 10^{-9}$$
e. 3.331
3.331 \cdot 1 = 3.331 \times 10^{0}

- Our knowledge of the integer powers of 10 enables us to understand the concept of scientific notation.
- Consider the estimated number of stars in the universe: 6×10^{22} . This is a 23-digit *whole number* with the *leading digit* (the leftmost digit) 6 followed by 22 zeros. When it is written in the form 6×10^{22} , it is said to be expressed in scientific notation.

Students may recall scientific notation from previous grades. Take time to review the definition of scientific notation provided below.

> A positive, finite decimal s is said to be written in scientific notation if it is expressed as a product $d \times 10^n$, where

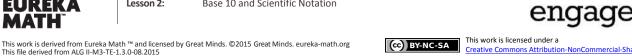
d is a finite decimal number so that $1 \le d < 10$, and n is an integer.

The integer *n* is called the *order of magnitude* of the decimal $d \times 10^n$.

Exercises 1–6 (4 minutes)

Students should work these exercises independently as their progress is monitored. Encourage students to work quickly and begin generalizing a process for quickly writing numbers using scientific notation (such as counting the number of digits between the leading digit and the ones digit). After a few minutes, share the solutions with students so they can check their work.

```
Exercises 1–6
For Exercises 1–6, write each number in scientific notation.
1. 532.000.000
     5.32 \times 10^{8}
2. 0.00000000000000123 (16 zeros after the decimal place)
     1.23 \times 10^{-17}
3. 8,900,000,000,000,000 (14 zeros after the 9)
     8.9 \times 10^{15}
     0.00003382
4.
     3.382\times10^{-5}
```

- 5. 34,000,000,000,000,000,000,000,000 (24 zeros after the 4) 3.4×10^{25}
- 6. 0.0000000000000000004 (21 zeros after the decimal place) 4×10^{-22}

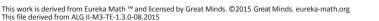
To help students quickly write these problems using scientific notation, the number of zeros is written above for each problem. Be very careful that students are not using this number as the exponent on the base 10. Lead a discussion to clarify that difference for all students who make this careless mistake.

Exercises 7–8 (5 minutes)

After students practice writing numbers in scientific notation, emphasize the usefulness of scientific notation for working with very large or very small numbers by showing this demonstration:

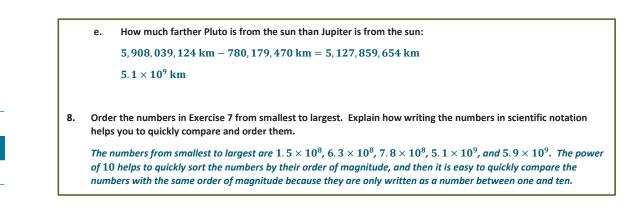
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html, which illustrates just how far the planets in our solar system are from each other. After the demonstration, write down the distances between Earth and the sun, between Jupiter and the sun, and between Pluto and the sun on the board, and have students work with a partner to answer Exercise 7. Be sure to mention that these distances are averages; the distances between the planets and the sun are constantly changing as the planets complete their orbits. The average distance from the sun to Earth is 151,268,468 km. The average distance from the sun to Jupiter is 780,179,470 km. The average distance between the sun and Pluto is 5,908,039,124 km. In these exercises, students round the distances to the nearest tenth to minimize all the writing and help them focus more readily on the magnitude of the numbers relative to one another.

Exe	Exercises 7–8				
7.	Use the fact that the average distance between the sun and Earth is 151, 268, 468 km, the average distance between the sun and Jupiter is 780, 179, 470 km, and the average distance between the sun and Pluto is 5, 908, 039, 124 km to approximate the following distances. Express your answers in scientific notation $(d \times 10^n)$, where d is rounded to the nearest tenth.				
	a.	Distance from the sun to Earth:			
		$1.5 \times 10^8 \text{ km}$			
	b.	Distance from the sun to Jupiter:			
		$7.8 imes 10^8 ext{ km}$			
	c.	Distance from the sun to Pluto:			
		$5.9 imes 10^9 ext{ km}$			
	d.	How much farther Jupiter is from the sun than Earth is from the sun:			
		780, 179, 470 km $-$ 151, 268, 468 km $=$ 628, 911, 002 km			
		$6.3 imes 10^8 ext{ km}$			



34

engage



Example 2 (10 minutes): Arithmetic Operations with Numbers Written Using Scientific Notation

Model the solutions to the following example problems. Be sure to emphasize that final answers should be expressed using the scientific notation convention of a number between 1 and 10 and a power of 10. On part (a), it may be necessary to provide some additional scaffolding if students are struggling to rewrite the numbers using the same order of magnitude. Have students practice writing a number as a product of a power of 10 in three different ways. For example, $15\ 000 = 1.5 \times 10^4 = 15 \times 10^3 = 150 \times 10^2$. The lessons of Algebra I, Module 1, Topic B provide some suggestions and fluency exercises if students need additional practice on arithmetic operations with numbers in scientific notation. Be sure that students understand that the properties of exponents allow them to quickly perform the indicated operations.

```
Example 2: Arithmetic Operations with Numbers Written Using Scientific Notation

a. (2.4 \times 10^{20}) + (4.5 \times 10^{21})

(2.4 \times 10^{20}) + (45 \times 10^{20}) = 47.4 \times 10^{20} = 4.74 \times 10^{21}

b. (7 \times 10^{-9})(5 \times 10^{5})

(7 \cdot 5) \times (10^{-9} \cdot 10^{5}) = 35 \times 10^{-4} = 3.5 \times 10^{-3}

c. \frac{1.2 \times 10^{15}}{3 \times 10^{7}}

\frac{1.2}{3} \times 10^{15-7} = 0.4 \times 10^{8} = 4 \times 10^{7}
```

Scaffolding:

For Example 2, part (a), students may want to add the exponents as they do when multiplying numbers written using scientific notation. Take time to discuss the differences in the three expressions if students are making this type of mistake.

Debrief with the questions designed to help students see that the order of magnitude and the properties of exponents greatly simplify calculations.

- How do the properties of exponents help to simplify these calculations?
- How can you quickly estimate the size of your answer?

35

engage

Exercises 9–10 (5 minutes)

Exercises 9–10 9. Perform the following calculations without rewriting the numbers in decimal form. $(1.42 \times 10^{15}) - (2 \times 10^{13})$ а. $142 \times 10^{13} - 2 \times 10^{13} = (142 - 2) \times 10^{13} = 140 \times 10^{13} = 1.4 \times 10^{15}$ $(1.42 \times 10^{15})(2.4 \times 10^{13})$ b. $(1.42 \cdot 2.4) \times (10^{15} \cdot 10^{13}) = 3.408 \times 10^{28}$ $1.42 imes 10^{-5}$ с. 2×10^{13} $1.42 imes 10^{-5}$ $\frac{.42 \times 10^{-1}}{2 \times 10^{13}} = 0.71 \times 10^{-5-13} = 0.71 \times 10^{-18} = 7.1 \times 10^{-19}$ 10. Estimate how many times farther Jupiter is from the sun than Earth is from the sun. Estimate how many times farther Pluto is from the sun than Earth is from the sun. Earth is approximately $1.5\times10^8~km$ from the sun, and Jupiter is approximately $7.8\times10^8~km$ from the sun. Therefore, Jupiter is about 5 times as far from the sun as Earth is from the sun. Pluto is approximately 5.9×10^9 km from the sun. Therefore, since $\frac{59 \ \times \ 10^8}{1.5 \ \times \ 10^8} = \frac{59}{1.5} \approx 39.33,$ Pluto is approximately 39 times as far from the sun as Earth is from the sun.

Closing (3 minutes)

Have students discuss the following question with a partner and record the definition of scientific notation in their mathematics notebooks. Debrief by asking a few students to share their responses with the entire class.

- List two advantages of writing numbers using scientific notation.
 - You do not have to write as many zeros when working with very large or very small numbers, and you can quickly multiply and divide numbers using the properties of exponents.

Exit Ticket (4 minutes)

Name

Date _____

Lesson 2: Base 10 and Scientific Notation

Exit Ticket

1. A sheet of gold foil is 0.28 millionth of a meter thick. Write the thickness of a gold foil sheet measured in centimeters using scientific notation.

2. Without performing the calculation, estimate which expression is larger. Explain how you know.

 $(4 \times 10^{10})(2 \times 10^5)$ and $\frac{4 \times 10^{12}}{2 \times 10^{-4}}$

engage^{ny}

Exit Ticket Sample Solutions

1. A sheet of gold foil is 0.28 millionth of a meter thick. Write the thickness of a gold foil sheet measured in centimeters using scientific notation.

The thickness is 0.28×10^{-6} m. In scientific notation, the thickness of a gold foil sheet is 2.8×10^{-7} m, which is 2.8×10^{-5} cm.

2. Without performing the calculation, estimate which expression is larger. Explain how you know.

 $(4 \times 10^{10})(2 \times 10^5) \qquad \text{and} \qquad \frac{4 \times 10^{12}}{2 \times 10^{-4}}$

The order of magnitude on the first expression is 15, and the order of magnitude on the second expression is 16. The product and quotient of the number between 1 and 10 in each expression is a number between 1 and 10. Therefore, the second expression is larger than the first one.

Problem Set Sample Solutions

```
Write the following numbers used in these statements in scientific notation. (Note: Some of these numbers have
1.
     been rounded.)
            The density of helium is 0.\,0001785\,gram per cubic centimeter.
      a.
             1.\,785\times10^{-4}
      b.
            The boiling point of gold is 5, 200°F.
            5.2 	imes 10^3
            The speed of light is 186, 000 miles per second.
      c.
            1.86 \times 10^{5}
      d.
            One second is 0.000278 hour.
            2.78 \times 10^{-4}
            The acceleration due to gravity on the sun is 900 ft/s^2.
      e.
            9 \times 10^{2}
      f.
            One cubic inch is 0.0000214 cubic yard.
            2.14 \times 10^{-5}
            Earth's population in 2012 was 7, 046, 000, 000 people.
      g.
            7.046 \times 10^{9}
            Earth's distance from the sun is 93, 000, 000 miles.
      h.
            9.3 \times 10^{7}
```


engage^{ny}


```
i.
            Earth's radius is 4,000 miles.
            4 \times 10^3
           The diameter of a water molecule is 0.\,00000028\ cm.
      j.
            2.8 \times 10^{-8}
     Write the following numbers in decimal form. (Note: Some of these numbers have been rounded.)
2.
            A light year is 9. 46 \times 10^{15} m.
      a.
            9,460,000,000,000,000
          Avogadro's number is 6.02 \times 10^{23} mol<sup>-1</sup>.
      b.
            602,000,000,000,000,000,000,000
            The universal gravitational constant is 6.674 \times 10<sup>-11</sup> N \left(\frac{m}{kg}\right)^2.
      c.
            0.000000006674
           Earth's age is 4.54	imes10^9 years.
      d.
            4, 540, 000, 000
           Earth's mass is 5.97	imes10^{24} kg.
      e.
            A foot is 1.9\times 10^{-4} mile.
      f.
            0.00019
            The population of China in 2014 was 1.354 \times 10^9 people.
      g.
            1,354,000,000
            The density of oxygen is 1.\,429\times 10^{-4} grams per liter.
      h.
            0.0001429
            The width of a pixel on a smartphone is 7.8 \times 10^{-2} \ mm.
     i.
            0.078
            The wavelength of light used in optic fibers is 1.55\times 10^{-6}\ m.
     j.
            0.0000155
```


Base 10 and Scientific Notation

engage^{ny}

3. State the necessary value of *n* that will make each statement true. a. $0.000027 = 2.7 \times 10^{n}$ -5 $-3.125 = -3.125 \times 10^{n}$ b. 0 7, 540, 000, 000 = 7. 54 \times 10ⁿ с. 9 $0.033 = 3.3 \times 10^n$ d. -2 $15 = 1.5 \times 10^{n}$ e. 1 $26,000 \times 200 = 5.2 \times 10^n$ f. 6 $3000 \times 0.0003 = 9 \times 10^{n}$ g. -1 $0.0004 \times 0.002 = 8 \times 10^{n}$ h. -7 16000 $= 2 \times 10^n$ i. 80 2 $\frac{500}{0.002} = 2.5 \times 10^n$ j. 5 4. Perform the following calculations without rewriting the numbers in decimal form. $(2.5 \times 10^4) + (3.7 \times 10^3)$ a. $2.87 imes 10^4$ $(6.9 \times 10^{-3}) - (8.1 \times 10^{-3})$ b. -1.2×10^{-3}

 $(6 \times 10^{11})(2.5 \times 10^{-5})$ c. 1.5×10^{7} 4.5×10^{8} d. 2×10^{10} 2.25×10^{-2} The wavelength of visible light ranges from 650 nanometers to 850 nanometers, where 1 nm $= 1 \times 10^{-7}$ cm. 5. Express the range of wavelengths of visible light in centimeters. Convert 650 nanometers to centimeters: $(6.5\times10^2)(1\times10^{-7})=6.5\times10^{-5}$ Convert 850 nanometers to centimeters: $(8.5 \times 10^2)(1 \times 10^{-7}) = 8.5 \times 10^{-5}$ The wavelength of visible light in centimeters is 6.5×10^{-5} cm to 8.5×10^{-5} cm. In 1694, the Dutch scientist Antonie van Leeuwenhoek was one of the first scientists to see a red blood cell in a 6. microscope. He approximated that a red blood cell was "25,000 times as small as a grain of sand." Assume a grain of sand is $\frac{1}{2}$ mm wide, and a red blood cell is approximately 7 micrometers wide. One micrometer is 1×10^{-6} m. Support or refute Leeuwenhoek's claim. Use scientific notation in your calculations. Convert millimeters to meters: $(5 \times 10^{-1})(1 \times 10^{-3}) = 5 \times 10^{-4}$. A medium-size grain of sand measures 5×10^{-4} m across. Similarly, a red blood cell is approximately 7×10^{-6} m across. Dividing these numbers produces $\frac{5 \times 10^{-4}}{7 \times 10^{-6}} = 0.714 \times 10^2 = 7.14 \times 10^1.$ So, a red blood cell is 71.4 times as small as a grain of sand. Leeuwenhoek's claim was off by approximately a factor of 350. 7. When the Mars Curiosity Rover entered the atmosphere of Mars on its descent in 2012, it was traveling roughly 13, 200 mph. On the surface of Mars, its speed averaged 0.00073 mph. How many times faster was the speed when it entered the atmosphere than its typical speed on the planet's surface? Use scientific notation in your calculations. $\frac{1.32 \times 10^4}{7.3 \times 10^{-4}} = 0.18 \times 10^8 = 1.8 \times 10^7$ The speed when it entered the atmosphere is greater than its surface speed by an order of magnitude of 7. 8. Earth's surface is approximately 70% water. There is no water on the surface of Mars, and its diameter is roughly half of Earth's diameter. Assume both planets are spherical. The radius of Earth is approximately 4,000 miles. The surface area of a sphere is given by the formula $SA = 4\pi r^2$, where r is the radius of the sphere. Which has more land mass, Earth or Mars? Use scientific notation in your calculations. The surface area of Earth: $4\pi (4000 \text{ mi})^2 \approx 2 \times 10^8 \text{ mi}^2$ The surface area of Mars: $4\pi (2000 \text{ mi})^2 \approx 5 \times 10^7 \text{mi}^2$ Thirty percent of Earth's surface area is approximately $6 imes 10^7$ square miles. Earth has more land mass by approximately 20%.

Base 10 and Scientific Notation

9.

2.13 miles.

ALGEBRA II

cell is approximately $7 imes 10^{-6}$ m wide. Imagine if you could line up all your red blood cells end to end. How long would the line of cells be? Use scientific notation in your calculations. Because $(2.5 \times 10^{13})(7 \times 10^{-6}) = 1.75 \times 10^8$, the line of cells would be 1.75×10^8 m long, which is 1.75×10^8 m long. 10^5 km. One mile is equivalent to 1.6 km, so the line of blood cells measures $\frac{1.75 \times 10^5}{1.6}$ km, which is approximately 109, 375 mi, which is almost halfway to the moon! 10. Assume each person needs approximately 100 square feet of living space. Now imagine that we are going to build a giant apartment building that will be 1 mile wide and 1 mile long to house all the people in the United States, estimated to be 313.9 million people in 2012. If each floor of the apartment building is 10 feet high, how tall will the apartment building be? Since $(3.139 \times 10^8)(100) = 3.139 \times 10^{10}$, we need 3.139×10^{10} ft² of living space. Next, divide the total number of square feet by the number of square feet per floor to get the number of needed floors. Remember that $1 \text{ mi}^2 = 5280^2 \text{ ft}^2 = 27878400 \text{ ft}^2$. $\frac{3.139\times 10^{10}~ft^2}{2.787~84\times 10^7~ft^2}\approx 1.126\times 10^3$ Multiplying the number of floors by 10 feet per floor gives a height of 11,260 feet, which is approximately

There are approximately 25 trillion (2. 5×10^{13}) red blood cells in the human body at any one time. A red blood

Base 10 and Scientific Notation

Lesson 3: Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

Student Outcomes

Students calculate quantities that involve positive and negative rational exponents.

Lesson Notes

Students extend their understanding of integer exponents to rational exponents by examining the graph of $f(x) = 2^x$ and estimating the values of $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$. The lesson establishes the meaning of these numbers in terms of radical expressions, and these form the basis of how expressions of the form $b^{\frac{1}{n}}$ are defined before generalizing further to expressions of the form $b^{\frac{m}{n}}$, where *b* is a positive real number and *m* and *n* are integers, with $n \neq 0$ (**N-RN.A.1**). The lesson and Problem Set provide fluency practice in applying the properties of exponents to expressions containing rational exponents and radicals (**N-RN.A.2**). In the following lesson, students verify that the definition of an expression with rational exponents, $b^{\frac{m}{n}} = \sqrt[n]{b^m}$, is consistent with the remaining exponential properties. The lesson begins with students creating a graph of a simple exponential function, $f(x) = 2^x$, which they studied in Module 3 of Algebra I. In that module, students also learned about geometric sequences and their relationship to exponential functions, which is a concept that is revisited at the end of this module. In Algebra I, students worked with exponential functions with integer domains. This lesson, together with the subsequent Lessons 4 and 5, helps students understand why the domain of an exponential function $f(x) = b^x$, where *b* is a positive number and $b \neq 1$, is the set of real numbers. To do so, it is necessary to establish what it means to raise *b* to a rational power and, in Lesson 5, to any real number power.

Classwork

Opening (1 minute)

In Algebra I, students worked with geometric sequences and simple exponential functions. Remind them that in Lesson 1, they created formulas based on repeatedly doubling and halving a number when they modeled folding a piece of paper. They reviewed how to use the properties of exponents for expressions that had integer exponents.

Opening Exercise (5 minutes)

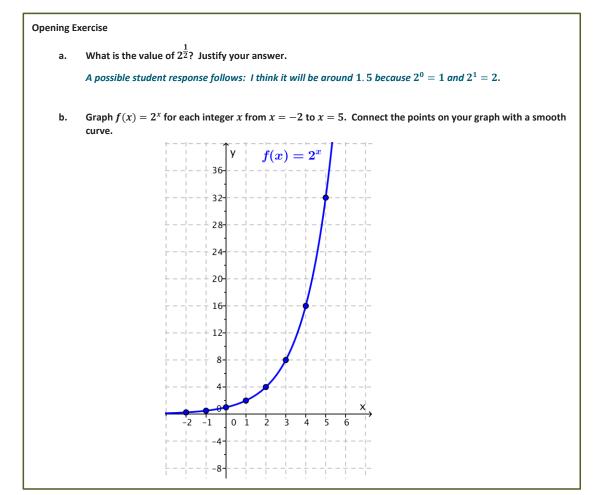
Have students graph $f(x) = 2^x$ for each integer x from x = -2 to x = 5 on the axes provided without using a graphing utility or calculator. Discuss the pattern of points, and ask students to connect the points in a way that produces a smooth curve. Students should work these two problems independently. If time permits, have them check their solutions with a partner before leading a whole-class discussion to review the solutions.

Scaffolding:

- Encourage students to create a table of values to help them construct the graph.
- For students working above grade level, have them repeat these exercises with the function f(x) = 3^x, and ask them

```
to estimate 3^{\overline{2}} and 3^{\overline{3}}.
```


Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?



Ask for a few volunteers to explain their reasoning for their answers to Opening Exercise, part (a). Then, debrief these two exercises by leading a short discussion.

- The directions in the Opening Exercise said to connect the points with a smooth curve. What does it imply about the domain of a function when we connect points that we have plotted?
 - ^a That the domain of the function includes the points between the points that we plotted.
- How does your graph support or refute your answer to the first exercise? Do you need to modify your answer to the question: What is the value of 2¹/₂? Why or why not?
 - If the domain is all real numbers, then the value of $2^{\frac{1}{2}}$ will be the *y*-coordinate of the point on the graph where $x = \frac{1}{2}$. From the graph, it looks like the value is somewhere between 1 and 2. The scaling on this graph is not detailed enough for me to accurately refine my answer yet.

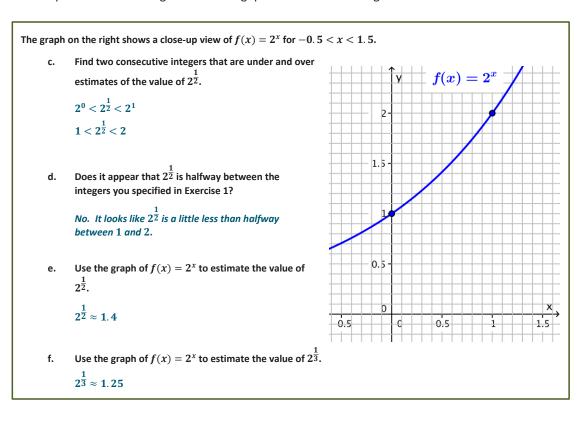
(cc) BY-NC-SA

Transition to the next set of exercises by telling students that they can better estimate the value of $2^{\frac{1}{2}}$ by looking at a graph that is scaled more precisely.

Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

The graph of $f(x) = 2^x$ shown below for the next exercises appears in the student materials, but the graph could also be displayed using technology. Have students estimate the value of $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$ from the graph. Students should work by themselves or in pairs to work through the following questions without using a calculator.



Discussion (9 minutes)

MP.6

Before getting into the point of this lesson, which is to connect rational exponents to radical expressions, revisit the initial question with students.

- What is the value of $2^{\frac{1}{2}}$? Does anyone want to adjust his or her initial guess?
 - Our initial guess was a little too big. It seems like 1.4 might be a better answer.
 - How could we make a better guess?
 - We could look at the graph with even smaller increments for the scale using technology.

If time permits, zoom in further on the graph of $f(x) = 2^x$ using a graphing calculator or other technology either by examining a graph or a table of values of x closer and closer to $\frac{1}{2}$.

Next, make the connection that $2^{\frac{1}{2}} = \sqrt{2}$. Walk students through the following questions, providing guidance as needed. Students proved that there was only one positive number that squared to 2 in Geometry, Module 2. It may be necessary to remind them of this with a bit more detail if they are struggling to follow this argument.

Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

Scaffolding:

2.

If needed, demonstrate the

base of 4 instead of a base of

Show that $\left(4^{\frac{1}{2}}\right)^2 = 4$

and $\left(\sqrt{4}\right)^2 = 4$.

argument using perfect squares. For example, use a

Lesson 3

AI GFBRA II

- Assume for the moment that whatever $2^{\frac{1}{2}}$ means, it satisfies our known rule for integer exponents $b^m \cdot b^n = b^{m+n}$. Working with this assumption, what is the value of $2^{\frac{1}{2}} \cdot 2^{\frac{1}{2}}$?
 - It would be 2 because $2^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} = 2^{\frac{1}{2} + \frac{1}{2}} = 2^1 = 2$.
- What unique positive number squares to 2? That is, what is the only positive number that when multiplied by itself is equal to 2?
 - By definition, we call the unique positive number that squares to 2 the square root of 2, and we write $\sqrt{2}$.

Write the following statements on the board, and ask students to compare them and think about what the statements must tell them about the meaning of $2^{\frac{1}{2}}$.

$$2^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} = 2$$
 and $\sqrt{2} \cdot \sqrt{2} = 2$

- What do these two statements tell us about the meaning of 2^{1/2}?
 - Since both statements involve multiplying a number by itself and getting 2, and we know that there is only one number that does that, we can conclude that $2^{\frac{1}{2}} = \sqrt{2}$.

At this point, have students confirm these results by using a calculator to approximate both $2^{\frac{1}{2}}$ and $\sqrt{2}$ to several decimal places. In the Opening, $2^{\frac{1}{2}}$ was approximated graphically, and now it has been shown to be an irrational number.

Next, ask students to think about the meaning of $2^{\frac{1}{3}}$ using a similar line of reasoning.

- Assume that whatever $2^{\frac{1}{3}}$ means will satisfy $b^m \cdot b^n = b^{m+n}$. What is the value of $\left(2^{\frac{1}{3}}\right)\left(2^{\frac{1}{3}}\right)\left(2^{\frac{1}{3}}\right)$?
 - The value is 2 because $\left(2^{\frac{1}{3}}\right)\left(2^{\frac{1}{3}}\right)\left(2^{\frac{1}{3}}\right) = 2^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}} = 2^1 = 2.$
- What is the value of $\sqrt[3]{2} \cdot \sqrt[3]{2} \cdot \sqrt[3]{2}?$
 - The value is 2 because $\sqrt[3]{2} \cdot \sqrt[3]{2} \cdot \sqrt[3]{2} = (\sqrt[3]{2})^3 = 2.$
 - What appears to be the meaning of $2^{\frac{1}{3}}$?

^a Since both the exponent expression and the radical expression involve multiplying a number by itself three times and the result is equal to 2, we know that $2^{\frac{1}{3}} = \sqrt[3]{2}$.

Scaffolding:

Lesson

AI GFBRA II

If needed, demonstrate the argument using perfect cubes. For example, use a base of 8 instead of a base of 2.

Show
$$(8^{\frac{1}{3}})^{3} = 8$$

and $(\sqrt[3]{8})^{3} = 8$.

MP.7

MP.

Students can also confirm using a calculator that the decimal approximations of $2^{\frac{1}{3}}$ and $\sqrt[3]{2}$ are the same. Next, they are asked to generalize their findings.

- Can we generalize this relationship? Does $2^{\frac{1}{4}} = \sqrt[4]{2}$? Does $2^{\frac{1}{10}} = \sqrt[10]{2}$? What is $2^{\frac{1}{n}}$, for any positive integer *n*? Why?
 - $2^{\frac{1}{n}} = \sqrt[n]{2}$ because

MP.8

$$\left(2^{\frac{1}{n}}\right)^n = \underbrace{\left(2^{\frac{1}{n}}\right)\left(2^{\frac{1}{n}}\right)\cdots\left(2^{\frac{1}{n}}\right)}_{n \text{ times}} = 2^{\frac{n \text{ times}}{\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}}} = 2^1 = 2.$$

Have students confirm these results using a calculator as well as checking to see if the decimal approximations of $2\overline{n}$ and $\sqrt[n]{2}$ are the same for different values of n such as 4, 5, 6, 10, Be sure to share the generalization shown above on the board to help students understand why it makes sense to define $2\frac{1}{n}$ to be $\sqrt[n]{2}$.

However, be careful to not stop here; there is a problem with the reasoning if $\sqrt[n]{2}$ is not defined. In previous courses, only square roots and cube roots were defined.

It is first necessary to define the n^{th} root of a number; there may be more than one, as in the case where $2^2 = 4$ and $(-2)^2 = 4$. It is said that both -2 and 2 are square roots of 4. However, priority is given to the positive-valued square root, and it is said that 2 is the *principal square root* of 4. Often *the* square root of 4 is referred to when what is meant is the *principal* square root of 4. The definition of n^{th} root presented below is consistent with allowing complex n^{th} roots, which students encounter in Precalculus and in college if they pursue engineering or higher mathematics. If complex n^{th} roots are allowed, there are three cube roots of 2: $\sqrt[3]{2}$, $\sqrt[3]{2}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)$, and $\sqrt[3]{2}\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)$, and the real number $\sqrt[3]{2}$

is referred to as the *principal cube root* of 2. There is no need to discuss this with any but the most advanced students.

The n^{th} root of 2, $\sqrt[n]{2}$, is the positive real number a such that $a^n = 2$. In general, if a is positive, then the n^{th} root of a exists for any positive integer n, and if a is negative, then the n^{th} root of a exists only for odd integers n. This even/odd condition is handled subtly in the definition below; the n^{th} root exists only if there is already an exponential relationship $b = a^n$.

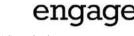
Present the following definitions to students, and have them record them in their notes.

 n^{TH} ROOT OF A NUMBER: Let a and b be numbers, and let n be a positive integer. If $b = a^n$, then a is a n^{th} root of b. If n = 2, then the root is a called a square root. If n = 3, then the root is called a cube root.

PRINCIPAL n^{TH} **ROOT OF A NUMBER:** Let *b* be a real number that has at least one real n^{th} root. The principal n^{th} root of *b* is the real n^{th} root that has the same sign as *b* and is denoted by a radical symbol: $\sqrt[n]{b}$.

Every positive number has a unique principal n^{th} root. We often refer to the principal n^{th} root of b as just the n^{th} root of b. For any positive integer n, the n^{th} root of 0 is 0.

EUREKA MATH



Lesson 3

Students have already learned about square and cube roots in previous grades. In Module 1 and at the beginning of this lesson, students worked with radical expressions involving cube and square roots. Explain that the n^{th} roots of a number satisfy the same properties of radicals learned previously. Have students record these properties in their notes.

If $a \ge 0$, $b \ge 0$ ($b \ne 0$ when b is a denominator), and n is a positive integer, then $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ and $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$.

Background information regarding n^{th} roots and their uniqueness is provided below. Consider sharing this with students working above grade level or the entire class if extending this lesson to an additional day.

The existence of the principal n^{th} root of a positive real number b is a consequence of the fundamental theorem of algebra: Consider the polynomial function $f(x) = x^n - b$. When n is odd, we know that f has at least one real zero because the graph of f must cross the x-axis. That zero is a positive number, which (after showing that it is the only real zero) is the n^{th} root. The case for when n is even follows a similar argument.

To show uniqueness of the n^{th} root, suppose there are two n^{th} roots of a number b, x, and y, such that x > 0, $y > 0, x^n = b$, and $y^n = b$. Then, $x^n - y^n = b - b = 0$, and the expression $x^n - y^n$ factors (see Lesson 7 in Module 1).

$$0 = x^{n} - y^{n}$$

$$0 = (x - y)(x^{n-1} + x^{n-2}y + x^{n-3}y^{2} + \dots + xy^{n-2} + y^{n-1})$$

Since both x and y are positive, the second factor is never zero. Thus, for $x^n - y^n = 0$, we must have x - y = 0, and it follows that x = y. Thus, there is only one n^{th} root of b.

A proof of the first radical property is shown below for background information. Consider sharing this proof with students working above grade level or the entire class if extending this lesson to an additional day.

Prove that $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$.

Let $x \ge 0$ be the number such that $x^n = a$, and let $y \ge 0$ be the number such that $y^n = b$, so that $x = \sqrt[n]{a}$ and $y = \sqrt[n]{b}$. Then, by a property of exponents, $(xy)^n = x^n y^n = ab$. Thus, xy must be the n^{th} root of ab. Writing this using our notation gives

$$\sqrt[n]{ab} = xy = \sqrt[n]{a} \cdot \sqrt[n]{b}.$$

Example (3 minutes)

EUREKA

This example familiarizes students with the wording in the definition presented above.

Example a. What is the 4th root of 16? $x^4 = 16$ when x = 2 because $2^4 = 16$. Thus, $\sqrt[4]{16} = 2$. b. What is the cube root of 125? $x^3 = 125$ when x = 5 because $5^3 = 125$. Thus, $\sqrt[3]{125} = 5$.

Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

Lesson 3:

48

engage

c. What is the 5th root of 100,000? $x^5 = 100,000$ when x = 10 because $10^5 = 100\,000$. Thus, $\sqrt[5]{100,000} = 10$.

Exercise 1 (2 minutes)

In these brief exercises, students work with the definition of n^{th} roots and the multiplication property presented above. Have students check their work with a partner and briefly discuss any questions that arise as a whole class.

Exercis	se 1		
1. E		ate each expression. ⁴ √81 3 ⁵ √32 2	Scaffolding: If needed, continue to support students who struggle with abstraction by including additional numeric examples.
	c.	$\sqrt[3]{9} \cdot \sqrt[3]{3}$ $\sqrt[3]{27} = 3$	
(d.	$\sqrt[4]{25} \cdot \sqrt[4]{100} \cdot \sqrt[4]{4}$ $\sqrt[4]{10,000} = 10$	

Discussion (8 minutes)

Return to the question posted in the title of this lesson: What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$? Now we know the answer, $2^{\frac{1}{2}} = \sqrt{2}$ and $2^{\frac{1}{3}} = \sqrt[3]{2}$. So far, we have given meaning to $2^{\frac{1}{n}}$ by equating $2^{\frac{1}{n}}$ and $\sqrt[n]{2}$. Ask students if they believe these results extend to any base b > 0.

- We just did some exercises where the *b*-value was a number different from 2. In our earlier work, was there something special about using 2 as the base of our exponential expression? Would these results generalize to expressions of the form $3^{\frac{1}{n}}$? $7^{\frac{1}{n}}$? $10^{\frac{1}{n}}$? $b^{\frac{1}{n}}$, for any positive real number *b*?
 - ^a There is nothing inherently special about the base 2 in the above discussion. These results should generalize to expressions of the form $b^{\frac{1}{n}}$ for any positive real number base b because we have defined an n^{th} root for any positive base b.

Now that we know the meaning of the n^{th} root of a number b, $\sqrt[n]{b}$, the work done earlier with base 2 suggests that $b^{\frac{1}{n}}$ should also be defined as the n^{th} root of b. Discuss the definition below with the class. If students are unclear on the

definition, do some numerical examples. For example, $(-32)^{\frac{1}{5}} = -2$ because $(-2)^5 = -32$, but $(-16)^{\frac{1}{4}}$ does not exist because there is no principal 4th root of a negative number.

Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

Ī

For a real number b and a positive integer n, define $b^{\frac{1}{n}}$ to be the principal n^{th} root of b when it exists. That is, $b^{\frac{1}{n}} = \sqrt[n]{b}$.

Note that the definition of $\sqrt[n]{b}$ holds for any real number *b* if *n* is an odd integer and for positive real numbers *b* if *n* is an even integer. Consider emphasizing this with the class. Thus, when *b* is negative and *n* is an odd integer, the expression $1^{\frac{1}{2}}$.

 $b^{\frac{1}{n}}$ is negative. If *n* is an even integer, then *b* must be restricted to positive real numbers only, and $b^{\frac{1}{n}}$ is positive.

In the next lesson, students see that with this definition, $b^{\frac{1}{n}}$ satisfies all the usual properties of exponents, so it makes sense to define it in this way.

At this point, consider revisiting the original question with students one more time.

- What is the value of $2^{\frac{1}{2}}$? What does it mean? What is the value of $b^{\frac{1}{2}}$ for any positive number b? How are radicals related to rational exponents?
 - ^a We estimated numerically that $2^{\frac{1}{2}} \approx 1.4$ in part (e) of the Opening Exercise. We now know that $2^{\frac{1}{2}}$ is equal to $\sqrt{2}$. In general, $b^{\frac{1}{2}} = \sqrt{b}$ for any positive real number b. A number that contains a radical can be expressed using rational exponents in place of the radical.

In the following Discussion, the definition of exponentiation with exponents of the form $\frac{1}{n}$ is extended to exponentiation

with any positive rational exponent. Begin by considering an example: What do we mean by $2^{\frac{7}{4}}$? Give students a few minutes to respond individually in writing to this question on their student pages, and then have them discuss their reasoning with a partner. Make sure to correct any blatant misconceptions and to clarify incomplete thinking while leading the Discussion that follows.

Discussion

MP.3

If $2^{\frac{1}{2}} = \sqrt{2}$ and $2^{\frac{1}{3}} = \sqrt[3]{2}$, what does $2^{\frac{3}{4}}$ equal? Explain your reasoning. Student solutions and explanations will vary. One possible solution would be $2^{\frac{3}{4}} = \left(2^{\frac{1}{4}}\right)^3$, so it must mean that $2^{\frac{3}{4}} = \left(\sqrt[4]{2}\right)^3$. Since the properties of exponents and the meaning of an exponent made sense with integers and now for rational numbers in the form $\frac{1}{n}$, it would make sense that they would work for all rational numbers, too.

Now that there is a definition for exponential expressions of the form $b^{\frac{1}{n}}$, use the discussion below to define $b^{\frac{n}{n}}$, where m and n are integers, $n \neq 0$, and b is a positive real number. Make sure students understand that the interpretation of $b^{\frac{m}{n}}$ must be consistent with the exponent properties (which hold for integer exponents) and the definition of $b^{\frac{1}{n}}$.

- How can we rewrite the exponent of $2^{\frac{3}{4}}$ using integers and rational numbers in the form $\frac{1}{n}$?
 - We can write $2^{\frac{3}{4}} = \left(2^{\frac{1}{4}}\right)^3$, or we can write $2^{\frac{3}{4}} = (2^3)^{\frac{1}{4}}$.

Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

• Now, apply our definition of $b^{\frac{1}{n}}$.

$$2^{\frac{3}{4}} = \left(2^{\frac{1}{4}}\right)^3 = \left(\sqrt[4]{2}\right)^3 \text{ or } 2^{\frac{3}{4}} = (2^3)^{\frac{1}{4}} = \sqrt[4]{2^3} = \sqrt[4]{8}$$

• Does this make sense? If $2^{\frac{3}{4}} = \sqrt[4]{8}$, then if we raise $2^{\frac{3}{4}}$ to the fourth power, we should get 8. Does this happen?

• So, 8 is the product of four equal factors, which we denote by $2^{\frac{3}{4}}$. Thus, $2^{\frac{3}{4}} = \sqrt[4]{8}$.

Take a few minutes to allow students to think about generalizing their work above to $2^{\frac{m}{n}}$ and then to $b^{\frac{m}{n}}$. Have them write a response to the following questions and share it with a partner before proceeding as a whole class.

• Can we generalize this result? How would you define $2^{\frac{m}{n}}$, for positive integers m and n?

• Conjecture:
$$2^{\frac{m}{n}} = \sqrt[n]{2^m}$$
, or equivalently, $2^{\frac{m}{n}} = {\binom{n}{\sqrt{2}}}^m$.

- Can we generalize this result to any positive real number base b? What is $3^{\frac{m}{n}}$? $7^{\frac{m}{n}}$? $10^{\frac{m}{n}}$? $b^{\frac{m}{n}}$?
 - ^a There is nothing inherently special about the base 2 in the above Discussion. These results should generalize to expressions of the form $b^{\frac{m}{n}}$ for any positive real number base b.
 - Then we are ready to define $b^{\frac{m}{n}} = \sqrt[n]{b^m}$ for positive integers *m* and *n* and positive real numbers *b*.

This result is summarized in the box below.

For any positive integers m and n, and any real number b for which $b^{\frac{1}{n}}$ exists, we define $b^{\frac{m}{n}} = \sqrt[n]{b^m}$, which is equivalent to $b^{\frac{m}{n}} = \left(\sqrt[n]{b}\right)^m$.

Note that this property holds for any real number *b* if *n* is an odd integer. Consider emphasizing this with the class. When *b* is negative and *n* is an odd integer, the expression $b^{\frac{m}{n}}$ is negative. If *n* is an even integer, then *b* must be restricted to positive real numbers only.

Exercises 2-8 (4 minutes)

In these exercises, students use the definitions above to rewrite and evaluate expressions. Have students check their work with a partner and briefly discuss as a whole class any questions that arise.

Exercises 2–12				
Rewrite each exponential expression as a radical expression.				
2.	$3^{\frac{1}{2}}$			
	$3^{\frac{1}{2}} = \sqrt{3}$			

Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

51

engage

3. $11^{\frac{1}{5}}$ $11^{\frac{1}{5}} = \sqrt[3]{11}$ 4. $(\frac{1}{4})^{\frac{1}{5}} = \sqrt[3]{\frac{1}{4}}$ 5. $6^{\frac{1}{10}}$ $6^{\frac{1}{10}} = \sqrt[1]{6}$ Rewrite the following exponential expressions as equivalent radical expressions. If the number is rational, write it without radicals or exponents. 6. $2^{\frac{3}{2}}$ $2^{\frac{3}{2}} = \sqrt{2^{3}} = 2\sqrt{2}$ 7. $4^{\frac{5}{2}}$ $4^{\frac{5}{2}} = \sqrt{4^{5}} = (\sqrt{4})^{5} = 2^{5} = 32$ 8. $(\frac{1}{8})^{\frac{5}{3}} = \sqrt[3]{(\frac{1}{8})^{5}} = (\sqrt[3]{\frac{1}{8}})^{5} = (\frac{1}{2})^{5} = \frac{1}{32}$

Exercise 9 (3 minutes)

In this exercise, students are asked to consider a negative rational exponent. Have students work directly with a partner, and ask them to use thinking similar to that in the preceding Discussion. Correct and extend student thinking while reviewing the solution.

9. Show why the following statement is true: $2^{-\frac{1}{2}} = \frac{1}{\frac{1}{2^{\frac{1}{2}}}}$ Student solutions and explanations will vary. One possible solution would be $2^{-\frac{1}{2}} = \left(2^{\frac{1}{2}}\right)^{-1} = \left(\sqrt{2}\right)^{-1} = \frac{1}{\sqrt{2}} = \frac{1}{2^{\frac{1}{2}}}.$

Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

Share the following property with the class, and show how the work they did in the previous exercises supports this conclusion. Consider verifying these properties using an argument similar to the ones presented earlier for the meaning of $b^{\frac{m}{n}}$.

For any positive integers
$$m$$
 and n , and any nonzero number b for which $b^{\frac{1}{n}}$ exists, we define
 $b^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{b^m}}$
or, equivalently,
 $b^{-\frac{m}{n}} = \frac{1}{(\sqrt[n]{b})^m}$.

Exercises 10–12 (3 minutes)

Rewrite the following exponential expressions as equivalent radical expressions. If the number is rational, write it without radicals or exponents. **10.** $4^{-\frac{3}{2}}$ $4^{-\frac{3}{2}} = \frac{1}{\sqrt{4^3}} = \frac{1}{\left(\sqrt{4}\right)^3} = \frac{1}{8}$ 11. $27^{-\frac{2}{3}}$ $27^{-\frac{2}{3}} = \frac{1}{27^{\frac{2}{3}}} = \frac{1}{\left(\sqrt[3]{27}\right)^2} = \frac{1}{3^2} = \frac{1}{9}$ **12.** $\left(\frac{1}{4}\right)^{-\frac{1}{2}}$ $\textit{We have } \left(\frac{1}{4}\right)^{-\frac{1}{2}} = \left(\sqrt{\frac{1}{4}}\right)^{-1} = \left(\frac{1}{2}\right)^{-1} = 2. \textit{ Alternatively, } \left(\frac{1}{4}\right)^{-\frac{1}{2}} = \left(\left(\frac{1}{4}\right)^{-1}\right)^{\frac{1}{2}} = (4)^{\frac{1}{2}} = \sqrt{4} = 2.$

Closing (3 minutes)

Have students summarize the key points of the lesson in writing. Circulate around the classroom to informally assess understanding and provide assistance. Student work should reflect the summary provided below.

Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

Lesson Summary

 n^{TH} ROOT OF A NUMBER: Let a and b be numbers, and let n be a positive integer. If $b = a^n$, then a is a n^{th} root of b. If n = 2, then the root is a called a square root. If n = 3, then the root is called a *cube root*.

PRINCIPAL n^{TH} ROOT OF A NUMBER: Let b be a real number that has at least one real n^{th} root. The principal n^{th} root of b is the real n^{th} root that has the same sign as b and is denoted by a radical symbol: $\sqrt[n]{b}$.

Every positive number has a unique principal n^{th} root. We often refer to the principal n^{th} root of b as just the n^{th} root of b. The n^{th} root of 0 is 0.

For any positive integers m and n, and any real number b for which the principal n^{th} root of b exists, we have

$$b^{\frac{1}{n}} = \sqrt[n]{b}$$

$$b^{\frac{m}{n}} = \sqrt[n]{b^{m}} = \left(\sqrt[n]{b}\right)^{m}$$

$$b^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{b^{m}}} \text{ for } b \neq 0.$$

Exit Ticket (4 minutes)

Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

Name

Date

Lesson 3: Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

Exit Ticket

- 1. Write the following exponential expressions as equivalent radical expressions.
 - a. $2^{\frac{1}{2}}$ b. $2^{\frac{3}{4}}$
 - c. $3^{-\frac{2}{3}}$
- 2. Rewrite the following radical expressions as equivalent exponential expressions.
 - a. $\sqrt{5}$
 - b. $2\sqrt[4]{3}$
 - $c. \quad \frac{1}{\sqrt[3]{16}}$
- 3. Provide a written explanation for each question below.
 - a. Is it true that $(1000^{\frac{1}{3}})^3 = (1000^3)^{\frac{1}{3}}$? Explain how you know.
 - b. Is it true that $\left(4^{\frac{1}{2}}\right)^3 = (4^3)^{\frac{1}{2}}$? Explain how you know.
 - c. Suppose that m and n are positive integers and b is a real number so that the principal n^{th} root of b exists. In general, does $\left(b^{\frac{1}{n}}\right)^m = (b^m)^{\frac{1}{n}}$? Explain how you know.

EUREKA MATH

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

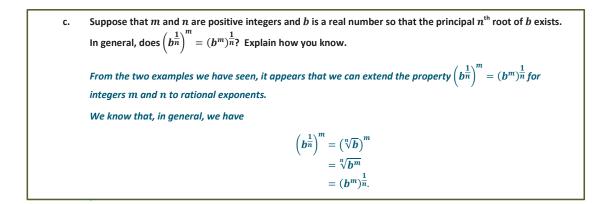
Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

Exit Ticket Sample Solutions

Rewrite the following exponential expressions as equivalent radical expressions. 1. $2^{\frac{1}{2}}$ a. $2\frac{1}{2} = \sqrt{2}$ b. $2^{\frac{3}{4}}$ $2\frac{3}{4} = \sqrt[4]{2^3} = \sqrt[4]{8}$ $3^{-\frac{2}{3}}$ c. $3^{-\frac{2}{3}} = \frac{1}{\sqrt[3]{3^2}} = \frac{1}{\sqrt[3]{9}}$ 2. Rewrite the following radical expressions as equivalent exponential expressions. $\sqrt{5}$ а. $\sqrt{5} = 5^{\frac{1}{2}}$ 2⁴√3 b. $2\sqrt[4]{3} = \sqrt[4]{2^4 \cdot 3} = \sqrt[4]{48} = 48\frac{1}{4}$ $\frac{1}{\sqrt[3]{16}}$ c. $\frac{1}{\sqrt[3]{16}} = (2^4)^{-\frac{1}{3}} = 2^{-\frac{4}{3}}$ $\frac{1}{\sqrt[3]{16}} = (16)^{-\frac{1}{3}}$ 3. Provide a written explanation for each question below. Is it true that $(1000^{\frac{1}{3}})^3 = (1000^3)^{\frac{1}{3}}$? Explain how you know. a. $\left(1000^{\frac{1}{3}}\right)^3 = \left(\sqrt[3]{1000}\right)^3 = 10^3 = 1000$ $(1000^3)^{\frac{1}{3}} = (1000000000)^{\frac{1}{3}} = 1000$ So, this statement is true. b. Is it true that $\left(4^{\frac{1}{2}}\right)^3 = (4^3)^{\frac{1}{2}}$? Explain how you know. $\left(4^{\frac{1}{2}}\right)^3 = \left(\sqrt{4}\right)^3 = 2^3 = 8$ $(4^3)^{\frac{1}{2}} = 64^{\frac{1}{2}} = \sqrt{64} = 8$ So, this statement is true.

Lesson 3:

Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?



Problem Set Sample Solutions

MP.3

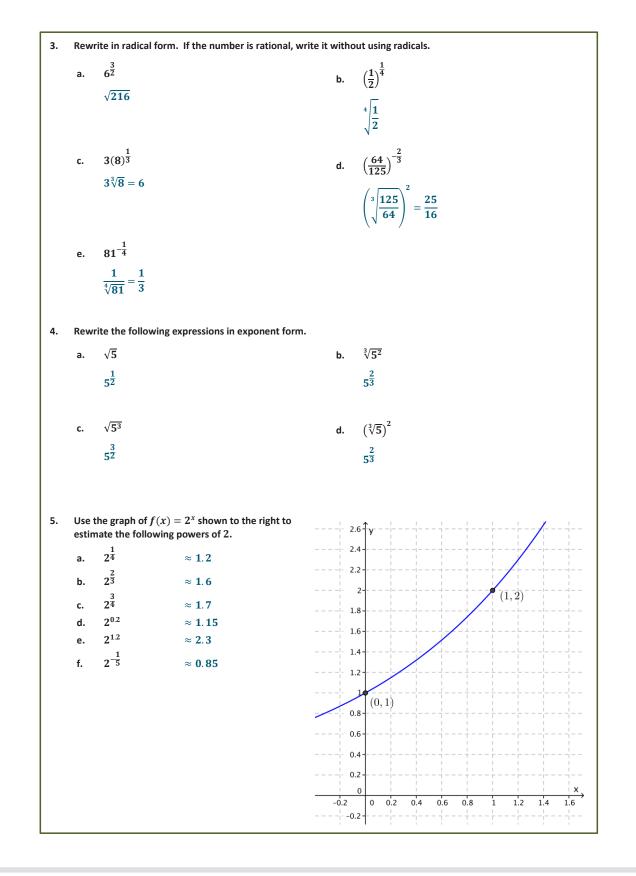
& MP.7

1.	Select the expression from (A), (B), and (C) that correctly completes the statement.						
			(A)	(B)	(C)		
	a.	$x^{\frac{1}{3}}$ is equivalent to	$\frac{1}{3}x$	$\sqrt[3]{x}$	$\frac{3}{x}$		
		(-)					
	b.	$x^{\frac{2}{3}}$ is equivalent to	$\frac{2}{3}x$	$\sqrt[3]{x^2}$	$\left(\sqrt{x}\right)^3$		
	c.	$x^{-\frac{1}{4}}$ is equivalent to	$-\frac{1}{4}x$	$\frac{4}{x}$	$\frac{1}{\sqrt[4]{x}}$		
		(C)					
	d.	$\left(\frac{4}{r}\right)^{\frac{1}{2}}$ is equivalent to	$\frac{2}{x}$	$\frac{4}{r^2}$	$\frac{2}{\sqrt{x}}$		
		(C)	Å	X	VA		
2.	2. Identify which of the expressions (A), (B), and (C) are equivalent to the given expression.						
		(A)	(B)		(C)		
	a.	$16^{\frac{1}{2}}$ $(\frac{1}{16})^{-\frac{1}{2}}$	$8^{\frac{2}{3}}$		$64^{\frac{3}{2}}$		
		(A) and (B)					
	Ŀ	$\left(\frac{2}{3}\right)^{-1}$ $-\frac{3}{2}$	$\left(\frac{9}{4}\right)^{\frac{1}{2}}$		$\frac{27^{\frac{1}{3}}}{6}$		
	b.	$\left(\frac{1}{3}\right)$ $-\frac{1}{2}$ (B) only	(4)		6		

EUREKA MATH

Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

engage^{ny}



EUREKA MATH Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

Rewrite each expression in the form kx^n , where k is a real number, x is a positive real number, and n is rational. 6. $\frac{5}{\sqrt{x}}$ $\sqrt[4]{16x^3}$ a. b. $2x^{\frac{3}{4}}$ $5x^{-\frac{1}{2}}$ $\frac{4}{\sqrt[3]{8x^3}}$ ∛ c. d. $x^{-\frac{4}{3}}$ $2x^{-1}$ $\frac{27}{\sqrt{9x^4}}$ $\left(\frac{125}{x^2}\right)^{-\frac{1}{3}}$ e. f. $\frac{1}{5}x^{\frac{2}{3}}$ $9x^{-2}$ 7. Find the value of x for which $2x^{\frac{1}{2}} = 32$. 256 Find the value of x for which $x^{\frac{4}{3}} = 81$. 8. 27 9. If $x^{\frac{3}{2}} = 64$, find the value of $4x^{-\frac{3}{4}}$. x = 16, so $4(16)^{-\frac{3}{4}} = 4(2)^{-3} = \frac{4}{8} = \frac{1}{2}$. 10. Evaluate the following expressions when $b = \frac{1}{9}$. a. $b^{-\frac{1}{2}}$ $\left(\frac{1}{9}\right)^{-\frac{1}{2}} = 9^{\frac{1}{2}} = 3$ **b.** $b^{\frac{5}{2}}$ $\left(\frac{1}{9}\right)^{\frac{5}{2}} = \left(\frac{1}{3}\right)^{5} = \frac{1}{243}$ c. $\sqrt[3]{3b^{-1}}$ $\sqrt[3]{3\left(\frac{1}{9}\right)^{-1}} = \sqrt[3]{27} = 3$

EUREKA MATH Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

(cc) BY-NC-SA

11. Show that each expression is equivalent to 2x. Assume x is a positive real number. $\sqrt[4]{16x^4}$ a. $\sqrt[4]{16} \cdot \sqrt[4]{x^4} = 2x$ $\frac{\left(\sqrt[3]{8x^3}\right)^2}{\sqrt{4x^2}}$ b. $\frac{(2x)^2}{(4x^2)^{\frac{1}{2}}} = \frac{4x^2}{2x} = 2x$ c. $\frac{6x^3}{\sqrt[3]{27x^6}}$ $\frac{6x^3}{3x^{\frac{6}{3}}} = \frac{6x^3}{3x^2} = 2x$ 12. Yoshiko said that $16^{\frac{1}{4}} = 4$ because 4 is one-fourth of 16. Use properties of exponents to explain why she is or is not correct. Yoshiko's reasoning is not correct. By our exponent properties, $\left(16^{\frac{1}{4}}\right)^4 = 16^{\left(\frac{1}{4}\right)\cdot 4} = 16^1 = 16$, but $4^4 = 256$. Since $\left(16^{\frac{1}{4}}\right)^4 \neq 4^4$, we know that $16^{\frac{1}{4}} \neq 4$. 13. Jefferson said that $8^{\frac{4}{3}} = 16$ because $8^{\frac{1}{3}} = 2$ and $2^4 = 16$. Use properties of exponents to explain why he is or is not correct. Jefferson's reasoning is correct. We know that $8^{\frac{4}{3}} = \left(8^{\frac{1}{3}}\right)^4$, so $8^{\frac{4}{3}} = 2^4$, and thus $8^{\frac{4}{3}} = 16$. 14. Rita said that $8^{\frac{2}{3}} = 128$ because $8^{\frac{2}{3}} = 8^2 \cdot 8^{\frac{1}{3}}$, so $8^{\frac{2}{3}} = 64 \cdot 2$, and then $8^{\frac{2}{3}} = 128$. Use properties of exponents to explain why she is or is not correct. Rita's reasoning is not correct because she did not apply the properties of exponents correctly. She should also realize that raising 8 to a positive power less than 1 would produce a number less than 8. The correct calculation is below. $8^{\frac{2}{3}} = \left(8^{\frac{1}{3}}\right)^2$ = **2**² = 4

EUREKA

MP.3

Rational Exponents—What are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

60

engage

M3

Lesson 3

15. Suppose for some positive real number a that $\left(a^{\frac{1}{4}} \cdot a^{\frac{1}{2}} \cdot a^{\frac{1}{4}}\right)^2 = 3.$ What is the value of a? а. $\left(a^{\frac{1}{4}}\cdot a^{\frac{1}{2}}\cdot a^{\frac{1}{4}}\right)^2 = 3$ $\left(a^{\frac{1}{4}+\frac{1}{2}+\frac{1}{4}}\right)^2 = 3$ $(a^1)^2 = 3$ $a^2 = 3$ $a = \sqrt{3}$ b. Which exponent properties did you use to find your answer to part (a)? We used the properties $b^n \cdot b^m = b^{m+n}$ and $(b^m)^n = b^{mn}$. 16. In the lesson, you made the following argument: $\left(2^{\frac{1}{3}}\right)^3 = 2^{\frac{1}{3}} \cdot 2^{\frac{1}{3}} \cdot 2^{\frac{1}{3}}$ $=2^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}$ = 2¹ = 2. Since $\sqrt[3]{2}$ is a number so that $(\sqrt[3]{2})^3 = 2$ and $2^{\frac{1}{3}}$ is a number so that $(2^{\frac{1}{3}})^3 = 2$, you concluded that $2^{\frac{1}{3}} = \sqrt[3]{2}$. Which exponent property was used to make this argument? We used the property $b^n \cdot b^m = b^{m+n}$. (Students may also mention the uniqueness of n^{th} roots.)

Lesson 4: Properties of Exponents and Radicals

Student Outcomes

• Students rewrite expressions involving radicals and rational exponents using the properties of exponents.

Lesson Notes

In Lesson 1, students reviewed the properties of exponents for integer exponents before establishing the meaning of the n^{th} root of a positive real number and how it can be expressed as a rational exponent in Lesson 3. In Lesson 4, students extend properties of exponents that applied to expressions with integer exponents to expressions with rational

exponents. In each case, the notation $b^{\frac{1}{n}}$ specifically indicates the principal root (e.g., $2^{\frac{1}{2}}$ is $\sqrt{2}$, as opposed to $-\sqrt{2}$).

This lesson extends students' thinking using the properties of radicals and the definitions from Lesson 3 so that they can see why it makes sense that the properties of exponents hold for any rational exponents (**N-RN.A.1**). Examples and exercises work to establish fluency with the properties of exponents when the exponents are rational numbers and emphasize rewriting expressions and evaluating expressions using the properties of exponents and radicals (**N-RN.A.2**).

Classwork

EUREKA

Opening (2 minutes)

Students revisit the properties of square roots and cube roots studied in Module 1 to remind them that those were extended to any n^{th} root in Lesson 3. So, they are now ready to verify that the properties of exponents hold for rational exponents.

Draw students' attention to a chart posted prominently on the wall or to their notebooks where the properties of exponents and radicals are displayed, including those developed in Lesson 3.

Remind students of the description of exponential expressions of the form $b^{\frac{m}{n}}$, which they make use of throughout the lesson:

Let *b* be any positive real number, and *m*, *n* be any integers with n > 0; then $b^{\frac{m}{n}} = \sqrt[n]{b^m} = \left(\sqrt[n]{b}\right)^m$.

Properties of Exponents and Radicals

Scaffolding:

- Throughout the lesson, remind students of past properties of integer exponents and radicals either through an anchor chart posted on the wall or by recording relevant properties as they come up. Included is a short list of previous properties used in this module.
- For all real numbers a, b > 0, and all integers m, n for which the expressions are defined:

$$b^m \cdot b^n = b^{m+n}$$
$$(b^m)^n = b^{mn}$$

$$(ab)^m = a^m \cdot b^m$$

$$b^{-m} = \frac{1}{b^{m}}$$

Additionally, if $n > 0$,
$$\sqrt[n]{b} = b^{\frac{1}{n}}$$
$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$$
$$\sqrt[n]{b^{n}} = \left(\sqrt[n]{b}\right)^{n} = b$$
$$\sqrt[n]{b^{m}} = \left(\sqrt[n]{b}\right)^{m} = b^{\frac{m}{n}}.$$

62

Lesson 4:

Opening Exercise (5 minutes)

These exercises briefly review content from Module 1 and the last lesson.

Opening Exercise

Write each exponential expression as a radical expression, and then use the definition and properties of radicals to write the resulting expression as an integer.

 $7\frac{1}{2} \cdot 7\frac{1}{2}$ a. $\sqrt{7} \cdot \sqrt{7} = \sqrt{49} = 7$ **b.** $3^{\frac{1}{3}} \cdot 3^{\frac{1}{3}} \cdot 3^{\frac{1}{3}}$ $\sqrt[3]{3} \cdot \sqrt[3]{3} \cdot \sqrt[3]{3} = \sqrt[3]{9} \cdot \sqrt[3]{3} = \sqrt[3]{27} = 3$ $12^{\frac{1}{2}} \cdot 3^{\frac{1}{2}}$ c. $\sqrt{12} \cdot \sqrt{3} = \sqrt{12 \cdot 3} = \sqrt{36} = 6$ d. $(64^{\frac{1}{3}})^{\frac{1}{2}}$ $\sqrt[3]{64} = \sqrt{4} = 2$

To transition from the Opening Exercise to Example 1, ask students to write parts (a) and (b) of the Opening Exercise in exponent form. Then, ask them to discuss with a partner whether or not it would be true in general that $b^{\frac{m}{n}} \cdot b^{\frac{p}{q}} = b^{\frac{m}{n} + \frac{p}{q}}$ for positive real numbers b where m, n, p, and q are integers with $n \neq 0$ and $q \neq 0$.

- - How could you write $\sqrt{7} \cdot \sqrt{7} = 7$ with rational exponents? How about $\sqrt[3]{3} \cdot \sqrt[3]{3} \cdot \sqrt[3]{3} = 3$?

$$-7^{\frac{1}{2}} \cdot 7^{\frac{1}{2}} = 7^{1} \text{ and } 3^{\frac{1}{3}} \cdot 3^{\frac{1}{3}} \cdot 3^{\frac{1}{3}} = 3^{1}$$

- Based on these examples, does the exponent property $b^m \cdot b^n = b^{m+n}$ appear to be valid when m and n are rational numbers? Explain how you know.
 - Since the exponents on the left side of each statement add up to the exponents on the right side, it appears to be true. However, the right side exponent was always 1. If we work with $8^{\frac{1}{3}} \cdot 8^{\frac{1}{3}} = 8^{\frac{2}{3}}$ and write it in radical form, then $\sqrt[3]{8} \cdot \sqrt[3]{8} = \sqrt[3]{8^2} = \sqrt[3]{64}$. So, it may be true in general. Note that examples alone do not prove that a mathematical statement is always true.

In the rest of this lesson, students make sense of these observations in general to extend the properties of exponents to rational numbers by applying the definition of the n^{th} root of b and the properties of radicals introduced in Lesson 3.

MP 3

MP.8

Properties of Exponents and Radicals

Examples 1-3 (10 minutes)

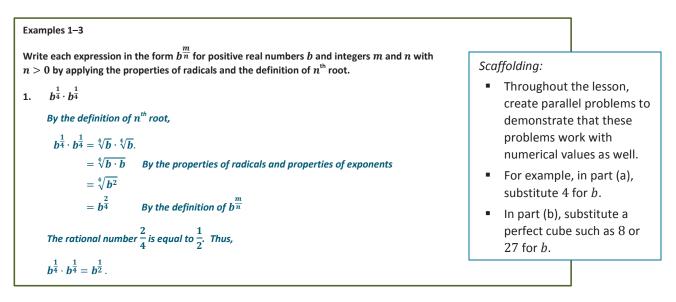
MP.8

In the previous lesson, it was assumed that the exponent property $b^m b^n = b^{m+n}$ for positive real numbers b and integers m and n would also hold for rational exponents when the exponents were of the form $\frac{1}{n}$, where n was a positive integer. This example helps students see that the property below makes sense for any rational exponent.

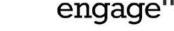
$$b^{\frac{m}{n}} \cdot b^{\frac{p}{q}} = b^{\frac{m}{n} + \frac{p}{q}}$$
, where m, n, p , and q are integers with $n > 0$ and $q > 0$.

Consider modeling Example 1 below and having students work with a partner on Example 2. Make sure students include a justification for each step in the problem. The following discussion questions can be used to guide students through Example 3.

- How can we write these expressions using radicals?
 - In Lesson 3, we learned that $b^{\frac{1}{n}} = \sqrt[n]{b}$ and $b^{\frac{m}{n}} = \sqrt[n]{b^m}$ for positive real numbers b and positive integers m and n.
- Which properties help us to write the expression as a single radical?
 - The property of radicals that states $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$ for positive real numbers a and b and positive integer n, and the property of exponents that states $b^m \cdot b^n = b^{m+n}$ for positive real numbers b and integers m and n
- How do we rewrite this expression in exponent form?
 - In Lesson 3, we related radicals and rational exponents by $b^{\frac{m}{n}} = \sqrt[n]{b^m}$.
- What makes Example 3 different from Examples 1 and 2?
 - The exponents have different denominators, so when we write the expression in radical form, the roots are not the same, and we cannot apply the property that $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$.
- Can you think of a way to rewrite the problem so it looks more like Examples 1 and 2?
 - We can write the exponents as equivalent fractions with the same denominator.



(cc) BY-NC-SA



 $h^{\frac{1}{3}} \cdot h^{\frac{4}{3}}$ 2. $b^{\frac{1}{3}} \cdot b^{\frac{4}{3}} = \sqrt[3]{b} \cdot \sqrt[3]{b^4}$ By the definition of $b^{\frac{1}{n}}$ and $b^{(\frac{m}{n})}$ $= \sqrt[3]{b \cdot b^4}$ By the properties of radicals and properties of exponents $=\sqrt[3]{b^5}$ $= h^{\frac{5}{3}}$ By the definition of $b^{\frac{m}{n}}$ Thus, $b^{\frac{1}{3}} \cdot b^{\frac{4}{3}} = b^{\frac{5}{3}}$ 3. $b^{\frac{1}{5}} \cdot h^{\frac{3}{4}}$ Write the exponents as equivalent fractions with the same denominator. $b^{\frac{1}{5}} \cdot b^{\frac{3}{4}} = b^{\frac{4}{20}} \cdot b^{\frac{15}{20}}$ Rewrite in radical form. $= \sqrt[20]{b^4} \cdot \sqrt[20]{b^{15}}$ Rewrite as a single radical expression. $= \sqrt[20]{b^4 \cdot b^{15}}$ $= \sqrt[20]{b^{19}}$ Rewrite in exponent form using the definition. $= b^{\frac{19}{20}}$ Thus, $h^{\frac{1}{5}} \cdot h^{\frac{3}{4}} = h^{\frac{19}{20}}$

• Now, add the exponents in each example. What is $\frac{1}{4} + \frac{1}{4}$? $\frac{1}{3} + \frac{4}{3}$? $\frac{1}{5} + \frac{3}{4}$?

$$\frac{1}{4} + \frac{1}{4} = \frac{1}{2}, \frac{1}{3} + \frac{4}{3} = \frac{5}{3}, and \frac{1}{5} + \frac{3}{4} = \frac{19}{20}$$

- What do you notice about these sums and the value of the exponent when we rewrote each expression?
 - ^a The sum of the exponents was equal to the exponent of the answer.

Based on these examples, particularly the last one, it seems reasonable to extend the properties of exponents to hold when the exponents are any rational number. Thus, the following property can be stated:

• For any integers m, n, p and q, with n > 0 and q > 0, and any real numbers b so that $b^{\frac{1}{n}}$ and $b^{\frac{1}{q}}$ are defined,

$$b^{\frac{m}{n}} \cdot b^{\frac{p}{q}} = b^{\frac{m}{n} + \frac{p}{q}}.$$

Have students copy this property into their notes along with the ones listed below. Also, consider writing these properties on a piece of chart paper and displaying them in the classroom. These properties are listed in the Lesson Summary.

Properties of Exponents and Radicals

In a similar fashion, the other properties of exponents can be extended to hold for any rational exponents as well.

• For any integers m, n, p, and q, with n > 0 and q > 0, and any real numbers a and b so that $a^{\frac{1}{n}}, b^{\frac{1}{n}}$, and $b^{\frac{1}{q}}$ are defined,

$$b^{\frac{m}{n}} = \sqrt[n]{b^{m}}$$
$$\left(b^{\frac{1}{n}}\right)^{n} = b$$
$$\left(b^{n}\right)^{\frac{1}{n}} = b$$
$$\left(ab\right)^{\frac{m}{n}} = a^{\frac{m}{n}} \cdot b^{\frac{m}{n}}$$
$$\left(b^{\frac{m}{n}}\right)^{\frac{p}{q}} = b^{\frac{mp}{nq}}$$
$$b^{-\frac{m}{n}} = \frac{1}{b^{\frac{m}{n}}}.$$

At this point, consider having the class look at the Opening Exercise again and asking them which property could be used to simplify each problem.

For advanced learners, a derivation of the property explored in Example 1 is provided below.

Rewrite $b^{\frac{m}{n}}$ and $b^{\frac{p}{q}}$ as equivalent exponential expressions in which the exponents have the same denominator, and apply the definition of $b^{\frac{m}{n}}$ as the n^{th} root.

By the definition of $b^{\frac{m}{n}}$ and then using properties of algebra, students can rewrite the exponent to be $\frac{m}{n} + \frac{p}{q}$.

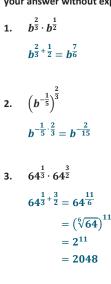
$$b^{\frac{m}{n}} \cdot b^{\frac{p}{q}} = b^{\frac{mq}{nq}} b^{\frac{np}{nq}}$$
$$= \sqrt[nq]{b^{mq}} \cdot \sqrt[nq]{b^{np}}$$
$$= \sqrt[nq]{b^{mq}} \cdot b^{np}$$
$$= \sqrt[nq]{b^{mq+np}}$$
$$= b^{\frac{mq+np}{nq}}$$
$$= b^{\frac{mq}{nq} + \frac{np}{nq}}$$
$$= b^{\frac{mq}{nq} + \frac{np}{nq}}$$

Exercises 1–4 (6 minutes)

Have students work with a partner or in small groups to rewrite expressions with rational exponents using the properties presented above. As students work, emphasize that it is not necessary to write these expressions using radicals since it has just been established that the properties of exponents hold for rational numbers. In the last two exercises, students have to use their knowledge of radicals to rewrite the answers without exponents.

Exercises 1-4

Write each expression in the form $b^{\frac{m}{n}}$. If a numeric expression is a rational number, then write your answer without exponents.



 $\left(\frac{9^3}{4^2}\right)$

 $\left(\frac{9^3}{4^2}\right)^{\frac{3}{2}} = \frac{9^{\frac{9}{2}}}{4^3}$

 $=\frac{\left(\sqrt[2]{9}\right)}{64}$ **3**⁹ 64 19683 64

4.

Scaffolding:

- When students get to these exercises, it may be necessary to remind them that it is often easier to rewrite $b^{\frac{m}{n}}$ as $(\sqrt[n]{b})^m$ when evaluating radical expressions.
- Provide a scientific calculator for students who struggle with arithmetic, but encourage them to use the radical and exponent properties to show the steps.

Example 4 (5 minutes)

We can rewrite radical expressions using properties of exponents. There are other methods for rewriting radical expressions, but this example models using the properties of exponents. Often, textbooks and exams give directions to simplify an expression, which is vague unless we specify what it means. We want students to develop fluency in applying the properties, so the directions here say to rewrite in a specific fashion.

Properties of Exponents and Radicals

Example 4 Rewrite the radical expression $\sqrt{48x^5y^4z^2}$ so that no perfect square factors remain inside the radical. $\sqrt{48 \cdot x^5 \cdot y^4 \cdot z^2} = (4^2 \cdot 3 \cdot x^5 \cdot y^4 \cdot z^2)^{\frac{1}{2}}$ $= 4^{\frac{2}{2}} \cdot 3^{\frac{1}{2}} \cdot x^{\frac{5}{2}} \cdot y^{\frac{4}{2}} \cdot z^2$ $= 4 \cdot 3^{\frac{1}{2}} \cdot x^{2+\frac{1}{2}} \cdot y^2 \cdot z$ $= 4x^2y^2z \cdot (3x)^{\frac{1}{2}}$ $= 4x^2y^2z\sqrt{3x}$

 Although this process may seem drawn out, once it has been practiced, most of the steps can be internalized, and expressions are quickly rewritten using this technique.

Exercise 5 (5 minutes)

For the values x = 50, y = 12, and z = 3, the expressions in Exercises 5(a) and (b) are difficult to evaluate. Students need to rewrite these expressions in a simpler form by minimizing fractions in the exponents before attempting to evaluate them. Do not allow calculators to be used on these exercises.

```
Exercise 5

5. Use the definition of rational exponents and properties of exponents to rewrite each expression with rational exponents containing as few fractions as possible. Then, evaluate each resulting expression for x = 50, y = 12, and z = 3.

a. \sqrt{8x^3y^2}

\sqrt{8x^3y^2} = 2\frac{3}{2}x\frac{3}{2}y^2

= 2xy \cdot (2x)^{\frac{1}{2}}

Evaluating, we get 2(50)(12)(2 \cdot 50)^{\frac{1}{2}} = 100 \cdot 12 \cdot 10 = 12\ 000.

b. \sqrt[3]{54y^7z^2}

\sqrt[3]{54y^7z^2}

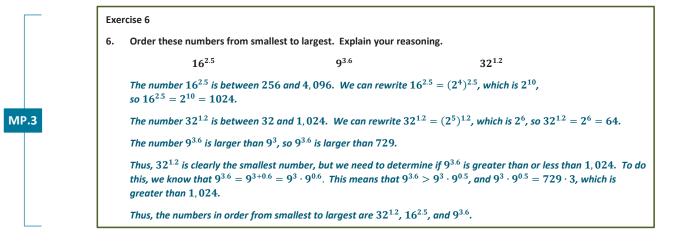
= 3y^2 \cdot (2yz^2)^{\frac{1}{3}}

Evaluating, we get 3(12)^2(2 \cdot 12 \cdot 3^2)^{\frac{1}{3}} = 3(144)(216)^{\frac{1}{3}} = 3 \cdot 144 \cdot 6 = 2592.
```

Exercise 6 (5 minutes)

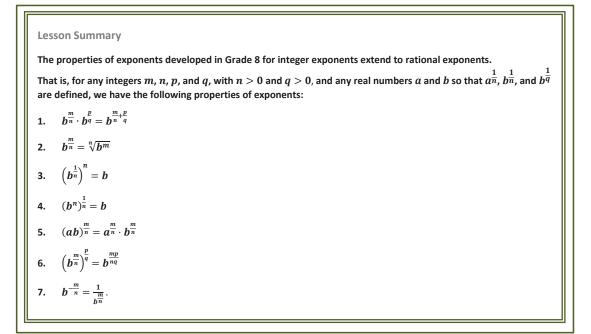
This exercise reminds students that rational numbers can be represented in decimal form and gives them a chance to work on their numeracy skills. Students should work on this exercise with a partner or in their groups to encourage dialogue and debate. Have a few students demonstrate their results to the entire class. There is more than one possible approach, so when debriefing, try to share different approaches that show varied reasoning. Conclude with one or two strong arguments. Students can confirm their reasoning using a calculator.

Properties of Exponents and Radicals



Closing (2 minutes)

Have students summarize the definition and properties of rational exponents and any important ideas from the lesson by creating a list of what they have learned so far about the properties of exponents and radicals. Circulate around the classroom to informally assess understanding. Reinforce the properties of exponents listed below.



Exit Ticket (5 minutes)

Name

Date _____

Lesson 4: Properties of Exponents and Radicals

Exit Ticket

1. Find the exact value of $9^{\frac{11}{10}} \cdot 9^{\frac{2}{5}}$ without using a calculator.

2. Justify that $\sqrt[3]{8} \cdot \sqrt[3]{8} = \sqrt{16}$ using the properties of exponents in at least two different ways.

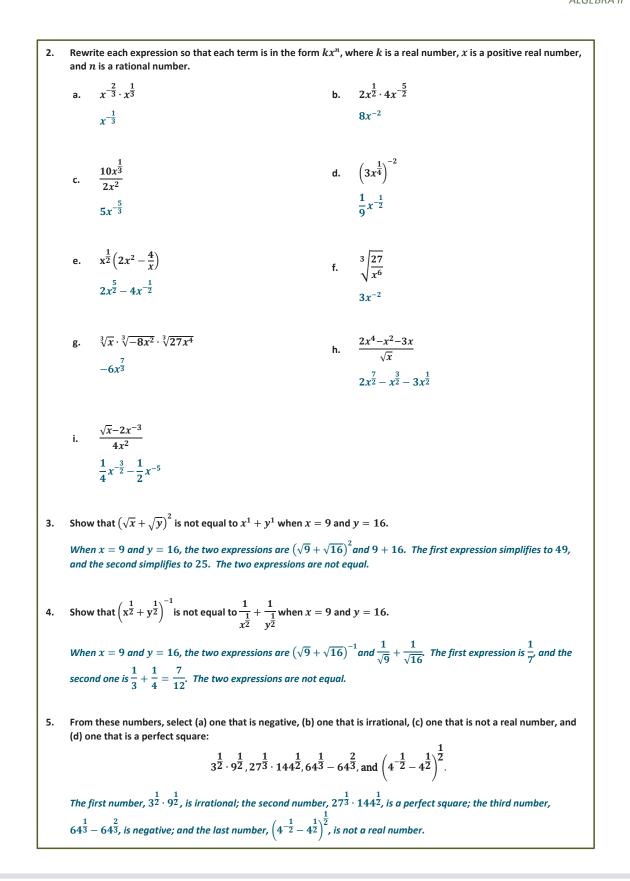
Exit Ticket Sample Solutions

1.	Find the exact value of $9\frac{11}{10} \cdot 9\frac{2}{5}$ without using a calculator.					
	$9\frac{11}{10} \cdot 9\frac{2}{5} = 9\frac{11}{10} + \frac{2}{5}$					
	$=9\frac{15}{10}$					
	$=9^{\frac{3}{2}}$					
	$=\left(\sqrt[2]{9} ight)^3$					
	= 27					
2.	2. Justify that $\sqrt[3]{8} \cdot \sqrt[3]{8} = \sqrt{16}$ using the properties of exponents in at least two different ways.					
	$8^{\frac{1}{3}} \cdot 8^{\frac{1}{3}} = 8^{\frac{2}{3}} 16^{\frac{1}{2}} = (4 \cdot 4)^{\frac{1}{2}}$					
	$=(2^3)^{\frac{2}{3}} = 4^{\frac{1}{2}} \cdot 4^{\frac{1}{2}}$					
	$= 2^2 \qquad \qquad = 2 \cdot 2$					
	$=2^{\frac{4}{2}}$ $=8^{\frac{1}{3}}\cdot8^{\frac{1}{3}}$					
	$=(2^4)^{\frac{1}{2}}$ $=\sqrt[3]{8}\cdot\sqrt[3]{8}$					
	$=\sqrt{16}$					

Problem Set Sample Solutions

1.	1. Evaluate each expression for $a = 27$ and $b = 64$.			
	a.	$\sqrt[3]{a\sqrt{b}}$	b.	$(3\sqrt[3]{a}\sqrt{b})^2$
		$\sqrt[3]{27} \cdot \sqrt{64} = 3 \cdot 8 = 24$		$(3 \cdot 3 \cdot 8)^2 = 5184$
	c.	$\left(\sqrt[3]{a}+2\sqrt{b}\right)^2$	d.	$a^{-\frac{2}{3}} + b^{\frac{3}{2}}$
		$(3+2\cdot 8)^2 = 361$		$\frac{1}{\left(\sqrt[3]{27}\right)^2} + \left(\sqrt{64}\right)^3 = \frac{1}{9} + 512 = 512\frac{1}{9}$
	e.	$\left(a^{-rac{2}{3}}\cdot b^{rac{3}{2}} ight)^{-1}$	f.	$\left(a^{-\frac{2}{3}}-\frac{1}{8}b^{\frac{3}{2}}\right)^{-1}$
		$\left(\frac{1}{9}\cdot 512\right)^{-1}=\frac{9}{512}$		$\left(\frac{1}{9} - \frac{1}{8} \cdot 512\right)^{-1} = \left(-\frac{575}{9}\right)^{-1} = -\frac{9}{575}$

EUREKA MATH



EUREKA MATH

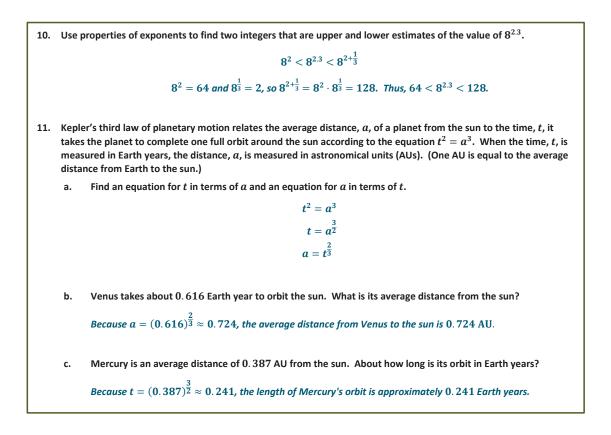
Lesson 4: Properties of Exponents and Radicals

Show that for any rational number *n*, the expression $2^n \cdot 4^{n+1} \cdot \left(\frac{1}{8}\right)^n$ is equal to 4. 6. $2^n \cdot 2^{2n+2} \cdot 2^{-3n} = 2^2 = 4$ 7. Let *n* be any rational number. Express each answer as a power of 10. Multiply 10^n by 10. a. $10^n \cdot 10 = 10^{n+1}$ Multiply $\sqrt{10}$ by 10^n . b. $10^{\frac{1}{2}} \cdot 10^n = 10^{\frac{1}{2}+n}$ Square 10ⁿ. c. $(10^n)^2 = 10^{2n}$ Divide $100 \cdot 10^n$ by 10^{2n} . d. $\frac{100 \cdot 10^n}{10^{2n}} = 10^{2+n-2n} = 10^{2-n}$ Show that $10^n = 11 \cdot 10^n - 10^{n+1}$. e. $11 \cdot 10^n - 10^{n+1} = 11 \cdot 10^n - 10 \cdot 10^n$ $= 10^{n}(11 - 10)$ $= 10^{n} \cdot 1$ = **10**^{*n*} Rewrite each of the following radical expressions as an equivalent exponential expression in which each variable 8. occurs no more than once. a. $\sqrt{8x^2y}$ $\sqrt{8x^2y} = 2^{\frac{2}{2}}x^{\frac{2}{2}}(2y)^{\frac{1}{2}}$ $=2x\cdot(2y)^{\frac{1}{2}}$ $=2^{\frac{3}{2}}x v^{\frac{1}{2}}$ $\sqrt[5]{96x^3y^{15}z^6}$ b. $\sqrt[5]{96x^3y^{15}z^6} = (32 \cdot 3 \cdot x^3 \cdot y^{15} \cdot z^6)^{\frac{1}{5}}$ $= 32^{\frac{1}{5}} \cdot 3^{\frac{1}{5}} \cdot x^{\frac{3}{5}} \cdot y^{\frac{15}{5}} \cdot z^{\frac{6}{5}}$ $= 2 \cdot 3^{\frac{1}{5}} \cdot x^{\frac{3}{5}} \cdot y^3 \cdot z^{\frac{6}{5}}$ Use properties of exponents to find two integers that are upper and lower estimates of the value of 4^{1.6}. 9. $4^{1.5} < 4^{1.6} < 4^2$ $4^{1.5} = 2^3 = 8$ and $4^2 = 16$, so $8 < 4^{1.6} < 16$.

Properties of Exponents and Radicals

M3

Lesson 4



Properties of Exponents and Radicals

Lesson 5: Irrational Exponents—What are $2^{\sqrt{2}}$ and 2^{π} ?

Student Outcomes

- Students approximate the value of quantities that involve positive irrational exponents.
- Students extend the domain of the function $f(x) = b^x$ for positive real numbers b to all real numbers.

Lesson Notes

The goal today is to define 2 to an irrational power. There is already a definition for 2 to a rational power $\frac{p}{q}$: $2^{\frac{p}{q}} = \sqrt[q]{2^{p}}$,

but irrational numbers cannot be written as "an integer divided by an integer." By defining 2 to an irrational power, it is possible to state definitively that the domain of the function $f(x) = 2^x$ is all real numbers. This result can be extended to any exponential function $f(x) = b^x$ where b is a positive real number. These important results are necessary to proceed to the study of logarithms. The lesson provides a new way to reinforce standard 8.NS.A.2 when students determine a recursive process for calculation from a context (F-BF.A.1a) when they use rational approximations of irrational numbers to approximate first $\sqrt{2}$ and then $2^{\sqrt{2}}$. Extending rational exponents to real exponents is an application of N-RN.A.1. The foundational work done in this lesson with exponential expressions is extended to logarithms in later lessons so that logarithmic functions in base 2, 10, and e are well defined and can be used to solve exponential equations. Understanding the domain of exponential functions also allows students to correctly graph exponential and logarithmic functions in Topic C. The work done in Lesson 5 also helps demystify irrational numbers, which eases the introduction to Euler's number, *e*, in Lesson 6.

Classwork

Opening (5 minutes)

Use the Opening to recall the definitions of rational and irrational numbers and solicit examples and characteristics from the class. Randomly select students to explain what they know about rational and irrational numbers. Then, make a list including examples and characteristics of both. Alternatively, have students give rational and irrational numbers, make a class list, and then have students generalize characteristics of rational and irrational numbers in their notebooks. Rational and irrational numbers along with some characteristics and examples are described below.

RATIONAL NUMBER: A rational number is a number that can be represented as $\frac{p}{q}$ where p and q are integers with $q \neq 0$.

IRRATIONAL NUMBER: An *irrational number* is a real number that cannot be represented as $\frac{p}{q}$ for any integers p and q with

 $q \neq 0$.

- What are some characteristics of rational numbers?
 - A rational number can be represented as a finite or repeating decimal; that is, a rational number can be written as a fraction.

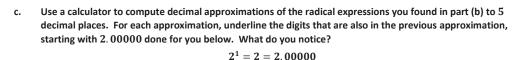
Irrational Exponents—What are $2^{\sqrt{2}}$ and 2^{π} ?

- What are some characteristics of irrational numbers?
 - An irrational number cannot be represented as a finite or repeating decimal, so it must be represented symbolically or as an infinite, nonrepeating decimal.
- What are some examples of irrational numbers?
 - $\sqrt{2}, \pi, \sqrt[3]{17}$
- We usually assume that the rules we develop for rational numbers hold true for irrational numbers, but what could something like $2^{\sqrt{2}}$ or 2^{π} mean?
 - Solicit ideas from the class. Students may consider numbers like this to be between rational exponents or "filling the gaps" from rational exponents.
- Let's find out more about exponents raised to irrational powers and how we can get a handle on their values.

Exercise 1 (8 minutes)

Have students work on the following exercises independently or in pairs. Students need to use calculators. After students finish, debrief them with the questions that follow the exercises.

```
Exercise 1
                Write the following finite decimals as fractions (you do not need to reduce to lowest terms).
        a.
                                                         1.4,
                                                                     1.41,
                                                                                    1.414,
                                                                                                   1.4142,
                                                                                                                      1.41421
                                                1.
                1.4 = \frac{14}{10}
                1.41 = \frac{141}{100}
                1.414 = \frac{1414}{1000}
                1.4142 = \frac{14\,142}{10\,000}
                1.41421 = \frac{141421}{100000}
              Write 2^{1.4}, 2^{1.41}, 2^{1.414}, and 2^{1.4142} in radical form (\sqrt[n]{2^m}).
        b.
                2^{1.4} = 2^{14/10} = \sqrt[10]{2^{14}}
                2^{1.41} = 2^{141/100} = \sqrt[100]{2^{141}}
                2^{1.414} = 2^{1414/1000} = \sqrt[1000]{2^{1414}}
                2^{1.4142} = 2^{14142/10000} = \sqrt[10000]{2^{14142}}
                2^{1.41421} = 2^{141421/100000} = {}^{100000}\sqrt{2^{141421}}
```

 $2^{1.4} = \sqrt[10]{2^{14}} \approx \underline{2}.63901$ $2^{1.41} = \sqrt[100]{2^{141}} \approx \underline{2}.65737$ $2^{1.414} = \sqrt[1000]{2^{1414}} \approx \underline{2}.66474$ $2^{1.4142} = \sqrt[10000]{2^{14142}} \approx \underline{2}.66511$ $2^{1.41421} = \sqrt[10000]{2^{141421}} \approx \underline{2}.66514$ More and more of the digits are the same.

Note to teacher: Students cannot find 2^{1414} on most calculators due to the number being 426 digits long. They need to calculate $\binom{1000}{\sqrt{2}}^{1414}$ instead of $\sqrt[100]{2^{1414}}$. At this point, it may be a good time to switch to using the decimal approximation within the exponent, reminding students that the calculator is evaluating the decimal by using the radical form, that is, $b^{\frac{m}{n}} = \sqrt[n]{b^m}$. Ideally, a student suggests using the decimal exponent first. If roots are used, make sure that the root is taken before the exponent for large exponents. Examples and possible solutions throughout the lesson assume that roots are used so the true meaning of rational exponents is emphasized.

- How are the exponents in each power of 2 changing?
 - A new digit is included in the exponent each time: 1.4, 1.4<u>1</u>, 1.41<u>4</u>, 1.414<u>2</u>, 1.414 2<u>1</u>.
- If we kept including more digits, what do you conjecture will happen to the decimal approximations?
 - A greater and greater number of digits in each approximation would remain the same.
- Let's see!

MP.8

Example (6 minutes)

Students should already be aware that rational exponents are defined using roots and exponents.

Write a decimal approximation for $2^{1.4142135}$.

 $2^{1.4142135}$ is the 10,000,000th root of $2^{14142135}$.

Remember to take the root first. We get

$$2^{1.4142135} \approx \underline{2.66514}.$$

Can anyone tell the class what the exponents 1.4, 1.41, 1.414, ... approximate?

Hopefully, one student says $\sqrt{2}$, but if not, ask them to find $\sqrt{2}$ on their calculators, and ask again.

• Yes, $\sqrt{2} \approx 1.414\,213\,562$.

The goal of this lesson is to find a meaning for $2^{\sqrt{2}}$. We now know enough to discuss both the problem and solution to defining 2 to an irrational power such as $\sqrt{2}$.

Irrational Exponents—What are $2^{\sqrt{2}}$ and 2^{π} ?

- First, the problem: Each time we took a better finite decimal approximation of the irrational number $2^{\sqrt{2}}$, we needed to take a greater n^{th} root. However, an irrational number has an infinite number of digits in its decimal expansion. We cannot take an ∞^{th} root! In particular, while we have always assumed $2^{\sqrt{2}}$ and 2^{π} existed (because when we show the graph of $f(x) = 2^x$, we drew a solid curve—not one with "holes" at $x = \sqrt{2}, \pi$, etc.), we do not as of yet have a way to define what $2^{\sqrt{2}}$ and 2^{π} really are.
- Fortunately, our beginning exercise suggests a solution using a limit process (much the way we defined the area of a circle in Geometry, Module 3 in terms of limits).
- Let a_k stand for the term of the sequence of finite decimal approximations of $\sqrt{2}$ with k digits after the decimal point:

{1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, ... },

and label these as $a_0 = 1$, $a_1 = 1.4$, $a_2 = 1.41$, $a_3 = 1.414$. Then, define $2^{\sqrt{2}}$ to be the limit of the values of 2^{a_k} . Thus,

$$2^{a_k} \rightarrow 2^{\sqrt{2}}$$
 as $k \rightarrow \infty$

The important point to make to students is that each 2^{a_k} can be computed since each a_k is a rational number and therefore has a well-defined value in terms of n^{th} roots.

This is how calculators and computers are programmed to compute approximations of $2^{\sqrt{2}}$. Try it: The calculator says that $2^{\sqrt{2}} \approx 2.66514414$.

Exercise 2 (5 minutes)

Students should attempt the following exercise independently or in pairs. After the exercise, use the Discussion to debrief and informally assess understanding.

Exercise 2 a.	Write six terms of a sequence that a calculator can use to approximate 2^{π} .	 Scaffolding: Have students working above grade level give the most accurate estimate they can for part (b). Most
	(Hint: $\pi = 3.14159$) { $2^{3}, 2^{3.1}, 2^{3.14}, 2^{3.141}, 2^{3.1415}, 2^{3.14159},$ }	calculators can provide an additional three to four decimal places of π . For reference,
b.	Compute $2^{3.14}$ and 2^{π} on your calculator. In which digit do they start to differ? $2^{3.14} = \sqrt[100]{2^{314}} \approx 8.81524$ $2^{\pi} \approx 8.82497$ They start to differ in the hundredths place.	 π ≈ 3.141 592 653 589 793 238 46. Another option for students working above grade level is to discuss the sequence of upper bounds of π {4, 3.2, 3.15, 3.142, 3.1416, } and
c.	How could you improve the accuracy of your estimate of 2^{π} ? Include more digits of the decimal approximation of π in the exponent.	whether this sequence leads to an accurate estimate of 2^{π} .

Irrational Exponents—What are $2^{\sqrt{2}}$ and 2^{π} ?

78

Lesson 5

ALGEBRA II

Discussion (10 minutes)

• Why does the sequence 2^3 , $2^{3.1}$, $2^{3.14}$, $2^{3.141}$, $2^{3.1415}$, ... get closer and closer to 2^{π} ?

Allow students to make some conjectures, but be sure to go through the reasoning below.

• We can trap 2^{π} in smaller and smaller intervals, each one contained in the previous interval.

Write the following incomplete inequalities on the board, and ask students to help complete them before continuing. Mention that in this process, they are *squeezing* π between two rational numbers that are each getting closer and closer to the value of π .

$3 < \pi < 4$	
$3.1 < \pi < ?$	3.2
$3.14 < \pi < ?$	3.15
$3.141 < \pi < ?$	3.142
$3.1415 < \pi < ?$	3.1416
÷	

• Since $3 < \pi < 4$, and the function $f(x) = 2^x$ increases, we know that $2^3 < \pi < 2^4$. Likewise, we can use the smaller intervals that contain π to find smaller intervals that contain 2^{π} . In this way, we can squeeze 2^{π} between rational powers of 2.

Now, have students use calculators to estimate the endpoints of each interval created by the upper and lower estimates of the values of 2^{π} , and write the numerical approximations of each interval on the board so students can see the endpoints of the intervals getting closer together, squeezing the value of 2^{π} between them. Record values to four decimal places.

	<u>Decimal Form</u>
$2^3 < 2^{\pi} < 2^4$	$8.0000 < 2^{\pi} < 16.0000$
$2^{3.1} < 2^{\pi} < 2^{3.2}$	$8.5742 < 2^{\pi} < 9.1896$
$2^{3.14} < 2^{\pi} < 2^{3.15}$	$8.8152 < 2^{\pi} < 8.8766$
$2^{3.141} < 2^{\pi} < 2^{3.142}$	$8.8214 < 2^{\pi} < 8.8275$
$2^{3.1415} < 2^{\pi} < 2^{3.1416}$	$8.8244 < 2^{\pi} < 8.8250$
:	:

- What is the approximate value of 2^π? How many digits of this number do we know?
 - ^a Because our upper and lower estimates agree to two decimal places, our best approximation is $2^{\pi} \approx 8.82$.
- How could we get a more accurate estimate of 2^π?
 - Use more and more digits of π as exponents.

Irrational Exponents—What are $2^{\sqrt{2}}$ and 2^{π} ?

- As the exponents get closer to the value of π , what happens to the size of the interval?
 - ^a The intervals get smaller; the endpoints of the interval get closer together.
- What does every interval share in common?
 - Every interval contains 2^{π} .
- The only number that is guaranteed to be contained in every interval is 2^{π} . (Emphasize this fact.)
- There was nothing special about our choice of 2 in this discussion, or $\sqrt{2}$ or π . In fact, with a little more work, we could define $\pi^{\sqrt{2}}$ using the same ideas.

Closing (6 minutes)

Ask students to respond to the following questions either in writing or with a partner. Use this as an opportunity to informally assess understanding. The summative point of the lesson is that the domain of an exponential function $f(x) = b^x$ is *all real numbers*, so emphasize the final question below.

• For any positive real number b > 0 and any rational number r, how do we define b^r ?

If r is rational, then
$$r = \frac{p}{q}$$
 for some integers p and q. Then $b^r = \sqrt[q]{b^p}$. For example, $5^{\frac{2}{3}} = \sqrt[3]{5^2}$.

- For any positive real number b > 0 and any irrational number r, how do we define b^r ?
 - If r is irrational, b^r is the limit of the values a^{b_n} where b_n is the finite decimal approximation of b to n decimal places.
- If *b* is any positive real number, then consider the function $f(x) = b^x$. How is f(x) defined if *x* is a rational number?
 - If x is a rational number, then there are integers p and q so that $x = \frac{p}{q}$. Then $f(x) = b^{\frac{p}{q}} = \sqrt[q]{b^p}$.
- How is f(x) defined if x is an irrational number?
 - If x is an irrational number, we find a sequence of rational numbers $\{a_0, a_1, a_2, ...\}$ that gets closer and closer to x. Then the sequence $\{b^{a_0}, b^{a_1}, b^{a_2}, ...\}$ approaches f(x).
- What is the domain of the exponential function $f(x) = b^x$?
 - The domain of the function $f(x) = b^x$ is all real numbers.

Exit Ticket (5 minutes)

Name

Date

Lesson 5: Irrational Exponents—What are $2^{\sqrt{2}}$ and 2^{π} ?

Exit Ticket

Use the process outlined in the lesson to approximate the number $2^{\sqrt{3}}$. Use the approximation $\sqrt{3} \approx 1.732\,050\,8$.

a. Find a sequence of five intervals that contain $\sqrt{3}$ whose endpoints get successively closer to $\sqrt{3}$.

b. Find a sequence of five intervals that contain $2^{\sqrt{3}}$ whose endpoints get successively closer to $2^{\sqrt{3}}$. Write your intervals in the form $2^r < 2^{\sqrt{3}} < 2^s$ for rational numbers r and s.

c. Use your calculator to find approximations to four decimal places of the endpoints of the intervals in part (b).

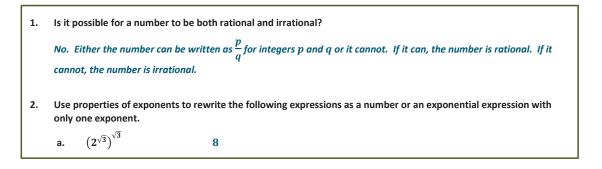
d. Based on your work in part (c), what is your best estimate of the value of $2^{\sqrt{3}}$?

Irrational Exponents—What are $2^{\sqrt{2}}$ and 2^{π} ?

Exit Ticket Sample Solutions

Use the process outlined in the lesson to approximate the number $2^{\sqrt{3}}$. Use the approximation $\sqrt{3} \approx 1.732\,050\,8$. Find a sequence of five intervals that contain $\sqrt{3}$ whose endpoints get successively closer to $\sqrt{3}$. a. $1 < \sqrt{3} < 2$ $1.7 < \sqrt{3} < 1.8$ $1.73 < \sqrt{3} < 1.74$ $1.732 < \sqrt{3} < 1.733$ $1.7320 < \sqrt{3} < 1.7321$ Find a sequence of five intervals that contain $2^{\sqrt{3}}$ whose endpoints get successively closer to $2^{\sqrt{3}}$. Write your b. intervals in the form $2^r < 2^{\sqrt{3}} < 2^s$ for rational numbers r and s. $2^1 < 2^{\sqrt{3}} < 2^2$ $2^{1.7} < 2^{\sqrt{3}} < 2^{1.8}$ $2^{1.73} < 2^{\sqrt{3}} < 2^{1.74}$ $2^{1.732} < 2^{\sqrt{3}} < 2^{1.733}$ $2^{1.7320} < 2^{\sqrt{3}} < 2^{1.7321}$ Use your calculator to find approximations to four decimal places of the endpoints of the intervals in part (b). c. $2.0000 < 2^{\sqrt{3}} < 4.0000$ $3.2490 < 2^{\sqrt{3}} < 3.4822$ $3.3173 < 2^{\sqrt{3}} < 3.3404$ $3.3219 < 2^{\sqrt{3}} < 3.3242$ $3.3219 < 2^{\sqrt{3}} < 3.3221$ Based on your work in part (c), what is your best estimate of the value of $2^{\sqrt{3}}$? d. $2^{\sqrt{3}} \approx 3.322$

Problem Set Sample Solutions



Irrational Exponents—What are $2^{\sqrt{2}}$ and 2^{π} ?


```
\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}
        b.
                                                     2
            \left(3^{1+\sqrt{5}}\right)^{1-\sqrt{5}}
                                                     1
        c.
                                                     81
       d. 3\frac{1+\sqrt{5}}{2} \cdot 3\frac{1-\sqrt{5}}{2}
                                                     3
            3\frac{1+\sqrt{5}}{2}\div 3\frac{1-\sqrt{5}}{2}
                                                    3^{\sqrt{5}}
        e.
             3^{2\cos^2(x)} \cdot 3^{2\sin^2(x)}
                                                     9
        f.
3.
             Between what two integer powers of 2 does 2^{\sqrt{5}} lie?
       a.
               2^2 < 2^{\sqrt{5}} < 2^3
             Between what two integer powers of 3 does 3^{\sqrt{10}} lie?
       b.
               3^3 < 3^{\sqrt{10}} < 3^4
             Between what two integer powers of 5 does 5^{\sqrt{3}} lie?
       c.
               5^1 < 5^{\sqrt{3}} < 5^2
      Use the process outlined in the lesson to approximate the number 2^{\sqrt{5}}. Use the approximation
4.
       \sqrt{5} \approx 2.236\,067\,98.
              Find a sequence of five intervals that contain \sqrt{5} whose endpoints get successively closer to \sqrt{5}.
        а.
               2 < \sqrt{5} < 3
               2.2 < \sqrt{5} < 2.3
               2.23 < \sqrt{5} < 2.24
               2.236 < \sqrt{5} < 2.237
               2.2360 < \sqrt{5} < 2.2361
             Find a sequence of five intervals that contain 2^{\sqrt{5}} whose endpoints get successively closer to 2^{\sqrt{5}}. Write your
       b.
               intervals in the form 2^r < 2^{\sqrt{5}} < 2^s for rational numbers r and s.
               2^2 < 2^{\sqrt{5}} < 2^3
               2^{2.2} < 2^{\sqrt{5}} < 2^{2.3}
               2^{2.23} < 2^{\sqrt{5}} < 2^{2.24}
               2^{2.236} < 2^{\sqrt{5}} < 2^{2.237}
               2^{2.2360} < 2^{\sqrt{5}} < 2^{2.2361}
             Use your calculator to find approximations to four decimal places of the endpoints of the intervals in part (b).
       c.
               4.0000 < 2^{\sqrt{5}} < 8.0000
               4.5948 < 2^{\sqrt{5}} < 4.9246
               4.6913 < 2^{\sqrt{5}} < 4.7240
               4.7109 < 2^{\sqrt{5}} < 4.7142
               4.7109 < 2^{\sqrt{5}} < 4.7112
```


Irrational Exponents—What are $2^{\sqrt{2}}$ and 2^{π} ?


```
Based on your work in part (c), what is your best estimate of the value of 2^{\sqrt{5}}?
       d.
              2^{\sqrt{5}} \approx 4.711
              Can we tell if 2^{\sqrt{5}} is rational or irrational? Why or why not?
       e.
              No. We do not have enough information to determine whether 2^{\sqrt{5}} has a repeated pattern in its decimal
               representation or not.
      Use the process outlined in the lesson to approximate the number 3^{\sqrt{10}}. Use the approximation \sqrt{10} \approx 3.162\,277\,7.10
5.
              Find a sequence of five intervals that contain 3^{\sqrt{10}} whose endpoints get successively closer to 3^{\sqrt{10}}.
       a.
              Write your intervals in the form 3^r < 3^{\sqrt{10}} < 3^s for rational numbers r and s.
              3^3 < 3^{\sqrt{10}} < 3^4
              3^{3.1} < 3^{\sqrt{10}} < 3^{3.2}
              3^{3.16} < 3^{\sqrt{10}} < 3^{3.17}
              3^{3.162} < 3^{\sqrt{10}} < 3^{3.163}
               3^{3.1622} < 3^{\sqrt{10}} < 3^{3.1623}
              Use your calculator to find approximations to four decimal places of the endpoints of the intervals in part (a).
       b.
               9.0000 < 3^{\sqrt{10}} < 81.0000
              30.1353 < 3^{\sqrt{10}} < 33.6347
               32. 1887 < 3^{\sqrt{10}} < 32. 5443
               32.2595 < 3^{\sqrt{10}} < 32.2949
               32.2666 < 3^{\sqrt{10}} < 32.2701
              Based on your work in part (b), what is your best estimate of the value of 3^{\sqrt{10}}?
       c.
              3^{\sqrt{10}} \approx 32.27
      Use the process outlined in the lesson to approximate the number 5^{\sqrt{7}}. Use the approximation
6.
      \sqrt{7} \approx 2.64575131.
              Find a sequence of seven intervals that contain 5^{\sqrt{7}} whose endpoints get successively closer to 5^{\sqrt{7}}.
       а.
              Write your intervals in the form 5^r < 5^{\sqrt{7}} < 5^s for rational numbers r and s.
               5^2 < 5^{\sqrt{7}} < 5^3
               5^{2.6} < 5^{\sqrt{7}} < 5^{2.7}
               5^{2.64} < 5^{\sqrt{7}} < 5^{2.65}
              5^{2.645} < 5^{\sqrt{7}} < 5^{2.646}
               5^{2.6457} < 5^{\sqrt{7}} < 5^{2.6458}
               5^{2.64575} < 5^{\sqrt{7}} < 5^{2.64576}
               5^{2.645751} < 5^{\sqrt{7}} < 5^{2.645752}
```

EUREKA MATH Irrational Exponents—What are $2^{\sqrt{2}}$ and 2^{π} ?

b. Use your calculator to find approximations to four decimal places of the endpoints of the intervals in part (a). $25.0000 < 5^{\sqrt{7}} < 125.0000$ $65.\,6632 < 5^{\sqrt{7}} < 77.\,1292$ $70.0295 < 5^{\sqrt{7}} < 71.1657$ $70.5953 < 5^{\sqrt{7}} < 70.7090$ $70.6749 < 5^{\sqrt{7}} < 70.6862$ $70.6805 < 5^{\sqrt{7}} < 70.6817$ $70.6807 < 5^{\sqrt{7}} < 70.6808$ Based on your work in part (b), what is your best estimate of the value of $5^{\sqrt{7}}$? c. $5^{\sqrt{7}}\approx 70.681$ A rational number raised to a rational power can either be rational or irrational. For example, $4^{\frac{1}{2}}$ is rational because $4^{\frac{1}{2}}$ = 2, and $2^{\frac{1}{4}}$ is irrational because $2^{\frac{1}{4}} = \sqrt[4]{2}$. In this problem, you will investigate the possibilities for an irrational number raised to an irrational power. Evaluate $\left(\sqrt{2}\right)^{\left(\sqrt{2}\right)^{\sqrt{2}}}$. а. $(\sqrt{2})^{(\sqrt{2})^{\sqrt{2}}} = (\sqrt{2})^{\sqrt{2} \cdot \sqrt{2}} = (\sqrt{2})^2 = 2$ Can the value of an irrational number raised to an irrational power ever be rational? b. Yes. For instance, in part (a) above, $\sqrt{2}$ is irrational, and the number $\sqrt{2}^{\sqrt{2}}$ is either irrational or rational. If $\sqrt{2}^{\sqrt{2}}$ is rational, then this is an example of an irrational number raised to an irrational power that is rational. Otherwise, $\sqrt{2}^{\sqrt{2}}$ is irrational, and part (a) is an example of an irrational number raised to an irrational power that is rational.

7.

Irrational Exponents—What are $2^{\sqrt{2}}$ and 2^{π} ?

Student Outcomes

- Students write an exponential function that represents the amount of water in a tank after t seconds if the height of the water doubles every 10 seconds.
- Students discover Euler's number e by numerically approaching the constant for which the height of water in a tank equals the rate of change of the height of the water in the tank.
- Students calculate the average rate of change of a function.

Lesson Notes

Leonhard Euler (pronounced "Oiler"), 1707–1783, was a prolific Swiss mathematician and physicist who made many important contributions to mathematics such as much of the modern terminology and notation, including function notation, and popularizing the use of π to represent the circumference of a circle divided by its diameter. Euler also discovered many properties of the irrational number *e*, which is now known as *Euler's number*. Euler's number naturally occurs in various applications, and a comparison can be made to π , which also occurs naturally. During the lesson, students determine an explicit expression for the height of water in a water tank from its context (**F-BF.A.1a**) and calculate the average rate of change over smaller and smaller intervals to create a sequence that converges to *e* (**F-IF.B.6**). It is important to stress that the water tank exploration is a way to *define e*. Yes, it is remarkable, but when students discover it, the teacher's reaction should not be "Ta-da! It's magic!" Instead, the teacher should stress that students have defined this special constant (similar to how π is defined as the ratio of any circle's circumference to its diameter) that will be used extensively in the near future and occurs in many different applications.

Classwork

Exercises 1–3 (8 minutes)

In these exercises, students find exponential equations that model the increasing height of water in a cylindrical tank as it doubles over a fixed time interval. These preliminary exercises lead to the discovery of Euler's number, *e*, at the end of the lesson. As a demonstration, show students the 47-second video in which the height of water in a tank doubles repeatedly until it fills the tank completely; note how long it takes for the height to appear to change at all. Although this situation is contrived, it provides a good visual representation of the power of exponential growth. This is a good time to discuss constraints and how quantities cannot realistically increase exponentially without bound due to physical constraints to the growth. In this case, the water tank has a finite volume, and there is only a finite amount of water on the planet. Likewise, the main constraint to population growth is the availability of such resources as food and land.

After watching the video, students may work individually or in pairs. Point out to students that the growth shown in the video happened much more quickly than it happens in the problems below, but the underlying concept is the same. Students should be prepared to share their solutions with the class.

86

engage

MP.4

Exercises	1-3

1. Assume that there is initially 1 cm of water in the tank, and the height of the water doubles every 10 seconds. Write an equation that could be used to calculate the height H(t) of the water in the tank at any time t.

The height of the water at time t seconds can be modeled by $H(t) = 2^{t/10}$.

- 2. How would the equation in Exercise 1 change if...
 - a. the initial depth of water in the tank was 2 cm?

$$H(t)=2\cdot 2^{t/10}$$

b. the initial depth of water in the tank was $\frac{1}{2}$ cm?

$$H(t) = \frac{1}{2} \cdot 2^{t/10}$$

- c. the initial depth of water in the tank was 10 cm? $H(t) = 10 \cdot 2^{t/10}$
- d. the initial depth of water in the tank was $A ext{ cm}$, for some positive real number A? $H(t) = A \cdot 2^{t/10}$
- 3. How would the equation in Exercise 2, part (d), change if...
 - a. the height tripled every ten seconds? $H(t) = A \cdot 3^{t/10}$
 - b. the height doubled every five seconds? $H(t) = A \cdot 2^{t/5}$
 - c. the height quadrupled every second? $H(t) = A \cdot 4^t$
 - d. the height halved every ten seconds? $H(t) = A \cdot (0.5^{t/10})$

Scaffolding:

Students working below grade level can create a table of water depths to visualize the accumulation of water. Since the doubling happens every 10 seconds, have them deduce the exponent by asking, "How many times would doubling occur in 30 seconds? How many times would doubling occur in one minute?"

Time (s)	Depth (cm)
0	1
10	2
20	4
30	8

Discussion (2 minutes)

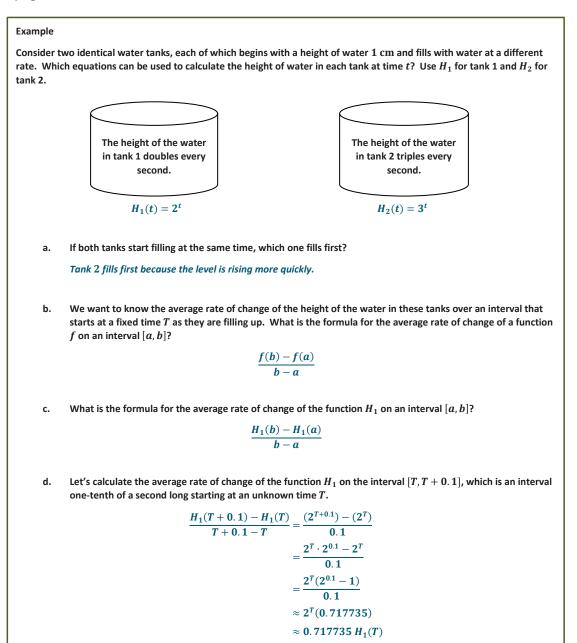
Students have worked informally with the average rate of change of a function before in Algebra I, Modules 3 and 4. For the next examples, the following definition is needed. Go through this definition, and post it on the board or in another prominent place before beginning the next example. Students continue to work with the average rate of change of a function in the Problem Set.

AVERAGE RATE OF CHANGE: Given a function f whose domain contains the interval of real numbers [a, b] and whose range is a subset of the real numbers, the *average rate of change on the interval* [a, b] is defined by the number:

$$\frac{f(b)-f(a)}{b-a}.$$

Example (4 minutes)

Use this example to model the process of finding the average rate of change of the height of the water that is increasing according to one of the exponential functions in the hypothetical scenario. Students repeat this calculation in the exercises that follow. The student materials contain the images below of the three water tanks but not the accompanying formulas.



Lesson 6: Euler's Number, e

engage^{ny}

- So, the average rate of change of the height function is a multiple of the value of the function. This means that the speed at which the height is changing at time T depends on the depth of water at that time. On average, over the interval [T, T + 0.1], the water in tank 1 rises at a rate of approximately 0.717 735 $H_1(T)$ centimeters per second.
- Let's say that at time *T* there is a height of 5 cm of water in the tank. Then, after one-tenth of a second, the height of the water would increase by $\frac{1}{10}(0.717735(5)) \approx 0.3589$ cm. But if there is a height of 20 cm of water in the tank, after one-tenth of a second, the height of the water would increase by $\frac{1}{10}(0.717735(20)) \approx 1.4355$ cm.

Exercises 4–5 (10 minutes)

Students need to use calculators to compute the numerical constants in the exercises below.

Exercises 4–8

For the second tank, calculate the average change in the height, H_2 , from time T seconds to T + 0.1 second. 4. Express the answer as a number times the value of the original function at time T. Explain the meaning of these findings. $\frac{H_2(T+0.1)-H_2(T)}{0.1} = \frac{3^{T+0.1}-3^T}{0.1}$ $=\frac{3^T\cdot 3^{0.1}-3^T}{0.1}$ $=\frac{3^{T}(3^{0.1}-1)}{0.1}$ $\approx \frac{3^T(0.116123)}{0.1}$ \approx 1.16123 \cdot 3^T \approx 1.16123 \cdot $H_2(T)$ On average, over the time interval [T, T + 0, 1], the water in tank 2 rises at a rate of approximately 1. $16123H_2(T)$ centimeters per second. 5. For each tank, calculate the average change in height from time T seconds to T + 0.001 second. Express the answer as a number times the value of the original function at time T. Explain the meaning of these findings. Tank 1: $\frac{H_1(T+0.001) - H_1(T)}{0.001} = \frac{2^{T+0.001} - 2^T}{0.001}$ $=\frac{2^{T}\cdot 2^{0.001}}{2^{T}}-2^{T}$ 0.001 $=\frac{2^{T}(2^{0.001}-1)}{0.001}$ 0.001 $\approx 0.69339 \cdot 2^T$ $\approx 0.69339 \cdot H_1(T)$ On average, over the time interval [T, T + 0.001], the water in tank 1 rises at a rate of approximately $0.693387H_1(T)$ centimeter per second.

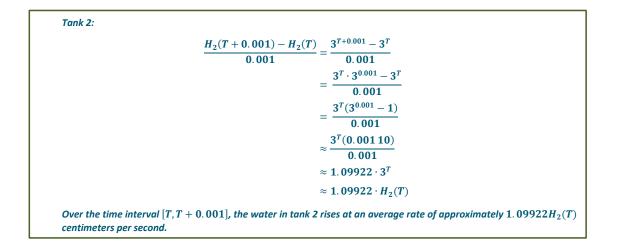
Lesson 6: Euler's Number, e

89

Lesson 6

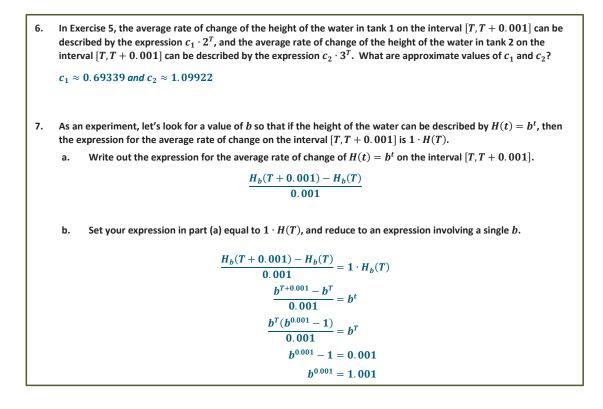
M3

ALGEBRA II



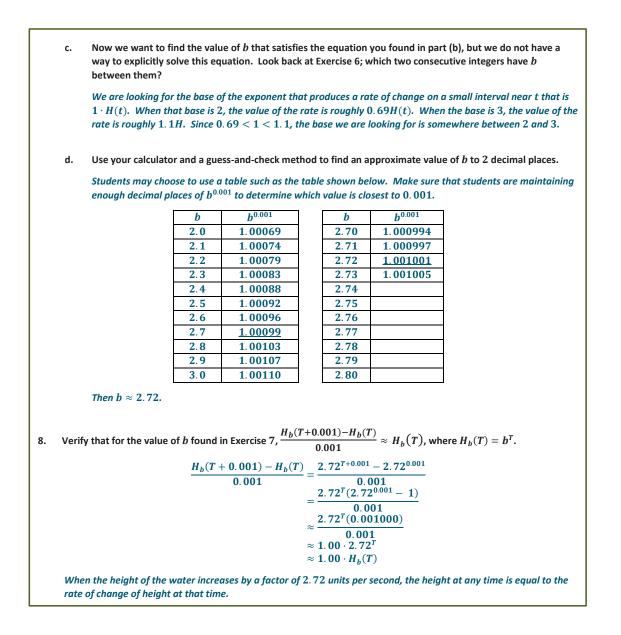
Exercises 6-8 (12 minutes)

The following exercises lead to discovery of the constant *e* that occurs naturally in many situations that can be modeled mathematically. Looking at the results of the previous three exercises, if the height of the water doubles, then the expression for the average rate of change contains a factor less than one. If the height of the water triples, then the expression for the average rate of change contains a factor greater than one. Under what conditions does the expression for the average rate of change contain a factor of exactly one? Answering this question leads to *e*.



Lesson 6: Euler's Number, e

engage^{ny}



Discussion (2 minutes)

If there is time, perform the calculation of b several more times, over smaller and smaller time intervals and finding more and more digits of b. If not, then just present students with the fact below.

- What happens to the value of *b*?
 - If we were to keep finding the average rate of change of the function H_b on smaller and smaller time intervals and solving the equation $H_b(t) = A \cdot b^t$, we would find that the height of the water increases by a factor that gets closer and closer to the number 2.718281828 4

(cc) BY-NC-SA

• The number that this process leads to is called *Euler's number* and is denoted by *e*. Like π , *e* is an irrational number, so it cannot be accurately represented by a decimal expansion. The approximation of *e* to 13 decimal places is $e \approx 2.7182818284590$.

MP.8

• Like π , e is important enough to merit inclusion on scientific calculators. Depending on the calculator, e may appear alone, as the base of an exponential expression e^x , or both. Find the e button on your calculator, and experiment with its use. Make sure you can use your calculator to provide an approximation of e, and use the button to calculate e^2 and 2e.

Closing (4 minutes)

Summarize the lesson with students, and ensure the first two points below are addressed. Have students highlight what they think is important about the lesson in writing or with a partner. Use this as an opportunity to informally assess learning.

- We just discovered the number *e*, which is important in the world of mathematics. It naturally occurred in our water tank exploration. It also occurs naturally in many other applications, such as finance and population growth.
- Just as we can create and use an exponential function $f(x) = 2^x$ or $f(x) = 10^x$, we can also create and use an exponential function $f(x) = e^x$. The interesting thing about the exponential function base *e* is that the rate of change of this function at a value *a* is the same as the value of this function at *a*.
- Euler's number will surface in a variety of different places in your future exposure to mathematics, and you will see that it is one of the numbers on which much of the mathematics we practice is based.

Exit Ticket (3 minutes)

92

engage^{ny}

Lesson 6

ALGEBRA II

Name ____

Date _____

Lesson 6: Euler's Number, e

Exit Ticket

1. Suppose that water is entering a cylindrical water tank so that the initial height of the water is 3 cm and the height of the water doubles every 30 seconds. Write an equation of the height of the water at time *t* seconds.

2. Explain how the number *e* arose in our exploration of the average rate of change of the height of the water in the water tank.

This work is derived from Eureka Math [™] and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

engage^{ny}

Exit Ticket Sample Solutions

1. Suppose that water is entering a cylindrical water tank so that the initial height of the water is 3 cm and the height of the water doubles every 30 seconds. Write an equation of the height of the water at time *t* seconds.

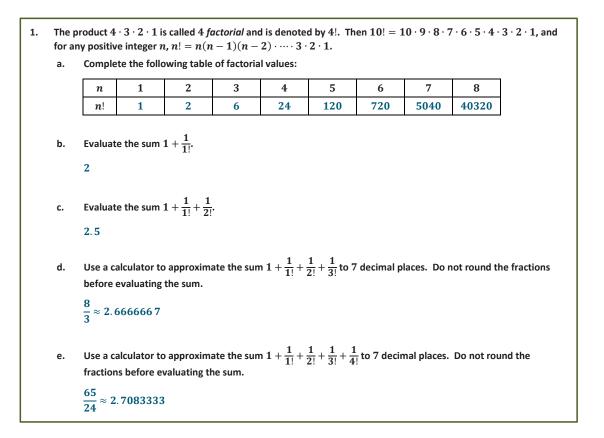
$$H(t)=3\left(2^{\frac{t}{30}}\right)$$

2. Explain how the number *e* arose in our exploration of the average rate of change of the height of the water in the water tank.

We first noticed that if the water level in the tank was doubling every second, then the average rate of change of the height of the water was roughly 0.69 times the height of the water at that time. And if the water level in the tank was tripling every second, then the average rate of change of the height of the water was roughly 1.1 times the height of the water at that time. When we went looking for a base b so that the average rate of change of the height of the water was 1.0 times the height of the water at that time, we found that the base was roughly e. Calculating the average rate of change over shorter intervals gave a better approximation of e.

Problem Set Sample Solutions

Problems 1–5 address other occurrences of *e* and some fluency practice with the number *e*, and the remaining problems focus on the average rate of change of a function. The last two problems are extension problems that introduce some ideas of calculus with the familiar formulas for the area and circumference of a circle and the volume and surface area of a sphere.



Euler's Number, e

Lesson 6:

f. Use a calculator to approximate sums of the form $1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{k!}$ to 7 decimal places for k = 5, 6, 7, 8, 9, 10. Do not round the fractions before evaluating the sums with a calculator.

If
$$k = 5$$
, the sum is $\frac{163}{60} \approx 2.1766667$.
If $k = 6$, the sum is $\frac{1957}{720} \approx 2.7180556$.

If
$$k = 7$$
, the sum is $\frac{685}{252} \approx 2.7182540$.

If k = 8, the sum is $\frac{109\,601}{40\,320} \approx 2.7182788$.

If
$$k = 9$$
, the sum is $\frac{36303}{36288} \approx 2.7182815$.
9864 101

If
$$k = 10$$
, the sum is $\frac{9864101}{3628800} \approx 2.7182818$.

- g. Make a conjecture about the sums $1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{k!}$ for positive integers k as k increases in size. It seems that as k gets larger, the sums $1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{k!}$ get closer to e.
- h. Would calculating terms of this sequence ever yield an exact value of e? Why or why not?

No. The number e is irrational, so it cannot be written as a quotient of integers. Any finite sum $1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{k!}$ can be expressed as a single rational number with denominator k!, so the sums are all rational numbers. However, the more terms that are calculated, the closer to e the sum becomes, so these sums provide better and better rational number approximations of e.

- 2. Consider the sequence given by $a_n = \left(1 + \frac{1}{n}\right)^n$, where $n \ge 1$ is an integer.
 - a. Use your calculator to approximate the first 5 terms of this sequence to 7 decimal places.

$$a_{1} = \left(1 + \frac{1}{1}\right)^{1} = 2$$

$$a_{2} = \left(1 + \frac{1}{2}\right)^{2} = 2.25$$

$$a_{3} = \left(1 + \frac{1}{3}\right)^{3} \approx 2.3703704$$

$$a_{4} = \left(1 + \frac{1}{4}\right)^{4} \approx 2.4414063$$

$$a_{5} = \left(1 + \frac{1}{5}\right)^{5} = 2.4883200$$

b. Does it appear that this sequence settles near a particular value?

No, the numbers get bigger, but we cannot tell if it keeps getting bigger or settles on or near a particular value.

95

engage^{ny}

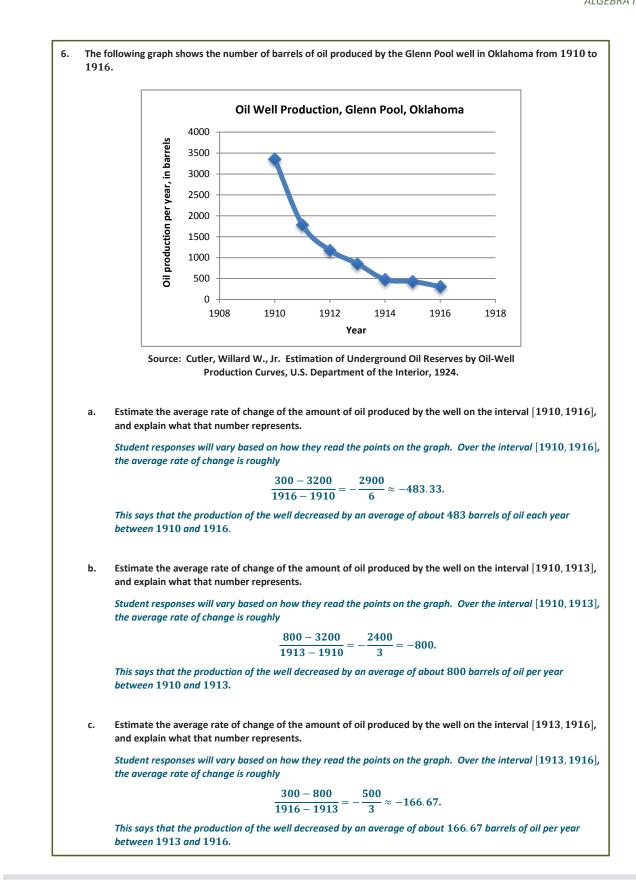
Lesson 6

Use a calculator to approximate the following terms of this sequence to 7 decimal places. c. i. = 2.7081383 *a*₁₀₀ = 2.7169239 ii. a_{1000} iii. = 2.7181459 *a*_{10,000} = 2.7182682iv. $a_{100,000}$ = 2.7182805v. $a_{1,000,000}$ = 2.7182816 vi. $a_{10.000.000}$ $a_{100,000,000}$ = 2.7182818 vii. d. Does it appear that this sequence settles near a particular value? Yes, it appears that as n gets really large (at least 100,000,000), the terms a_n of the sequence settle near the value of e. Compare the results of this exercise with the results of Problem 1. What do you observe? e. It took about 10 terms of the sum in Problem 1 to see that the sum settled at the value e, but it takes 100,000,000 terms of the sequence in this problem to see that the sum settles at the value e. 3. If $x = 5a^4$ and $a = 2e^3$, express x in terms of e, and approximate to the nearest whole number. If $x = 5a^4$ and $a = 2e^3$, then $x = 5(2e^3)^4$. Rewriting the right side in an equivalent form gives $x = 80e^{12} \approx 13020383.$ 4. If $a = 2b^3$ and $b = -\frac{1}{2}e^{-2}$, express *a* in terms of *e*, and approximate to four decimal places. If $a = 2b^3$ and $b = -\frac{1}{2}e^{-2}$, then $a = 2\left(-\frac{1}{2}e^{-2}\right)^3$. Rewriting the right side in an equivalent form gives $a = -\frac{1}{4}e^{-6} \approx -0.0006.$ 5. If $x = 3e^4$ and $e = \frac{s}{2x^3}$, show that $s = 54e^{13}$, and approximate s to the nearest whole number. Rewrite the equation $e = \frac{s}{2x^3}$ to isolate the variable s. $e=\frac{s}{2x^3}$ $2x^3e = s$ By the substitution property, if $s = 2x^3e$ and $x = 3e^4$, then $s = 2(3e^4)^3 \cdot e$. Rewriting the right side in an equivalent form gives $s = 2 \cdot 27e^{12} \cdot e = 54e^{13} \approx 23890323$.

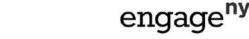


96

engage^{ny}



Lesson 6: Euler's Number, e



d. Compare your results for the rates of change in oil production in the first half and the second half of the time period in question in parts (b) and (c). What do those numbers say about the production of oil from the well?

The production dropped much more rapidly in the first three years than it did in the second three years. Looking at the graph, it looks like the oil in the well might be running out, so less and less can be extracted each year.

e. Notice that the average rate of change of the amount of oil produced by the well on any interval starting and ending in two consecutive years is always negative. Explain what that means in the context of oil production.

Because the average rate of change of oil production over a one-year period is always negative, the well is producing less oil each year than it did the year before.

7. The following table lists the number of hybrid electric vehicles (HEVs) sold in the United States between 1999 and 2013.

Year	Number of HEVs		Year	Number of HEVs
	Sold in U.S.			Sold in U.S.
1999	17		2007	352,274
2000	9350		2008	312, 386
2001	20, 282		2009	290, 271
2002	36,035		2010	274, 210
2003	47,600		2011	268, 752
2004	84, 199		2012	434, 498
2005	209, 711		2013	495, 685
2006	252, 636			

Source: U.S. Department of Energy, Alternative Fuels and Advanced Vehicle Data Center, 2013.

a. During which one-year interval is the average rate of change of the number of HEVs sold the largest? Explain how you know.

The average rate of change of the number of HEVs sold is largest during [2011, 2012] because the number of HEVs sold increases by the largest amount between those two years.

b. Calculate the average rate of change of the number of HEVs sold on the interval [2003, 2004], and explain what that number represents.

On the interval [2003, 2004], the average rate of change in sales of HEVs is $\frac{84199-47600}{2004-2003}$, which is 36, 599. This means that during this one-year period, HEVs were selling at a rate of 36, 599 vehicles per year.

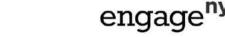
c. Calculate the average rate of change of the number of HEVs sold on the interval [2003, 2008], and explain what that number represents.

On the interval [2003, 2008], the average rate of change in sales of HEVs is $\frac{312,386-47,600}{2008-2003}$, which is 52, 957.2. This means that during this five-year period, HEVs were selling at an average rate of 52, 957 vehicles per year.

d. What does it mean if the average rate of change of the number of HEVs sold is negative?

If the average rate of change of the vehicles sold is negative, then the sales are declining. This means that fewer cards were sold than in the previous year.

Lesson 6: Euler's Number, e



Extension:

8. The formula for the area of a circle of radius r can be expressed as a function $A(r) = \pi r^2$.

a. Find the average rate of change of the area of a circle on the interval [4, 5].

$$\frac{A(5) - A(4)}{5 - 4} = \frac{25\pi - 16\pi}{1} = 9\pi$$

b. Find the average rate of change of the area of a circle on the interval [4, 4. 1].

 $\frac{A(4.1) - A(4)}{4.1 - 4} = \frac{16.81\pi - 16\pi}{0.1} = 8.1\pi$

c. Find the average rate of change of the area of a circle on the interval [4, 4.01].

$$\frac{A(4.01) - A(4)}{4.01 - 4} = \frac{16.0801\pi - 16\pi}{0.01} = 8.01\pi$$

d. Find the average rate of change of the area of a circle on the interval [4, 4.001].

 $\frac{A(4.001) - A(4)}{4.001 - 4} = \frac{16.008001\pi - 16\pi}{0.001} = 8.001\pi$

e. What is happening to the average rate of change of the area of the circle as the interval gets smaller and smaller?

The average rate of change of the area of the circle appears to be getting close to 8π .

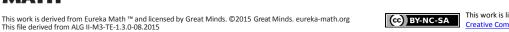
f. Find the average rate of change of the area of a circle on the interval [4, 4 + h] for some small positive number h.

$$\frac{A(4+h) - A(4)}{(4+h) - 4} = \frac{(4+h)^2 \pi - 16\pi}{h}$$
$$= \frac{(16+8h+h^2)\pi - 16\pi}{h}$$
$$= \frac{1}{h}(8h+h^2)\pi$$
$$= \frac{1}{h}(8h+h^2)\pi$$
$$= \frac{1}{h} \cdot h(8+h)\pi$$
$$= (8+h)\pi$$

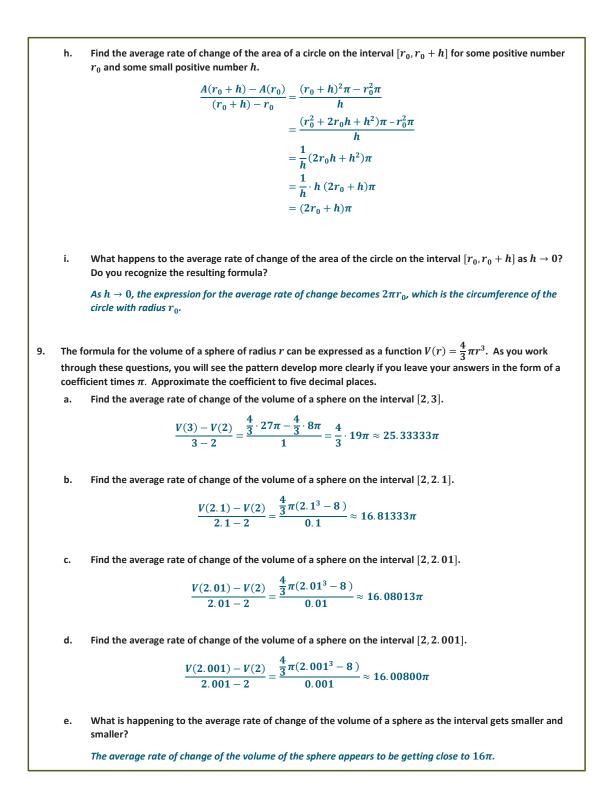
g. What happens to the average rate of change of the area of the circle on the interval [4, 4 + h] as $h \rightarrow 0$? Does this agree with your answer to part (d)? Should it agree with your answer to part (e)?

As $h \to 0$, $8 + h \to 8$, so as h gets smaller, the average rate of change approaches 8. This agrees with my response to part (e), and it should because as $h \to 0$, the interval [4, 4 + h] gets smaller.

Euler's Number, e



engage^{ny}



f. Find the average rate of change of the volume of a sphere on the interval [2, 2 + h] for some small positive number h.

$$\frac{V(2+h) - V(2)}{(2+h) - 2} = \frac{\frac{4}{3}\pi((2+h)^3 - 8)}{h}$$
$$= \frac{4}{3}\pi \cdot \frac{1}{h}(8 + 12h + 6h^2 + h^3 - 8)$$
$$= \frac{4\pi}{3h}(12h + 6h^2 + h^3)$$
$$= \frac{4\pi}{3h} \cdot h(12 + 6h + h^2)$$
$$= \frac{4\pi}{3}(12 + 6h + h^2)$$

g. What happens to the average rate of change of the volume of a sphere on the interval [2, 2 + h] as $h \rightarrow 0$? Does this agree with your answer to part (e)? Should it agree with your answer to part (e)?

As $h \to 0$, the value of the polynomial $12 + 6h + h^2$ approaches 12. Then the average rate of change approaches $\frac{4\pi}{3} \cdot 12 = 16$. This agrees with my response to part (e), and it should because as $h \to 0$, the interval [2, 2 + h] gets smaller.

h. Find the average rate of change of the volume of a sphere on the interval $[r_0, r_0 + h]$ for some positive number r_0 and some small positive number h.

$$\frac{V(r_0 + h) - V(r_0)}{(r_0 + h) - r_0} = \frac{\frac{4}{3}\pi ((r_0 + h)^3 - r_0^3)}{h}$$
$$= \frac{4}{3}\pi \cdot \frac{1}{h} (r_0^3 + 3r_0^2 h + 3r_0 h^2 + h^3 - r_0^3)$$
$$= \frac{4\pi}{3h} (3r_0^2 h + 3r_0 h^2 + h^3)$$
$$= \frac{4\pi}{3h} \cdot h (3r_0^2 + 3r_0 h + h^2)$$
$$= \frac{4\pi}{3} (3r_0^2 + 3r_0 h + h^2)$$

i. What happens to the average rate of change of the volume of a sphere on the interval $[r_0, r_0 + h]$ as $h \to 0$? Do you recognize the resulting formula?

As $h \to 0$, the expression for the average rate of change becomes $4\pi r_0^2$, which is the surface area of the sphere with radius r_0 .

engage^{ny}

C Lesson 7: Bacteria and Exponential Growth

Student Outcomes

Students solve simple exponential equations numerically.

Lesson Notes

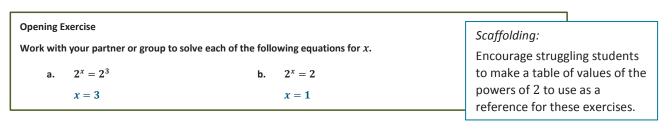
The lessons in Topic A familiarized students with the laws and properties of real-valued exponents. Topic B introduces the logarithm and develops logarithmic properties through exploration of logarithmic tables, primarily in base 10. This lesson introduces simple exponential equations whose solutions do not follow from equating exponential terms of equal bases. Because students have no sophisticated tools for solving exponential equations until logarithms are introduced in later lessons, numerical methods must be used to approximate solutions to exponential equations, a process that asks students to determine a recursive process from a context to solve $2^x = 10$ (**F-BF.A.1a**, **F-BF.B.4a**, **A-CED.A.1**). Students have many opportunities to solve such equations algebraically throughout the module, using both the technique of equating exponents of exponential expressions with the same base and using properties of logarithms. The goals of this lesson are to help students understand (1) why logarithms are useful by introducing a situation (i.e., solving $2^x = 10$) offering students no option other than numerical methods to solve it, (2) that it is often possible to solve equations numerically by trapping the solution through better and better approximation, and (3) that the better and better approximations are converging on a (possibly) irrational number.

Exponential equations are used frequently to model bacteria and population growth, and both of those scenarios occur in this lesson.

Classwork

Opening Exercise (6 minutes)

In this exercise, students work in groups to solve simple exponential equations that can be solved by rewriting the expressions on each side of the equation as a power of the same base and equating exponents. It is also possible for students to use a table of values to solve these problems numerically; either method is valid, and both should be discussed at the end of the exercise. Asking students to solve equations of this type demands that they think deeply about the meaning of exponential expressions. Because students have not solved exponential equations previously, the exercises are scaffolded to begin very simply and progress in difficulty; the early exercises may be merely solved by inspection. When students are finished, ask for volunteers to share their solutions on the board and discuss different solution methods.



c.	$2^{x} = 16$ $2^{x} = 2^{4}$ $x = 4$	d. $2^{x} - 64 = 0$ $2^{x} = 64$ $2^{x} = 2^{6}$ x = 6	
e.	$2^{x} - 1 = 0$ $2^{x} = 1$ $2^{x} = 2^{0}$ x = 0	f. $2^{3x} = 64$ $2^{3x} = 2^{6}$ 3x = 6 x = 2	
g.	$2^{x+1} = 32$ $2^{x+1} = 2^5$ x + 1 = 5 x = 4		Scaffolding:Give early finishers a morechallenging equation whereboth bases need to bechanged, such as $4^{2x} = 8^{x+3}$.

Discussion (3 minutes)

This Discussion should emphasize that the equations in the Opening Exercise have straightforward solutions because both sides can be written as an exponential expression with base 2.

- How did the structure of the expressions in these equations allow you to solve them easily?
 - Both sides of the equations could be written as exponential expressions with base 2.
- Suppose the Opening Exercise had asked us to solve the equation $2^x = 10$ instead of the equation $2^x = 8$. Why is it far more difficult to solve the equation $2^x = 10$?
 - We do not know how to express 10 as a power of 2. In the Opening Exercise, it is straightforward that 8 can be expressed as 2³.
- Can we find two integers that are under and over estimates of the solution to $2^x = 10$? That is, can we find a and b so that a < x < b?
 - Yes; the unknown x is between 3 and 4 because $2^3 < 10 < 2^4$.
- In the next example, we will use a calculator (or other technology) to find a more accurate estimate of the solutions to 2^x = 10.

Example (12 minutes)

The purpose of this exercise is to numerically pinpoint the solution d to the equation $2^d = 10$ by squeezing the solution between numbers that get closer and closer together. Start with 3 < d < 4, and then find that $2^{3.3} < 10$ and $10 < 2^{3.4}$, so 3.3 < d < 3.4. Continuing with this logic, squeeze 3.32 < d < 3.33 and then 3.321 < d < 3.322. The point of this exercise is that it is possible to continue squeezing d between numbers with more and more digits, meaning that there is an approximation of d to greater and greater accuracy.

In the student materials, the tables for the Discussion on the following pages are presented next to each other, but they are spread out here to show how they fit into the Discussion.

106

engage

Example

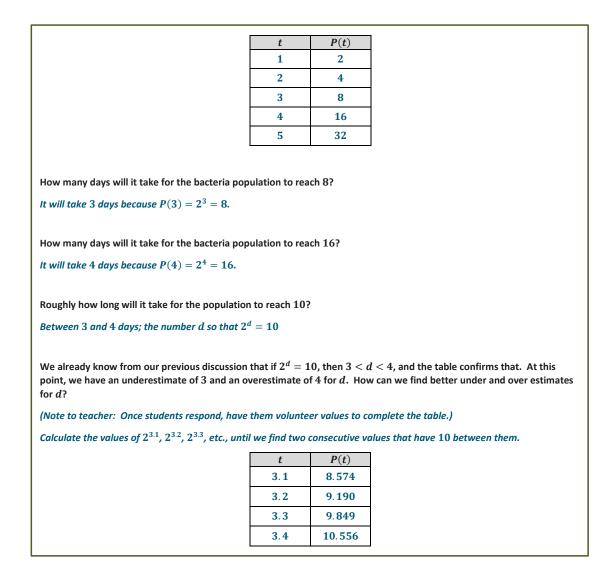
The *Escherichia coli* bacteria (commonly known as *E. coli*) reproduces once every 30 minutes, meaning that a colony of *E. coli* can double every half hour. *Mycobacterium tuberculosis* has a generation time in the range of 12 to 16 hours. Researchers have found evidence that suggests certain bacteria populations living deep below the surface of the earth may grow at extremely slow rates, reproducing once every several thousand years. With this variation in bacterial growth rates, it is reasonable that we assume a 24-hour reproduction time for a hypothetical bacteria colony in this example.

Suppose we have a bacteria colony that starts with 1 bacterium, and the population of bacteria doubles every day.

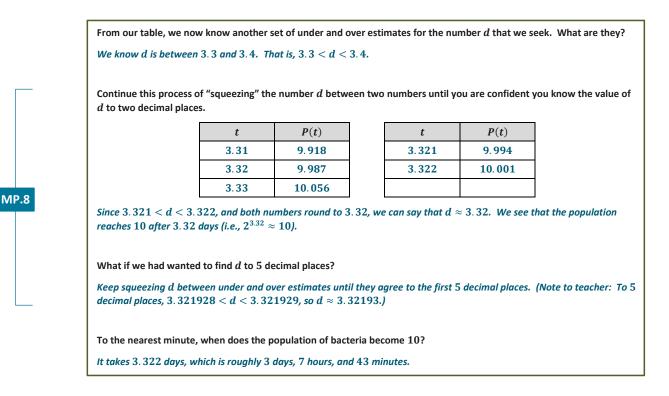
What function P can we use to model the bacteria population on day t?

 $P(t) = 2^t$, for real numbers $t \ge 0$.

Have students volunteer values of P(t) to help complete the following table.



Bacteria and Exponential Growth



Discussion (2 minutes)

- Could we repeat the same process to find the time required for the bacteria population to reach 20 (or 100 or 500)?
 - Yes. We could start by determining between which two integers the solution to the equation $2^t = 20$ must lie and then continue the same process to find the solution.
- Could we achieve the same level of accuracy as we did in the example? Could we make our solution more accurate?
 - Yes. We can continue to repeat the process and eventually "trap" the solution to as many decimal places as we would like.

Lead students to the idea that for any positive number x, they can repeat the process above to approximate the exponent L so that $2^L = x$ to as many decimal places of accuracy as they would like. Likewise, they can approximate an exponent so that they can write the number x as a power of 10 or a power of 3 or a power of e or a power of any positive number other than 1.

Note that there is a little bit of a theoretical hole here that is filled in later when the logarithm function is introduced. In this lesson, students are only finding a rational approximation to the value of the exponent, which is the logarithm and is generally an irrational number. That is, in this example, they are not truly writing 10 as a power of 2, but they are only finding a close approximation. If students question this subtle point, let them know that later in the module they have definitive ways to write any positive number exactly as a power of the base.

Bacteria and Exponential Growth

108

Lesson 7

ALGEBRA II

Exercise (8 minutes)

Divide students into groups of two or three, and assign each group a different equation to solve from the list below. Students should repeat the process of the Example to solve these equations by squeezing the solution between more and more precise under and over estimates. Record the solutions in a way that students can see the entire list either written on poster board, written on the white board, or projected through the document camera.

Exercise				
Use the m	Use the method from the Example to approximate the solution to the equations below to two decimal places.			
a.	$2^{x} = 1000$	$x \approx 9.97$		
b.	$3^x = 1000$	$x \approx 6.29$		
c.	4 ^{<i>x</i>} = 1000	$x \approx 4.98$		
d.	$5^{x} = 1000$	$x \approx 4.29$		
e.	$6^x = 1000$	$x \approx 3.86$		
f.	$7^{x} = 1000$	$x \approx 3.55$		
g.	$8^{x} = 1000$	$x \approx 3.32$		
h.	$9^x = 1000$	$x \approx 3.14$		
i.	$11^x = 1000$	$x \approx 2.88$		
j.	$12^{x} = 1000$	$x \approx 2.78$		
k.	$13^x = 1000$	$x \approx 2.69$		
I.	$14^x = 1000$	$x \approx 2.62$		
m.	$15^{x} = 1000$	$x \approx 2.55$		
n.	$16^x = 1000$	$x \approx 2.49$		

Discussion (2 minutes)

Do you observe a pattern in the solutions to the equations in the above Exercise?

Bacteria and Exponential Growth

- Yes. The larger the base, the smaller the solution.
- Why would that be?
 - ^a The larger the base, the smaller the exponent needs to be in order to reach 1,000.

MP.3

Lesson 7:

Closing (4 minutes)

Have students respond to the following questions individually in writing or orally with a partner.

- Explain when a simple exponential equation, such as those we have seen today, can be solved exactly using our current methods.
 - If both sides of the equation can be written as exponential expressions with the same base, then the equation can be solved exactly.
- When a simple exponential equation cannot be solved by hand, what can we do?
 - We can give crude under and over estimates for the solution using integers.
 - We can use a calculator to find increasingly accurate under and over estimates to the solution until we are satisfied.

Exit Ticket (8 minutes)

Name

Date

Lesson 7: Bacteria and Exponential Growth

Exit Ticket

Loggerhead turtles reproduce every 2 to 4 years, laying approximately 120 eggs in a clutch. Using this information, we can derive an approximate equation to model the turtle population. As is often the case in biological studies, we will count only the female turtles. If we start with a population of one female turtle in a protected area and assume that all turtles survive, we can roughly approximate the population of female turtles by $T(t) = 5^t$. Use the methods of the Example to find the number of years, Y, it will take for this model to predict that there will be 300 female turtles. Give your answer to two decimal places.

Exit Ticket Sample Solutions

Loggerhead turtles reproduce every 2 to 4 years, laying approximately 120 eggs in a clutch. Using this information, we can derive an approximate equation to model the turtle population. As is often the case in biological studies, we will count only the female turtles. If we start with a population of one female turtle in a protected area and assume that all turtles survive, we can roughly approximate the population of female turtles by $T(t) = 5^t$. Use the methods of the Example to find the number of years, *Y*, it will take for this model to predict that there will be 300 female turtles. Give your answer to two decimal places. Since $5^3 = 125$ and $5^4 = 625$, we know that 3 < Y < 4. Since $5^{3.5} \approx 279.5084$ and $5^{3.6} \approx 328.3160$, we know that 3.5 < Y < 3.6. Since $5^{3.54} \approx 298.0944$ and $5^{3.55} \approx 302.9308$, we know that 3.54 < Y < 3.55. Since $5^{3.543} \approx 299.5372$ and $5^{3.544} \approx 300.0196$, we know that 3.543 < Y < 3.544. Thus, to two decimal places, we have $Y \approx 3.54$. So, it will take roughly $3\frac{1}{2}$ years for the population to grow to 300 female turtles.

Problem Set Sample Solutions

The Problem Set gives students an opportunity to practice using the numerical methods established in the lesson for approximating solutions to exponential equations.

1. Solve each of the following equations for x using the same technique as was used in the Opening Exercise. b. $2^{x-3} = 2^{2x+5}$ c. $2^{x^2-3x} = 2^{-2}$ $2^{x} = 32$ a. x = 5x = -8x = 1 or x = 2 $2^x - 2^{4x-3} = 0$ e. $2^{3x} \cdot 2^5 = 2^7$ f. $2^{x^2 - 16} = 1$ d. $x=\frac{2}{2}$ x = 4 or x = -4x = 1 $3^{2x} = 27$ h. $3^{\frac{2}{x}} = 81$ i. $\frac{3^{x^2}}{3^{5x}} = 3^6$ g. $x = \frac{1}{2}$ $x=\frac{3}{2}$ x = 6 or x = -12. Solve the equation $\frac{2^{2x}}{2^{x+5}} = 1$ algebraically using two different initial steps as directed below. b. Multiply both sides by 2^{x+5} . Write each side as a power of 2. а. $2^{2x-(x+5)} = 2^0$ $2^{2x} = 2^{x+5}$ x - 5 = 02x = x + 5x = 5*x* = 5

EUREKA MATH

3. Find consecutive integers that are under and over estimates of the solutions to the following exponential equations. $2^{x} = 20$ a. $2^4 = 16$ and $2^5 = 25$, so 4 < x < 5. $2^{x} = 100$ b. $2^6 = 64$ and $2^7 = 128$, so 6 < x < 7. $3^{x} = 50$ c. $3^3 = 27$ and $3^4 = 81$, so 3 < x < 4. $10^{x} = 432,901$ d. $10^5 = 100,000$ and $10^6 = 1,000,000$, so 5 < x < 6. $2^{x-2} = 750$ e. $2^9 = 512$ and $2^{10} = 1,024$, so 9 < x - 2 < 10; thus, 11 < x < 12. $2^{x} = 1.35$ f. $2^0 = 1$ and $2^1 = 2$, so 0 < x < 1. Complete the following table to approximate the solution to $10^x = 34, 198$ to three decimal places. 4. **10**^{*x*} **10**^{*x*} **10**^{*x*} **10**^{*x*} x x x x 10 12, 589. 254 32, 359. 366 1 4.1 4.51 4.531 33,962.527 2 100 4.2 15,848.932 4.52 33, 113. 112 4.532 34,040.819 19,952.623 3 1,000 33,884.416 34, 119. 291 4.3 4.53 4.533 10,000 25, 118.864 4.534 34, 197. 944 4 4.4 4.54 34,673.685 5 100,000 4.5 31,622.777 4.535 34,276.779 4.6 39,810.717 $10^x = 34,198$ $10^{4.534} \approx 34$, 198, so $x \approx 4.534$.

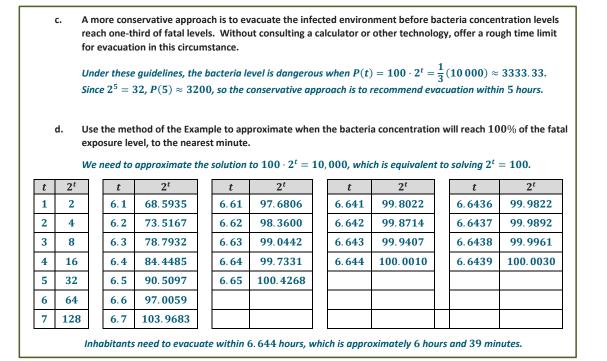
Bacteria and Exponential Growth

5. Complete the following table to approximate the solution to $2^{x} = 19$ to three decimal places. 2^x 2^x 2^x 2^x x x x x 1 2 4.1 17.1484 4.21 18.5070 4.241 18.9090 2 18.3792 4 4.2 4.22 18.6357 4.242 18.9221 18.7654 18.9352 3 8 4.3 19.6983 4.23 4.243 4 4.24 18.8959 4.244 18.9483 16 5 32 18.9615 4.25 19.0273 4.245 4.246 18.9746 4.247 18.9878 4.248 19.0010 $2^{x} = 19$ $2^{4.248} \approx 19$, so $x \approx 4.248$. 6. Approximate the solution to $5^x = 5555$ to four decimal places. Since $5^5 = 3125$ and $5^6 = 15625$, we know that 5 < x < 6. Since $5^{5.3} \approx 5064.5519$ and $5^{5.4} \approx 5948.9186$, we know that 5.3 < x < 5.4. Since $5^{5.35} \approx 5488.9531$ and $5^{5.36} \approx 5578.0092$, we know that 5.35 < x < 5.36. Since $5^{5.357} \approx 5551.1417$ and $5^{5.358} \approx 5560.0831$, we know that 5.357 < x < 5.358. Since $5^{5.3574} \approx 5554.7165$ and $5^{5.3575} \approx 5555.6106$, we know that 5.3574 < x < 5.3575. Since $5^{5.35743} \approx 5554.9847$ and $5^{5.35744} \approx 5555.0741$, we know that 5.35743 < x < 5.35744. Thus, the approximate solution to this equation to four decimal places is 5.3574. 7. A dangerous bacterial compound forms in a closed environment but is immediately detected. An initial detection reading suggests the concentration of bacteria in the closed environment is one percent of the fatal exposure level. This bacteria is known to double in concentration in a closed environment every hour and can be modeled by the function $P(t) = 100 \cdot 2^t$, where *t* is measured in hours. In the function $P(t) = 100 \cdot 2^t$, what does the 100 mean? What does the 2 mean? а. The 100 represents the initial population of bacteria, which is 1% of the fatal level. This means that the fatal level occurs when P(t) = 10,000. The base 2 represents the growth rate of the bacteria; it doubles every hour. Doctors and toxicology professionals estimate that exposure to two-thirds of the bacteria's fatal b. concentration level will begin to cause sickness. Without consulting a calculator or other technology, offer a rough time limit for the inhabitants of the infected environment to evacuate in order to avoid sickness. The bacteria level is dangerous when $P(t) = 100 \cdot 2^t = \frac{2}{3}(10\,000) \approx 6666.67$. Since $2^6 = 64$, $P(6) \approx 6400$, inhabitants of the infected area should evacuate within 6 hours.

Lesson 7:

Bacteria and Exponential Growth

engage^{ny}



This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

Bacteria and Exponential Growth

engage^{ny}

115

ALGEBRA II

Student Outcomes

Students calculate a simple logarithm using the definition.

Lesson Notes

The term *logarithm* is foreign and can be intimidating, so the lesson begins with a simple renaming of the logarithm function to the more intuitive "WhatPower" function. Do not explain this function to students directly, but let them figure out what the function does. The first two exercises have already been solved to provide a hint of how the "WhatPower" function works.

This lesson is the first introduction to logarithms, and the work done here prepares students to solve exponential equations of the form $ab^{ct} = d$ (F-LE.A.4) and use logarithms to model relationships between two quantities (F-BF.B.4a) in later lessons. In the next lessons, students create logarithm tables to discover some of the basic properties of logarithms before continuing on to look at the graphs of logarithmic functions and then to finally modeling logarithmic data. In this lesson, the ideas and notation of logarithmic expressions are developed, leaving many ideas to be explored later in the module.

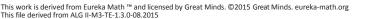
Classwork

Opening Exercise (12 minutes)

Allow students to work in pairs or small groups to complete these exercises. Do not explain this function to students directly, but allow them to struggle to figure out what this new "WhatPower" function means and how to evaluate these expressions. When there are about two minutes left, instruct groups that have not finished part (a) to skip to part (b) so that all groups have time to think about and state the definition of this function. Consider collecting the groups' definitions on paper and sharing some or all of them with the class using the document camera. This definition is refined through the lessons; in particular, we are interested in the allowable values of the base *b*.

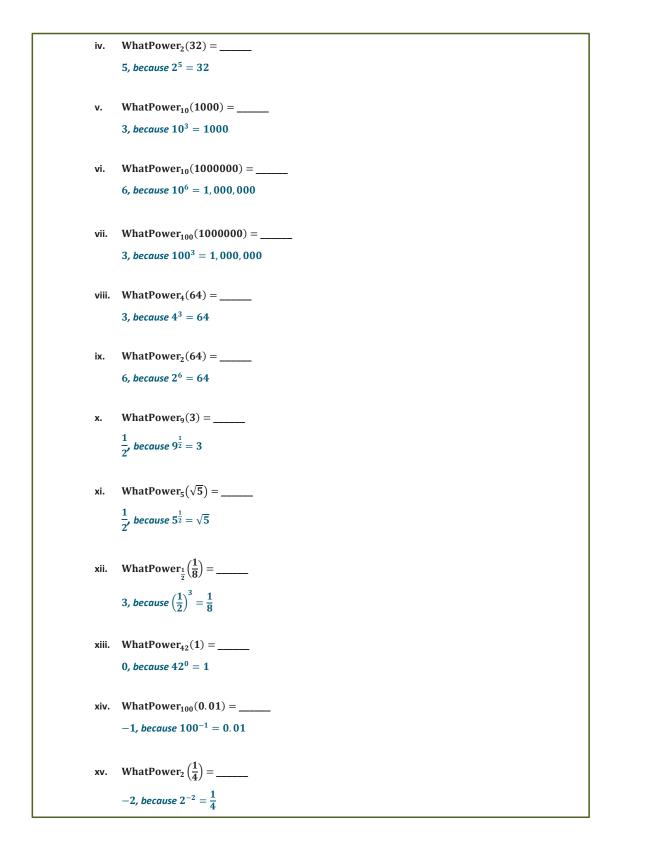
Opening Exercise

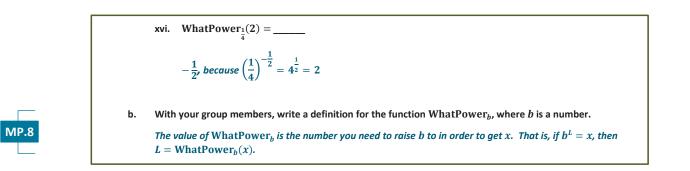
```
a. Evaluate each expression. The first two have been completed for you.
i. WhatPower<sub>2</sub>(8) = 3
3, because 2<sup>3</sup> = 8
ii. WhatPower<sub>3</sub>(9) = 2
2, because 3<sup>2</sup> = 9
iii. WhatPower<sub>6</sub>(36) = ______
2, because 6<sup>2</sup> = 36
```

116

engage





Discussion (3 minutes)

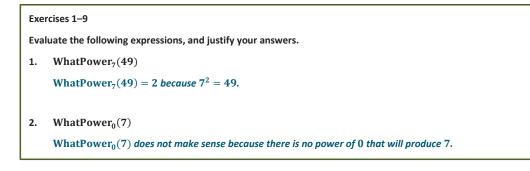
Discuss the definitions students created, but do not settle on an official definition just yet. To reinforce the idea of how this function works, ask students a series of "WhatPower" questions, writing the expressions on the board or the document camera and reading WhatPower_b(x) as "What power of b is x?" Be sure that students are visually seeing the odd structure of this notation and hearing the question "What power of b is x?" to reinforce the meaning of this function that depends on both the parameter b and the variable x.

- WhatPower₂(16)
 - 4
- WhatPower₂(4)
 - ° 2
- WhatPower₂($\sqrt{2}$)

 - 2 WhatPower₂(1)
 - □ 0
- WhatPower₂ $\left(\frac{1}{8}\right)$

Exercises 1–9 (8 minutes)

The point of this set of exercises is for students to determine which real numbers b make sense as a base for the WhatPower_b function. Have students complete this exercise in pairs or small groups, and allow time for students to debate.




```
3.
      WhatPower<sub>5</sub>(1)
      WhatPower<sub>5</sub>(1) = 0 because 5^0 = 1.
4.
     WhatPower<sub>1</sub>(5)
      WhatPower<sub>1</sub>(5) does not exist because for any exponent L, 1^{L} = 1, so there is no power of 1 that will produce 5.
5.
     WhatPower<sub>-2</sub>(16)
      WhatPower<sub>-2</sub>(16) = 4 because (-2)^4 = 16.
     WhatPower<sub>-2</sub>(32)
6.
      WhatPower<sub>-2</sub>(32) does not make sense because there is no power of -2 that will produce 32.
     WhatPower_{\underline{1}}(9)
7.
      WhatPower<sub>1</sub>(9) = -2 \text{ because } \left(\frac{1}{3}\right)^{-2} = 9.
     WhatPower_1(27)
8.
      What Power_1(27) does not make sense because there is no power of -\frac{1}{3} that will produce 27.
    Describe the allowable values of b in the expression WhatPower<sub>b</sub>(x). When can we define a function
9.
      f(x) = WhatPower_h(x)? Explain how you know.
      If b = 0 or b = 1, then the expression WhatPower<sub>b</sub>(x) does not make sense. If b < 0, then the expression
      WhatPower<sub>b</sub>(x) makes sense for some values of x but not for others, so we cannot define a function
      f(x) = \text{WhatPower}_b(x) if b < 0. Thus, we can define the function f(x) = \text{WhatPower}_b(x) if b > 0 and b \neq 1.
```

Discussion (5 minutes)

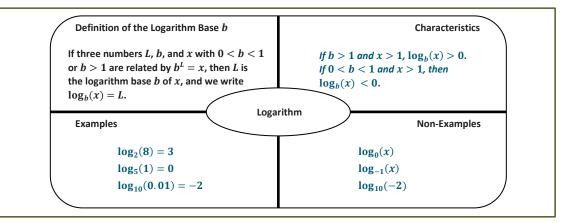
Ask student groups to share their responses to Exercise 9 in which they determined which values of b are allowable in the WhatPower_b function. By the end of this Discussion, be sure that all groups understand that it is necessary to restrict b so that either 0 < b < 1 or b > 1. Then, continue on to rename the WhatPower function to its true name, the logarithm base b.

• What we are calling the "WhatPower" function is known by the mathematical term *logarithm*, built from the Greek word *logos* (pronounced lo-gohs), meaning ratio, and *arithmos* (pronounced uh-rith-mohs), meaning number. The number *b* is the base of the logarithm, and we denote the logarithm base *b* of *x* (which means the power to which we raise *b* to get *x*) by $log_b(x)$. That is, whenever you see $log_b(x)$, think of WhatPower_b(x).

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

(cc) BY-NC-SA

Discuss the definition shown in the Frayer diagram below. Ask students to articulate the definition in their own words to a partner and then share some responses. Have students work with a partner to fill in the remaining parts of the diagram and then share responses as a class. Provide some sample examples and non-examples as needed to illustrate some of the characteristics of logarithms.



- What are some examples of logarithms?
 - $\log_2(4) = 2$
 - $\log_3(27) = 3$
 - $\log_{10}(0.10) = -1$
- What are some non-examples?
 - $\log_0(4)$
 - $\log_1(4)$
- Why can't b = 0? Why can't b = 1?
 - If there is a number L so that $\log_0(4) = L$, then $0^L = 4$. But there is no number L such that 0^L is 4, so this does not make sense. Similar reasoning can be applied to $\log_1(4)$.
- Is log₅(25) a valid example?
 - Yes. $\log_5(25) = 2$ because $5^2 = 25$.
- Is log₅(-25) a valid example?
 - No. There is no number L such that $5^L = -25$. It is impossible to raise a positive base to an exponent and get a negative value.
- Is log₅(0) a valid example?
 - No. There is no number L such that $5^L = 0$. It is impossible to raise a positive base to an exponent and get an answer of 0.
- So, what are some characteristics of logarithms?
 - The base *b* must be a positive number not equal to 1. The input must also be a positive number. The output may be any real number (positive, negative, or 0).

120

engage

Examples (4 minutes)

Lead the class through the computation of the following logarithms. These have all been computed in the Opening Exercise using the "WhatPower" terminology.

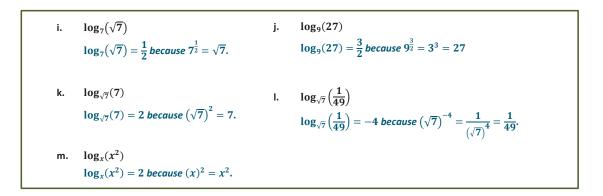
Examples							
1.	$\log_2(8) = 3$	2.	$\log_3(9) = 2$				
	3, because $2^3 = 8$		2, because $3^2 = 9$				
3.	log ₆ (36) =	4.	log ₂ (32) =				
	2, because $6^2 = 36$		5, because $2^5 = 32$				
5.	$\log_{10}(1000) =$	6.	$\log_{42}(1) =$				
	3, because $10^3 = 1000$		0, because $42^0 = 1$				
	(2.24)						
7.	$\log_{100}(0.01) =$	8.	$\log_2\left(\frac{1}{4}\right) = \underline{\qquad}$				
	-1 , because $100^{-1} = 0.01$		-2 , because $2^{-2} = \frac{1}{4}$				

Exercise 10 (6 minutes)

Have students complete this exercise alone or in pairs.

	ipiete this excluse dione of in pu			Scujjolully.	
xercise 1 0. Com a.	0 upute the value of each logarithm. Verify $log_2(32)$ $log_2(32) = 5$ because $2^5 = 32$.	your ar b.	nswers using an exponential statement. $log_3(81)$ $log_3(81) = 4$ because $3^4 = 81$.		ween and
c.	$log_9(81)$ $log_9(81) = 2$ because $9^2 = 81$.	d.	$log_5(625)$ $log_5(625) = 4$ because $5^4 = 625$.	 Use this cha support. Logarithmic 	art as a visual Exponentia
e.	$log_{10}(1,000,000,000) log_{10}(1,000,000,000) = 9, because 109 = 1,000,000,000.$	f.	log ₁₀₀₀ (100000000) log ₁₀₀₀ (100000000) = 3, because 1000 ³ = 1,000,000,000.	Form $\log_8(64) = 2$	Form
g.	$log_{13}(13)$ $log_{13}(13) = 1$ because $13^1 = 13$.	h.	$log_{13}(1)$ $log_{13}(1) = 0$ because $13^0 = 1$.		$8^{-2} = \frac{1}{64}$
				$\log_{64}(4) = \frac{1}{3}$	

Scaffoldina.



Closing (2 minutes)

Ask students to summarize the important parts of the lesson, either in writing, to a partner, or as a class. Use this as an opportunity to informally assess understanding of the lesson. The following are some important summary elements.

Lesson Summary
If three numbers L, b, and x are related by x = b^L, then L is the *logarithm base b* of x, and we write log_b(x) = L. That is, the value of the expression log_b(x) is the power of b needed to obtain x.
Valid values of b as a base for a logarithm are 0 < b < 1 and b > 1.

Exit Ticket (5 minutes)

engage^{ny}

Name

Date _____

Lesson 8: The "WhatPower" Function

Exit Ticket

1. Explain why we need to specify 0 < b < 1 and b > 1 as valid values for the base b in the expression $\log_b(x)$.

2. Calculate the following logarithms.

a. $\log_5(25)$

b. $\log_{10}\left(\frac{1}{100}\right)$

c. $\log_9(3)$

engage^{ny}

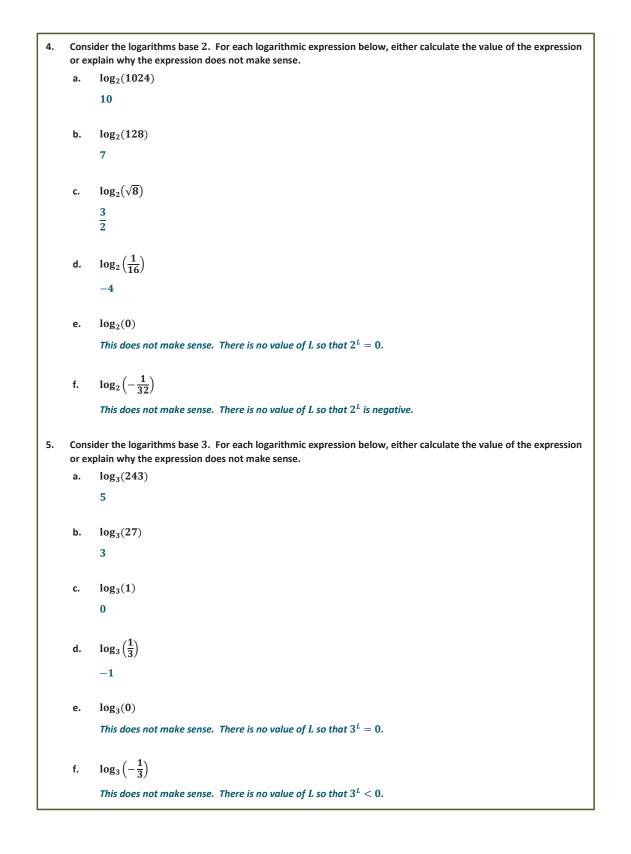
Exit Ticket Sample Solutions

```
Explain why we need to specify 0 < b < 1 and b > 1 as valid values for the base b in the expression \log_{b}(x).
1.
      If b = 0, then \log_0(x) = L means that 0^L = x, which cannot be true if x \neq 0.
      If b = 1, then \log_1(x) = L means that 1^L = x, which cannot be true if x \neq 1.
      If b < 0, then log_b(x) = L makes sense for some but not all values of x > 0; for example, if b = -2 and x = 32,
      there is no power of -2 that would produce 32, so \log_{-2}(32) does not makes sense.
      Thus, if b \le 0 or b = 1, then for many values of x, the expression \log_{b}(x) does not make sense.
2.
     Calculate the following logarithms.
             log<sub>5</sub>(25)
       a.
             \log_5(25) = 2
      b. \log_{10}\left(\frac{1}{100}\right)
             \log_{10}\left(\frac{1}{100}\right) = -2
           \log_9(3)
      c.
             \log_9(3) = \frac{1}{2}
```

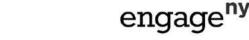
Problem Set Sample Solutions

In this introduction to logarithms, students are only asked to find simple logarithms base b in which the logarithm is an integer or a simple fraction and the expression can be calculated by inspection.

Rewrite each of the following in the form $WhatPower_h(x) = L$. 1. b. $6^{-3} = \frac{1}{216}$ c. $9^0 = 1$ $3^5 = 243$ a. WhatPower₆ $\left(\frac{1}{216}\right) = -3$ WhatPower₉(1) = 0 $WhatPower_3(243) = 5$ 2. Rewrite each of the following in the form $\log_b(x) = L$. $16^{\frac{1}{4}} = 2$ b. $10^3 = 1,000$ c. $b^k = r$ a. $\log_{16}(2) = \frac{1}{4}$ $\log_{10}(1,000) = 3$ $\log_{h}(r) = k$ 3. Rewrite each of the following in the form $b^L = x$. b. $\log_{10}(0.1) = -1$ c. $\log_{27}9 = \frac{2}{3}$ $log_5(625)=4$ а. $10^{-1} = 0.1$ $27^{\frac{2}{3}} = 9$ $5^4 = 625$



6. Consider the logarithms base 5. For each logarithmic expression below, either calculate the value of the expression or explain why the expression does not make sense. а. log₅(3125) 5 $log_5(25)$ b. 2 $log_5(1)$ c. 0 $\log_5\left(\frac{1}{25}\right)$ d. -2 $\log_5(0)$ e. This does not make sense. There is no value of L so that $5^L = 0$. $\log_5\left(-\frac{1}{25}\right)$ f. This does not make sense. There is no value of L so that 5^{L} is negative. 7. Is there any positive number b so that the expression $\log_b(0)$ makes sense? Explain how you know. No, there is no value of L so that $b^L = 0$. I know b has to be a positive number. A positive number raised to an exponent never equals 0. Is there any positive number b so that the expression $\log_{b}(-1)$ makes sense? Explain how you know. 8. No. Since b is positive, there is no value of L so that b^{L} is negative. A positive number raised to an exponent never has a negative value. 9. Verify each of the following by evaluating the logarithms. $\log_2(8) + \log_2(4) = \log_2(32)$ b. $\log_3(9) + \log_3(9) = \log_3(81)$ a. 3 + 2 = 52 + 2 = 4 $\log_4(4) + \log_4(16) = \log_4(64)$ d. $\log_{10}(10^3) + \log_{10}(10^4) = \log_{10}(10^7)$ c. 1 + 2 = 33 + 4 = 710. Looking at the results from Problem 9, do you notice a trend or pattern? Can you make a general statement about the value of $\log_b(x) + \log_b(y)$? The sum of two logarithms of the same base is found by multiplying the input values, $\log_{h}(x) + \log_{h}(y) = \log_{h}(xy)$. (Note to teacher: Do not evaluate this answer harshly. This is just a preview of a property that students learn later in the module.)



- 11. To evaluate log₂(3), Autumn reasoned that since log₂(2) = 1 and log₂(4) = 2, log₂(3) must be the average of 1 and 2 and therefore log₂(3) = 1.5. Use the definition of logarithm to show that log₂(3) cannot be 1.5. Why is her thinking not valid?
 According to the definition of logarithm, log₂(3) = 1.5 only if 2^{1.5} = 3. According to the calculator, 2^{1.5} ≈ 2.828, so log₂(3) cannot be 1.5. Autumn was assuming that the outputs would follow a linear pattern, but since the outputs are exponents, the relationship is not linear.
- 12. Find the value of each of the following.
 - a. If $x = \log_2(8)$ and $y = 2^x$, find the value of y.

y = 8

b. If $\log_2(x) = 6$, find the value of x.

c. If $r = 2^6$ and $s = \log_2(r)$, find the value of s.

engage^{ny}

Lesson 9: Logarithms—How Many Digits Do You Need?

Student Outcomes

- Students use logarithms to determine how many characters are needed to generate unique identification numbers in different scenarios.
- Students understand that logarithms are useful when relating the number of digits in a number to the magnitude of the number and that base 10 logarithms are useful when measuring quantities that have a wide range of values such as the magnitude of earthquakes, volume of sound, and pH levels in chemistry.

Lesson Notes

In this lesson, students learn that logarithms are useful in a wide variety of situations but have extensive application when they want to generate a list of unique identifiers for a population of a given size (**N-Q.A.2**). This application of logarithms is used in computer programming, when determining how many digits are needed in a phone number to have enough unique numbers for a population, and more generally, when assigning a scale to any quantity that has a wide range of values.

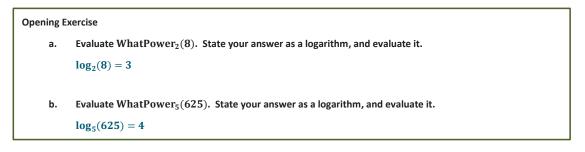
In this lesson, students make sense of a simple scenario and then see how it can be applied to other real-world situations (MP.1 and MP.2). They observe and extend patterns to formulate a model (MP.7 and MP.4). They reason about and make sense of situations in context and use logarithms to draw conclusions regarding different real-world scenarios (MP.3 and MP.4).

Classwork

Opening Exercise (2 minutes)

Remind students that the WhatPower expressions are called logarithms, and announce that they will use logarithms to help them make sense of and solve some real-world problems.

Students briefly convert two WhatPower expressions into a logarithmic expression and evaluate the result.



If students struggle with these exercises, consider planning for some additional practice on problems like those found in Lesson 7.

Logarithms—How Many Digits Do You Need?

Exploratory Challenge (15 minutes)

Divide students up into small groups, and give them about 10 minutes to work through the questions that follow. While circulating around the room, encourage students to be systematic when assigning IDs to the club members. If a group is stuck, ask questions to help move the group along.

- Remember, we only want to use A's and B's, but two-character IDs only provide enough for four people. Can you provide an example of a three-character ID using only the letters A and B?
 - A three-character ID might be ABA or AAA.
- How many different IDs would three characters make? How could you best organize your results?
 - Three characters would make 8 IDs because I could take the four I already have and add an A or B onto the end. The best way to organize it is to take the existing two-character IDs and add an A and then take those existing two-character IDs again and add a B.

Exploratory Challenge

Autumn is starting a new club with eight members including herself. She wants everyone to have a secret identification code made up of only A's and B's. For example, using two characters, her ID code could be AA.

a. Using A's and B's, can Autumn assign each club member a unique two-character ID code using only A's and B's? Justify your answer. Here's what Autumn has so far.

Club Member Name	Secret ID Code
Autumn	AA
Kris	
Tia	
Jimmy	

Club Member Name	Secret ID Code
Robert	
Jillian	
Benjamin	
Scott	

No, she cannot assign a unique 2-character ID code to each member. The only codes available are AA, BA, AB, and BB, and there are eight people.

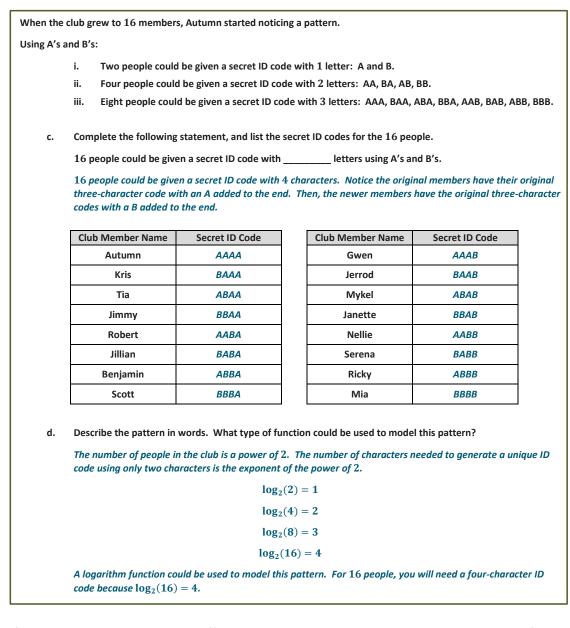
b. Using A's and B's, how many characters would be needed to assign each club member a unique ID code? Justify your answer by showing the ID codes you would assign to each club member by completing the table above (adjust Autumn's ID if needed).

You would need three characters in each ID code. A completed table is shown below. Students could assign one of the unique codes to any club member, so this is not the only possible solution.

Club Member Name	Secret ID Code	
Autumn	AAA	
Kris	BAA	
Tia	ABA	
Jimmy	BBA	

Club Member Name	Secret ID Code
Robert	AAB
Jillian	BAB
Benjamin	ABB
Scott	BBB

Logarithms—How Many Digits Do You Need?



To debrief this Exploratory Challenge, have different groups explain how they arrived at their solutions. If a group does not demonstrate an efficient way to organize its answers when the club membership increases, be sure to show it to the class. For example, the 16 group member ID codes were generated by adding an A onto the end of the original 8 ID codes and then adding a B onto the end of the original 8 ID codes, as shown in the solutions above.

Exercises 1-2 (3 minutes)

Give students a few minutes to answer these questions individually or in groups. Check to see if students are using logarithms when they explain their solutions. If they are not, be sure to review the answers with the entire class using logarithm notation.

Logarithms—How Many Digits Do You Need?

Exercises 1–2

MP.2

8

MP.3

In the previous problems, the letters A and B were like the digits in a number. A four-digit ID code for Autumn's club could be any four-letter arrangement of A's and B's because in her ID system, the only digits are the letters A and B.

1. When Autumn's club grows to include more than 16 people, she will need five digits to assign a unique ID code to each club member. What is the maximum number of people that could be in the club before she needs to switch to a six-digit ID code? Explain your reasoning.

Since $\log_2(32) = 5$ and $\log_2(64) = 6$, she will need to switch to a six-digit ID code when the club grows to more than 32 members.

2. If Autumn has 256 members in her club, how many digits would she need to assign each club member a unique ID code using only A's and B's? Show how you got your answers.

She will need 8 digits because $log_2(256) = 8$.

Discussion (10 minutes)

Computers store keyboard characters, such as 1, 5, X, x, Q, @, /, and &, using an identification system much like Autumn's system called ASCII, which stands for American Standard Code for Information Interchange. The acronym ASCII is pronounced as "askee." Each character in a font list on the computer is given an ID code that a computer can recognize. A computer is essentially a lot of electrical switches, which can be in one of two states, ON or OFF, just like Autumn's A's and B's.

There are usually 256 characters in a font list, so using the solution to Exercise 2, a computer needs eight positions or digits to encode each character in a font list.

- For example, the standard ASCII code for uppercase P is 01010000. If A is zero and B is 1, how would uppercase P be encoded using Autumn's system?
 - Using A's and B's in Autumn's code, this would be ABABAAAA.
- How would the computer read this code?
 - The computer reads the code as "on, off, on, off, on, on, on, on."

If time permits, a quick Internet search for the term *ASCII* returns Web pages where the standard code for different keyboard symbols can be viewed. Each character in an ASCII code is called a *bit*, and an entire 8-character code is called a *byte*. Each byte is made up of eight bits, and each byte describes a unique character in the font list such as a P, p, %, _, 4, etc.

- When a computer saves a basic text document and reports that it contains 3,242 bytes, what do you think that means?
 - It means that there are 3,242 letters, symbols, spaces, punctuation marks, etc., in the document.

Students have seen how to create unique ID codes using two letters for both Autumn's secret club and to encode text characters in a way that is readable by a computer using ASCII code. Next, they examine why a logarithm really is the right operation to describe the number of characters or digits needed to create unique identifiers for people by exploring some real-world situations where people are assigned a number.

Scaffolding:

Use a word wall or a chart to provide a visual reference for English language learners using the academic terms related to computers.

ASCII (American Standard Code for Information Exchange, acronym pronounced "as-kee")

Bit (one of eight positions in a byte)

Byte (a unique eight-character identifier for each ASCII symbol in font list)

Scaffolding:

Ask advanced learners to quickly estimate how many digits would be needed to generate ID numbers for the number of students enrolled in the school or in the school district. For example, a school district with more than 10,000 students would need at least a five-digit ID number.

Logarithms—How Many Digits Do You Need?

Example (5 minutes)

This is a simplified example that uses base-10 logarithms because students are going to be assigning ID numbers using the digits 0–9. Give students a few minutes to think about the answer to the prompt in the Example, and have them discuss their ideas with a partner. Most students will likely say to assign 0 to the first person, assign 1 to the second person, and so on up to the 1000^{th} person. Be sure to tie the solution to logarithms. Since there are 10 symbols (digits), $\log_{10}(1000) = 3$ can be used to find the answer, which just counts the number of digits needed to count to 999.

- How can a logarithm help you determine the solution quickly?
 - ^a The logarithm counts the number of digits needed because each time we add another digit to our numbers, we are increasing by a factor of 10. For example, $1 = 10^{0}$, $10 = 10^{1}$, $100 = 10^{2}$, etc.

Example A thousand people are given unique identifiers made up of the digits 0, 1, 2, ..., 9. How many digits would be needed for each ID number? You would just need three digits: {000, 001, 002, ..., 099, 100, 101, ..., 998, 999}.

Using logarithms, it is necessary to determine the value of log(1000), which is 3. This quickly tells the number of digits needed to uniquely identify any range of numbers. Follow up by asking students to extend their thinking.

- When would you need to switch from four to five digits to assign unique numbers to a population?
 - You could assign up to 10⁴ people a four-digit ID number, which would be 10,000 people. Once you exceeded that number, you would need five digits to assign each person a unique number.

Exercises 3-4 (5 minutes)

Students should return to their small groups to work these exercises. Have different groups present their solutions to the whole class after a few minutes. Discuss different approaches, and make sure that students see the power of using a logarithm to help them quickly solve or justify a solution to the problem.

3.	There are approximately 317 million people in the United States. Compute and use $log(100000000)$ and $log(100000000)$ to explain why Social Security numbers are 9 digits long.					
	We know that $log(10000000) = 8$, which is the number of digits needed to assign an ID number to 100 million people. We know that $log(100000000) = 9$, which is the number of digits needed to assign an ID number to 1 billion people. The United States government will not need to increase the number of digits in a Social Security number until the United States population reaches one billion.					
4.	There are many more telephones than the number of people in the United States because of people having home phones, cell phones, business phones, fax numbers, etc. Assuming we need at most 10 billion phone numbers in the United States, how many digits would be needed so that each phone number is unique? Is this reasonable? Explain.					
	Since $log(1000000000) = 10$, you would need a ten-digit phone number in order to have ten billion unique numbers. Phone numbers in the United States are 10 digits long. If you divide 10 billion by 317 million (the number of people in the United States), that would allow for approximately 31 phone numbers per person. That is plenty of numbers for individuals to have more than one number, leaving many additional numbers for businesses and the government.					

Lesson 9:

Logarithms—How Many Digits Do You Need?

Closing (2 minutes)

Ask students to respond to the following statements in writing or with a partner. Share a few answers to close the lesson before students begin the Exit Ticket. Preview other situations where logarithms are useful, such as the Richter scale for measuring the magnitude of an earthquake.

- To increase the value of $\log_2(x)$ by 1, you would multiply x by 2. To increase the value of $\log_{10}(x)$ by 1, you would multiply x by 10. How does this idea apply to the situations in today's lesson?
 - We saw that each time the population of Autumn's club doubled, we needed to increase the total number of digits needed for the ID numbers by 1. We saw that since the population of the United States was between 100 million and 1 billion, we only needed 9 digits (log(1000000000)) to generate a Social Security number.
- Situations like the ones in today's lesson can be modeled with logarithms. Can you think of a situation besides the ones we discussed today where it would make sense to use logarithms?
 - Any time a measurement can take on a wide range of values, such as the magnitude of an earthquake or the volume level of sound (measured in decibels), a logarithm could be used to model the situation.

Exit Ticket (3 minutes)

Name

Date _____

Lesson 9: Logarithms—How Many Digits Do You Need?

Exit Ticket

A brand-new school district needs to generate ID numbers for its student body. The district anticipates a total enrollment of 75,000 students within the next ten years. Will a five-digit ID number using the symbols 0, 1, ..., 9 be enough? Explain your reasoning.

Logarithms—How Many Digits Do You Need?

Exit Ticket Sample Solutions

A brand-new school district needs to generate ID numbers for its student body. The district anticipates a total enrollment of 75,000 students within the next ten years. Will a five-digit ID number using the symbols 0, 1, ..., 9 be enough? Explain your reasoning.

log(10000) = 4 and log(100000) = 5, so 5 digits should be enough. However, students who enter school at the kindergarten level in the tenth year of this numbering scheme would need to keep their IDs for 13 years. Dividing 75,000 by 13 shows there would be roughly 6,000 students per grade. Adding that many students per year would take the number of needed IDs at any one time over 100,000 in just a few more years. The district should probably use a six-digit ID number.

Problem Set Sample Solutions

1.	of tr	student body president needs to assign each officially sanctioned club on campus a unique ID code for purposes acking expenses and activities. She decides to use the letters A, B, and C to create a unique three-character for each club.
	a.	How many clubs can be assigned a unique ID code according to this proposal?
		Since $\log_3(27) = 3$, the president could assign codes to 27 clubs according to this proposal.
	b.	There are actually over 500 clubs on campus. Assuming the student body president still wants to use the letters A, B, and C, how many characters would be needed to generate a unique ID code for each club?
		We need to estimate $\log_3(500)$. Since $3^5 = 243$ and $3^6 = 729$, she could use a six-character combination of letters and have enough unique IDs for up to 729 clubs.
2.		you use the numbers 1, 2, 3, and 4 in a combination of four digits to assign a unique ID code to each of 500 sle? Explain your reasoning.
		$\log_4(4) = 1$
		$\log_4(16) = 2$
		$\log_4(64) = 3$
		$\log_4(256) = 4$
		$\log_4(1024) = 5$
	or yo	You would need to use a five-digit ID code using combinations of 1's, 2's, 3's, and 4's such as 11111 or 12341, pu could use the numbers 1 to 5 in four characters such as 1231, 1232, 1233, 1234, 1235, etc., because $(625) = 4$.
3.		mobile license plates typically have a combination of letters (26) and numbers (10). Over time, the state of York has used different criteria to assign vehicle license plate numbers.
	a.	From 1973 to 1986, the state used a 3-letter and 4-number code where the three letters indicated the county where the vehicle was registered. Essex County had 13 different 3-letter codes in use. How many cars could be registered to this county?
		Since $log(10000) = 4$, the 4-digit code could be used to register up to 10,000 vehicles. Multiply that by 13 different county codes, and up to 130,000 vehicles could be registered in Essex County.

MP.1

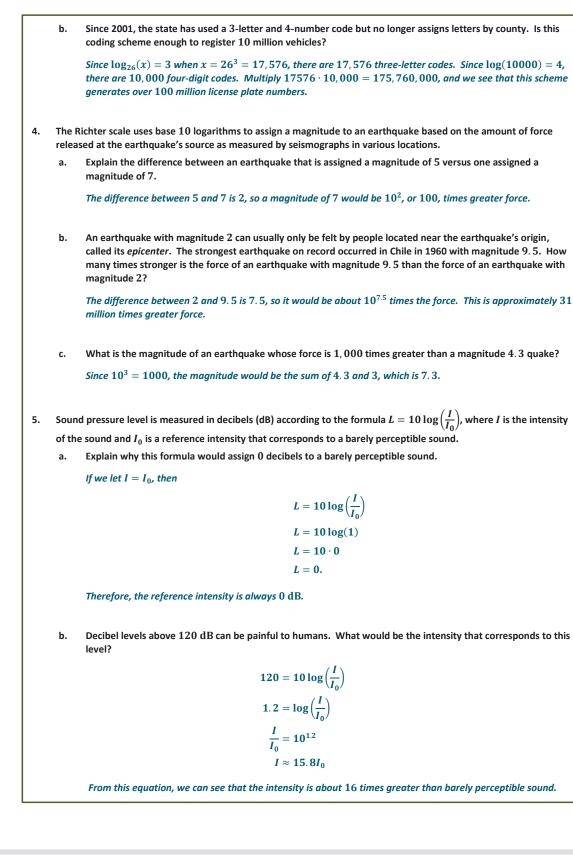
Lesson 9:

Logarithms—How Many Digits Do You Need?

MP.1

MP.2

8 MP.3



Lesson 9:

Logarithms—How Many Digits Do You Need?

Student Outcomes

• Students construct a table of logarithms base 10 and observe patterns that indicate properties of logarithms.

Lesson Notes

In the previous lesson, students were introduced to the concept of the logarithm by finding the power to which it is necessary to raise a base b in order to produce a given number, which was originally called the WhatPower_b function. In this lesson and the next, students build their own base-10 logarithm tables using their calculators. By taking the time to construct the table themselves (as opposed to being handed a pre-prepared table), students have a better opportunity to observe patterns in the table and practice MP.7. These observed patterns lead to formal statements of the properties of logarithms in upcoming lessons. Using logarithmic properties to rewrite logarithmic expressions satisfies the foundational standard **A-SSE.A.2**.

To answer some of the questions in this and subsequent lessons, students need an intuitive understanding that logarithmic functions with base b > 1 always increase; this idea is made explicit in Lesson 17 when key features of the graphs of logarithmic functions are explored. The increasing nature of a logarithmic function with base b > 1 is a direct consequence of the inverse relationship between a logarithmic function and the corresponding exponential function. At this point in the module, students need to understand that since $\log_b(x)$ is the power to which the base b is raised to get x, then for values of b greater than 1, if the value of x is increased, then the value of $\log_b(x)$ also increases. In Exercises 1–4 of this lesson, students need to work with this property of logarithmic functions when they squeeze the value of $\log(30)$ first between consecutive integers and then between consecutive numbers to the tenths and then the hundredths place. Ensure that students understand this property: Because $10^1 < 30 < 10^2$, it is known that $\log(10^1) < \log(30) < \log(10^2)$, which means that $1 < \log(30) < 2$.

Materials Needed

Students need access to a calculator or other technological tool able to compute exponents and logarithms base 10.

Classwork

Opening Exercise (3 minutes)

In this quick Opening Exercise, students are asked to recall the WhatPower_b function from the previous lesson and the fact that the logarithm base b is the formal name of the WhatPower_b function is reinforced. Only base-10 logarithms are considered in this lesson as the table is constructed, so this Opening Exercise is constrained to base-10 calculations.

At the end of this exercise, announce to students that the notation log(x) without the little *b* in the subscript means $log_{10}(x)$. This is called the *common logarithm*.

Scaffolding:

Prompt struggling students to restate the logarithmic equation $\log_{10}(10^3) = x$ first as the equation WhatPower₁₀(10³) = x and then as the exponential equation $10^x = 10^3$.

M3

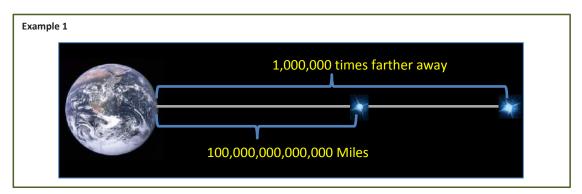
Lesson 10

Opening Exercise							
Find the value of the following expressions without using a calculator.							
$WhatPower_{10}(1000)$	= 3	$\log_{10}(1000)$	= 3				
$WhatPower_{10}(100)$	= 2	$log_{10}(100)$	= 2				
$WhatPower_{10}(10)$	= 1	$\log_{10}(10)$	= 1				
$WhatPower_{10}(1)$	= 0	$\log_{10}(1)$	= 0				
WhatPower ₁₀ $\left(\frac{1}{10}\right)$	= -1	$\log_{10}\left(\frac{1}{10}\right)$	= -1				
$WhatPower_{10}\left(\frac{1}{100}\right)$	= -2	$\log_{10}\left(\frac{1}{100}\right)$	= -2				
Formulate a rule based on your results above: If k is an integer, then $\log_{10}(10^k) =$ $\log_{10}(10^k) = k$							

Example 1 (6 minutes)

In this example, students get their first glimpse of the property $\log_b(xy) = \log_b(x) + \log_b(y)$. Be careful not to give this formula away; by the end of the next lesson, students should have discovered it for themselves.

Suppose that you are an astronomer, and you measure the distance to a star as 100,000,000,000,000 miles.
 A second star is collinear with the first star and Earth and is 1,000,000 times farther away from Earth than the first star is. How many miles is the second star from Earth? Note: The figure is not to scale.



- (100,000,000,000)(1,000,000) = 100,000,000,000,000,000,000, so the second star is 100 quintillion miles away from Earth.
- How did you arrive at that figure?
 - I counted the zeros; there are 14 zeros in 100,000,000,000,000 and 6 zeros in 1,000,000, so there must be 20 zeros in the product.
- Can we restate that in terms of exponents?
 - $(10^{14})(10^6) = 10^{20}$
- How are the exponents related?
 - 14 + 6 = 20

- What are $\log(10^{14})$, $\log(10^6)$, and $\log(10^{20})$?
 - 14, 6, and 20
- In this case, can we state an equivalent expression for $log(10^{14} \cdot 10^6)$?
 - $\log(10^{14} \cdot 10^6) = \log(10^{14}) + \log(10^6)$
- Why is this equation true?
 - $\log(10^{14} \cdot 10^6) = \log(10^{20}) = 20 = 14 + 6 = \log(10^{14}) + \log(10^6)$
- Generalize to find an equivalent expression for $\log(10^m \cdot 10^n)$ for integers m and n. Why is this equation true?
 - $\log(10^{m} \cdot 10^{n}) = \log(10^{m+n}) = m + n = \log(10^{m}) + \log(10^{n})$
 - This equation is true because when we multiply powers of 10 together, the resulting product is a power of 10 whose exponent is the sum of the exponents of the factors.
- . Keep this result in mind as we progress through the lesson.

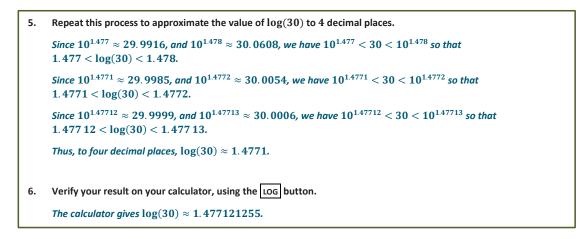
Exercises 1–6 (8 minutes)

Historically, logarithms were calculated using tables because there were no calculators or computers to do the work. Every scientist and mathematician kept a book of logarithmic tables on hand to use for calculation. It is very easy to find the value of a base-10 logarithm for a number that is a power of 10, but what about for the other numbers? In this exercise, students find an approximate value of $\log(30)$ using exponentiation, the same way $\log_2(10)$ was approximated in Lesson 6. After this exercise, students rely on the logarithm button on the calculator to compute base-10 logarithms for the remainder of this lesson. Emphasize to students that logarithms are generally irrational numbers, so the results produced by the calculator are only decimal approximations. As such, care should be taken to use the approximation symbol, \approx , when writing out a decimal expansion of a logarithm.

```
Exercises
     Find two consecutive powers of 10 so that 30 is between them. That is, find an integer exponent k so that
1.
     10^k < 30 < 10^{k+1}.
     Since 10 < 30 < 100, we have k = 1.
2.
     From your result in Exercise 1, log(30) is between which two integers?
     Since 30 is some power of 10 between 1 and 2, 1 < log(30) < 2.
    Find a number k to one decimal place so that 10^k < 30 < 10^{k+0.1}, and use that to find under and over estimates
3.
     for log(30).
     Since 10^{1.4} \approx 25.1189 and 10^{1.5} \approx 31.6228, we have 10^{1.4} < 30 < 10^{1.5}. Then 1.4 < log(30) < 1.5, and
     k \approx 1.4.
     Find a number k to two decimal places so that 10^k < 30 < 10^{k+0.01}, and use that to find under and over estimates
4.
     for log(30).
     Since 10^{1.47} \approx 29.5121, and 10^{1.48} \approx 30.1995, we have 10^{1.47} < 30 < 10^{1.48} so that 1.47 < log(30) < 1.48.
     So, k \approx 1.47.
```


139

(cc) BY-NC-SA Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License



Discussion (1 minute)

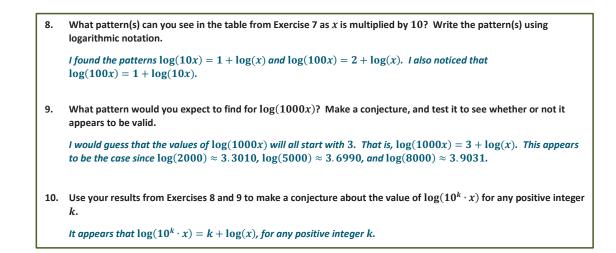
In the next exercises, students use their calculators to create a table of logarithms that they analyze to look for patterns that lead to the discovery of the logarithmic properties. The process of identifying and generalizing the observed patterns provides students with an opportunity to practice MP.7.

- Historically, since there were no calculators or computers, logarithms were calculated using a complicated algorithm involving multiple square roots. Thankfully, we have calculators and computers to do this work for us now.
- We will use our calculators to create a table of values of base-10 logarithms. Once the table is made, see what
 patterns you can observe.

Exercises 7–10 (6 minutes)

Put students in pairs or small groups, but have students work individually to complete the table in Exercise 7. Before working on Exercises 8–10 in groups, have students check their tables against each other. It may be necessary to remind students that $\log(x)$ means $\log_{10}(x)$.

 x	$\log(x)$	x	log(x)		x	$\log(x)$
1	0	10	1		100	2
2	0.3010	20	1.3010		200	2.3010
3	0.4771	30	1.4771		300	2.4771
4	0.6021	40	1.6021		400	2.6021
5	0.6990	50	1.6990		500	2.6990
6	0.7782	60	1.7782		600	2.7782
7	0.8451	70	1.8451		700	2.8451
8	0.9031	80	1.9031		800	2.9031
9	0.9542	90	1.9542	1	900	2.9542



Discussion (3 minutes)

MP.

Ask groups to share the patterns they observed in Exercise 8 and the conjectures they made in Exercises 9 and 10. Ensure that all students have the correct conjectures recorded in their notebooks or journals before continuing to the next set of exercises, which extend the result from Exercise 10 to all integers k (and not just positive values of k).

Exercises 11–14 (8 minutes)

In this set of exercises, students discover a rule for calculating logarithms of the form $log(10^k \cdot x)$, where k is any integer. Have students again work individually to complete the table in Exercise 11 and to check their tables against each other before they proceed to discuss and answer Exercises 12–14 in groups.

Scaffolding:

If students are having difficulty seeing the pattern in the table for Exercise 12, nudge them to add together log(x) and $log\left(\frac{x}{10}\right)$ for some values of x in the table.

11. Use your calculator to complete the following table. Round the logarithms to 4 decimal places.

x	$\log(x)$
1	0
2	0.3010
3	0.4771
4	0.6021
5	0.6990
6	0.7782
7	0.8451
8	0.9031
9	0.9542

Lesson 10:

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

x	$\log(x)$
0.1	-1
0.2	-0.6990
0.3	-0.5229
0.4	-0.3979
0.5	-0.3010
0.6	-0.2218
0.7	-0.1549
0.8	-0.0969
0.9	-0.0458

100(11)

x	$\log(x)$
0.01	-2
0.02	-1.6990
0.03	-1.5229
0.04	-1.3979
0.05	-1.3010
0.06	-1.2218
0.07	-1.1549
0.08	-1.0969
0.09	-1.0458

12. What pattern(s) can you see in the table from Exercise 11? Write them using logarithmic notation.

Building Logarithmic Tables

I found the patterns $\log(x) - \log(\frac{x}{10}) = 1$, which can be written as $\log(\frac{x}{10}) = -1 + \log(x)$, and $\log(\frac{x}{100}) = -2 + \log(x)$.

(cc) BY-NC-SA

13. What pattern would you expect to find for $log(\frac{x}{1000})$? Make a conjecture, and test it to see whether or not it appears to be valid.

I would guess that the values of $\log\left(\frac{x}{1000}\right)$ will all start with -2 and that $\log\left(\frac{x}{1000}\right) = -3 + \log(x)$. This appears to be the case since $\log(0.002) \approx -2.6990$, and -2.6990 = -3 + 0.3010; $\log(0.005) \approx -2.3010$, and -2.3010 = -3 + 0.6990; $\log(0.008) \approx -2.0969$, and -2.0969 = -3 + 0.9031.

14. Combine your results from Exercises 10 and 12 to make a conjecture about the value of the logarithm for a multiple of a power of 10; that is, find a formula for $\log(10^k \cdot x)$ for any integer k.

It appears that $\log(10^k \cdot x) = k + \log(x)$, for any integer k.

Discussion (2 minutes)

Ask groups to share the patterns they observed in Exercise 12 and the conjectures they made in Exercises 13 and 14 with the class. Ensure that all students have the correct conjectures recorded in their notebooks or journals before continuing to the next example.

Examples 2–3 (2 minutes)

Lead the class through these calculations. Consider letting them work on Example 3 either alone or in groups after leading them through Example 2.

Example 2

MP.7

Use the logarithm tables and the rules that have been discovered to calculate log(40000) to 4 decimal places.

 $log(40000) = log(10^4 \cdot 4)$ = 4 + log(4) ≈ 4.6021

Example 3

Use the logarithm tables and the rules that have been discovered to calculate log(0.000004) to 4 decimal places.

 $log(0.000004) = log(10^{-6} \cdot 4)$ = -6 + log(4) ≈ -5.3979

142

engage

Closing (2 minutes)

Ask students to summarize the important parts of the lesson, either in writing, to a partner, or as a class. Use this as an opportunity to informally assess understanding of the lesson. The following are some important summary elements:

Lesson Summary

- The notation log(x) is used to represent $log_{10}(x)$.
- For integers k, $\log(10^k) = k$.
- For integers *m* and *n*, $log(10^m \cdot 10^n) = log(10^m) + log(10^n)$.
- For integers k and positive real numbers x, $log(10^k \cdot x) = k + log(x)$.

Exit Ticket (4 minutes)

Name

Date		

Lesson 10: Building Logarithmic Tables

Exit Ticket

1. Use the logarithm table below to approximate the specified logarithms to four decimal places. Do not use a calculator.

x	$\log(x)$	
1	0.0000	
2	0.3010	
3	0.4771	
4	0.6021	
5	0.6990	

x	$\log(x)$
6	0.7782
7	0.8451
8	0.9031
9	0.9542
10	1.0000

a. log(500)

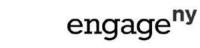
b. log(0.0005)

- 2. Suppose that A is a number with log(A) = 1.352.
 - a. What is the value of log(1000A)?
 - b. Which one of the following statements is true? Explain how you know.
 - i. *A* < 0
 - ii. 0 < *A* < 10
 - iii. 10 < *A* < 100
 - iv. 100 < A < 1000
 - v. *A* > 1000

engage^{ny}

Exit Ticket Sample Solutions

		x	$\log(x)$	x	$\log(x)$			
		1	0.0000	6	0.7782			
		2	0.3010	7	0.8451			
		3	0.4771	8	0.9031			
		4	0.6021	9	0.9542			
		5	0.6990	10	1.0000			
a.	log(500)							
	$\log(500) = \log(1)$							
	$= 2 + 16$ ≈ 2.699							
	~ 2.09	90						
b.	log(0.0005)							
	log(0.0005) = log(0.0005)	σ(10 ⁻⁴ ·	5)					
		$4 + \log(5)$						
		3.3010	, ,					
Supp	oose that A is a numb	er with lo	g(A) = 1.352.					
a.	What is the value of	of log(100	00A)?					
	$\log(1000A) = \log(1000A)$	$g(10^3A) =$	$= 3 + \log(A) = 4.35$	2				
b.	Which one of the following statements is true? Explain how you know.							
	i. <i>A</i> < 0							
	ii. 0 < <i>A</i> < 10							
	iii. 10 < <i>A</i> < 1	00						
	iv. 100 < A <	1000						
	v. <i>A</i> > 1000							
	Because $\log(A) =$	1.352 =	1 + 0, 352, <i>A is area</i>	ter than 10 and	less than 100. Thus, (iii) is true	. In fact		
					cause $\log(20) \approx 1.3010$, and			



Problem Set Sample Solutions

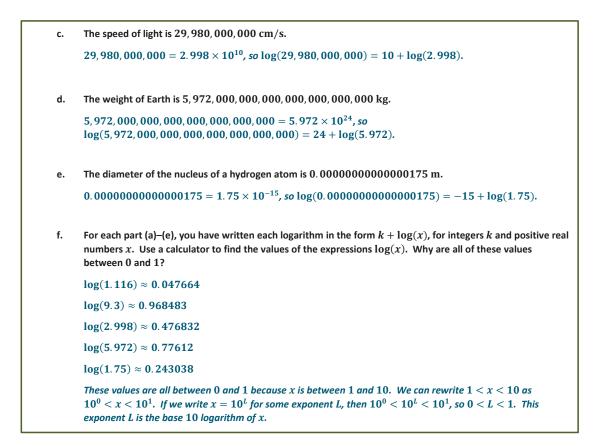
These problems should be solved without a calculator.

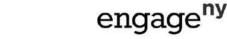
		x	log(x)	x	log(x)	
	-	1,000,000	6	0.1	-1	
		100,000	5	0.01	-2	
		10,000	4	0.001	-3	_
	-	1000	3	0.0001	-4	_
		100	2	0.00001	-5	_
	-	10	1	0.000001	-6	
b. c.	What is lo By the definition What happ For any $x = k \le \log(x)$ For $x > 0$,	inition of the logo pens to the value > 1, there exists () $< k + 1$, as k g what happens to	eger k ? How does to writhm, we know that of $\log(x)$ as x gets $k > 0$ so that $10^k \le$ wets large, $\log(x)$ gets the value of $\log(x)$	really large? $x < 10^{k+1}$. As x gets	really large, k g to zero?	ets large. Since
Use 1	zero. the table of I	ogarithms below	to estimate the value of the va	log(x) 0.3010 0.4771 0.6990 0.8451 1.0414	parts (a)–(h).	
			11	1.0414		
a.	log(70000))		b. log(0.0011	L)	


```
log(20)
                                                                    log(0.00005)
                                                              d.
     c.
           1.3010
                                                                    -4.3010
          log(130000)
                                                                    log(3000)
                                                              f.
     e.
           5.1139
                                                                    3.4771
           log(0.07)
                                                                    log(1100000)
                                                              h.
     g.
           -1.1549
                                                                    7.0414
3. If log(n) = 0.6, find the value of log(10n).
     log(10n) = 1.6
   If m is a positive integer and log(m) \approx 3.8, how many digits are there in m? Explain how you know.
4.
     Since 3 < \log(m) < 4, we know 1,000 < m < 10,000; therefore, m has 4 digits.
5. If m is a positive integer and log(m) \approx 9.6, how many digits are there in m? Explain how you know.
     Since 9 < \log(m) < 10, we know 10^9 < m < 10^{10}; therefore, m has 10 digits.
6.
     Vivian says log(452000) = 5 + log(4.52), while her sister Lillian says that log(452000) = 6 + log(0.452).
     Which sister is correct? Explain how you know.
     Both sisters are correct. Since 452,000 = 4.52 \cdot 10^5, we can write \log(452000) = 5 + \log(4.52). However, we
     could also write 452,000 = 0.452 \cdot 10^6, so \log(452000) = 6 + \log(0.452). Both calculations give
     log(452,000) \approx 5.65514.
7.
   Write the base-10 logarithm of each number in the form k + \log(x), where k is the exponent from the scientific
     notation, and x is a positive real number.
           2.4902 \times 10^{4}
     a.
            4 + \log(2.4902)
          2.58 \times 10^{13}
     b.
           13 + \log(2.58)
           9.109 \times 10^{-31}
     c.
            -31 + \log(9.109)
     For each of the following statements, write the number in scientific notation, and then write the logarithm base 10
8.
     of that number in the form k + \log(x), where k is the exponent from the scientific notation, and x is a positive real
     number.
           The speed of sound is 1116 \text{ ft/s.}
      a.
            1116 = 1.116 \times 10^3, so \log(1116) = 3 + \log(1.116).
      b.
           The distance from Earth to the sun is 93 million miles.
           93,000,000 = 9.3 \times 10^7, so log(93000000) = 7 + log(9.3).
```


147

engage





Lesson 11: The Most Important Property of Logarithms

Student Outcomes

• Students construct a table of logarithms base 10 and observe patterns that indicate properties of logarithms.

Lesson Notes

In the previous lesson, students discovered that for logarithms base $10, \log(10^k \cdot x) = k + \log(x)$. In this lesson, this result is extended to develop the most important property of logarithms: $\log(xy) = \log(x) + \log(y)$. Additionally, students discover the reciprocal property of logarithms: $\log\left(\frac{1}{x}\right) = -\log(x)$. Students continue to hone their skills at observing and generalizing patterns in this lesson as they create tables of logarithms and observe patterns, practicing MP.8. In the next lesson, these logarithmic properties are formalized and generalized for any base, but for this lesson the focus is solely on logarithms base 10. Understanding deeply the properties of logarithms helps prepare students to rewrite expressions based on their structure (A-SSE.A.2), solve exponential equations (F-LE.A.4), and interpret transformations of graphs of logarithmic functions (F-BF.B.3).

Materials Needed

Students need access to a calculator or other technological tool able to compute exponents and logarithms base 10.

Classwork

Opening (1 minute)

In the previous lesson, students discovered the logarithmic property $log(10^k \cdot x) = k + log(x)$, which is a special case of the additive property log(xy) = log(x) + log(y) that they discover today. The Opening Exercise reminds students of how they can use this property to compute logarithms of numbers not in the table. By the end of today's lesson, students are able to calculate any logarithm base 10 using just a table of values of log(x) for prime integers x. The only times in this lesson that calculators should be used is to create the tables in Exercises 1 and 6. Remind students that logarithm tables contain only approximations of the precise values of logarithms, which are generally irrational numbers.

The Most Important Property of Logarithms

Opening Exercise (4 minutes)

Students should complete this exercise without the use of a calculator.

Jse the lo	ogarithm table below to calculate the	specified logarithms.	Scaffolding:		
		$x \log(x)$	 Consider modeling the 		
		1 0	decomposition of 80 with the		
		2 0.3010	whole class before students		
		3 0.4771	start the Opening Exercise.		
		4 0.6021	$\log(80) = \log(10 \cdot 8)$		
		5 0.6990	$= \log(10) + \log(8)$		
		6 0.7782	$= 1 + \log(8)$		
		7 0.8451	 Ask advanced students to write 		
		8 0.9031	an expression for $\log(10^k \cdot x)$		
		9 0.9542	independently.		
b.	log(7000) $log(7000) = log(10^3 \cdot 7) = 3 + 1$	log(7) ≈ 3.8451			
c.	log(0.00006)				
	$\log(0.00006) = \log(10^{-5} \cdot 6) =$	$-5 + \log(6) \approx -4.2218$			
d.	$log(3.0 \times 10^{27})$				
	$\log(3.0 \times 10^{27}) = \log(10^{27} \cdot 3)$	$= 27 + \log(3) \approx 27.4771$			
e.	$\log(9.0 \times 10^k)$ for an integer k				
	$\log(9.0 \times 10^k) = \log(10^k \cdot 9) =$	$k + \log(0) \approx k + 0.0542$			

Discussion (3 minutes)

Use this Discussion to review the formulas discovered in the previous lesson. In the next set of exercises, students use tables of logarithms to discover some other interesting properties of logarithms.

In the next set of exercises, students discover the additive property of logarithms, which is not as readily apparent as the patterns observed yesterday. Plant the seed of the idea by restating the previous property in the additive format.

- What was the formula we developed in the last class?
 - $\Box \quad \log(10^k \cdot x) = k + \log(x)$

- What is the value of $log(10^k)$?
 - $\log(10^k) = k$
- So, what is another way we can write the formula $\log(10^k \cdot x) = k + \log(x)$?
 - $\log(10^k \cdot x) = \log(10^k) + \log(x)$
- Keep this statement of the formula in mind as you progress through the next set of exercises.

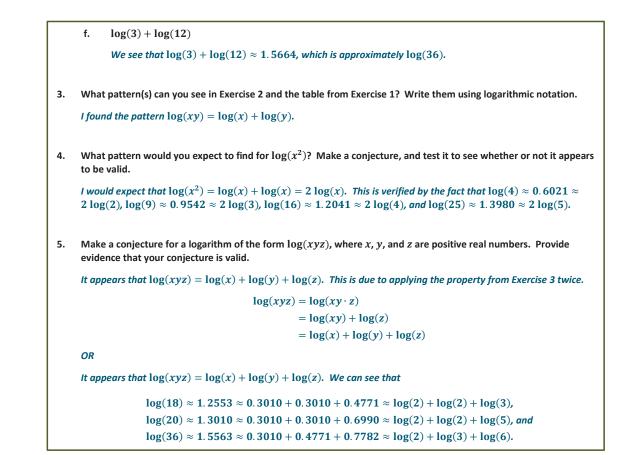
Exercises 1–5 (6 minutes)

Students may be confused by the fact that the formulas do not appear to be exact—for example, the table shows that log(4) = 0.6021, and 2 log(2) = 0.6020. If this question arises, remind students that since they have made approximations to irrational numbers, there is some error in rounding off the decimal expansions to four decimal places. Students should question this discrepancy in part (f) of Exercise 2.

Us	e your calcu	ulator to complete	the following tabl	le. Round th	ne logarithms to	four decimal place	s.
		x	$\log(x)$	1 Г	x	$\log(x)$]
		1	0		10	1.0000	
		2	0.3010		12	1.0792	
		3	0.4771		16	1.2041	
		4	0.6021		18	1.2553	
		5	0.6990		20	1.3010	
		6	0.7782		25	1.3979	
		7	0.8451] [30	1.4771	
		8	0.9031] [36	1.5563]
		9	0.9542		100	2.0000	
Cal a.	log(2)	following values. + log(4) e that log(2) + log		-).	
	. log(2) We see	+ log(4) + that log(2) + log + log(6)	${f g}(4)pprox {f 0}.9031$, w	hich is appr	oximately log(8	, 	
a.	. log(2) We see	$+\log(4)$ that $\log(2) + \log(2)$	${f g}(4)pprox {f 0}.9031$, w	hich is appr	oximately log(8	, 	
a.	 log(2) We see log(2) We see 	+ log(4) + that log(2) + log + log(6)	${f g}(4)pprox {f 0}.9031$, w	hich is appr	oximately log(8	, 	
a. b.	log(2) We see log(2) We see log(3)	$+ \log(4)$ $+ \log(2) + \log(2)$ $+ \log(6)$ $+ \log(2) + \log(2)$	g(4) pprox 0.9031, w $g(6) pprox 1.0792$, w	vhich is appr vhich is appr	oximately log(8 oximately log(1	2).	
a. b.	 log(2) We see log(2) We see log(3) We see 	$+ \log(4)$ $+ \log(2) + \log(4)$ $+ \log(6)$ $+ \log(2) + \log(4)$	g(4) pprox 0.9031, w $g(6) pprox 1.0792$, w	vhich is appr vhich is appr	oximately log(8 oximately log(1	2).	
a. b. c.	 log(2) We see log(2) We see log(3) We see log(6) 	$+ \log(4)$ $+ \log(2) + \log(4)$ $+ \log(6)$ $+ \log(2) + \log(4)$ $+ \log(4)$ $+ \log(3) + \log(3)$	g(4) pprox 0.9031, w $g(6) pprox 1.0792$, w $g(4) pprox 1.0792$, w	which is appr which is appr which is appr	oximately log(8 oximately log(1 oximately log(1	2). 2).	
a. b. c.	 log(2) We see log(2) We see log(3) We see log(6) We see 	$+ \log(4)$ $+ \log(2) + \log(2)$ $+ \log(6)$ $+ \log(4)$ $+ \log(4)$ $+ \log(6)$	g(4) pprox 0.9031, w $g(6) pprox 1.0792$, w $g(4) pprox 1.0792$, w	which is appr which is appr which is appr	oximately log(8 oximately log(1 oximately log(1	2). 2).	

Lesson 11:

The Most Important Property of Logarithms



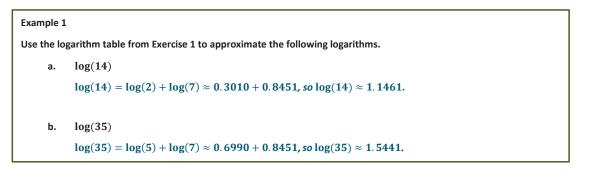
Discussion (2 minutes)

MP.8

Ask groups to share the patterns and conjectures they formed in Exercises 3–5 with the class; emphasize that the pattern discovered in Exercise 3 is the *most important property* of base-10 logarithms. Ensure that all students have the correct statements recorded in their notebooks or journals before continuing to the next example.

Example 1 (5 minutes)

Lead the class through these four logarithmic calculations, relying only on the values in the table from Exercise 1. Notice that since there is not a value for $\log(11)$ in the table, there is not enough information to calculate $\log(121)$. Allow students to figure this out for themselves.




```
c. log(72)
log(72) = log(8) + log(9) ≈ 0.9031 + 0.9542, so log(72) ≈ 1.8573.
d. log(121)
log(121) = log(11) + log(11), but we do not have a value for log(11) in the table, so we cannot evaluate log(121).
```

Discussion (3 minutes)

- Suppose we are building a logarithm table, and we have already approximated the values of log(2) and log(3). What other values of log(x) for 4 ≤ x ≤ 20 can we approximate by applying the additive property developed in Exercise 5?
 - Since the table contains log(2) and log(3), we can figure out approximations of log(4), log(6), log(8), log(9), log(12), and log(18) since the only factors of 4, 6, 8, 9, 12, 16, and 18 are 2 and 3.
- In order to develop the entire logarithm table for all integers between 1 and 20, what is the smallest set of logarithmic values that we need to know?
 - We need to know the values of the logarithms for the prime numbers: 2, 3, 5, 7, 11, 13, 17, and 19.
- Why does the additive property make sense based on what we know about exponents?
 - We know that when you multiply two powers of the same base together, the exponents are added. For example, $10^4 \cdot 10^5 = 10^{4+5} = 10^9$, so $\log(10^4 \cdot 10^5) = \log(10^9) = 9$.

Exercises 6-8 (7 minutes)

Have students again work individually to complete the table in Exercise 6 and to check their tables against each other before they proceed to discuss and answer Exercise 7 in groups. Ensure that there is enough time for a volunteer to present justification for the conjecture in Exercise 8.

Scaffolding:

Remind students to convert the fractions in the second table to decimal values, or present the table with the values as both fractions and decimals.

Exercises 6-8

6. Use your calculator to complete the following table. Round the logarithms to four decimal places.

x log(x) 2 0.3010 4 0.6021 5 0.6990 8 0.9031 10 1.0000 16 1.2041 20 1.3010 50 1.6990 100 2.0000	_			1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		x	$\log(x)$		x	log(x)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	0.3010		$\frac{1}{2}$	-0.3010
8 0.9031 $\frac{1}{8}$ -0.9031 10 1.0000 $\frac{1}{10}$ -1.0000 16 1.2041 $\frac{1}{16}$ -1.2041 20 1.3010 $\frac{1}{20}$ -1.3010 50 1.6990 $\frac{1}{50}$ -1.6990 100 2.0000 1 -2.0000		4	0.6021		$\frac{1}{4}$	-0.6021
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	0.6990		$\frac{1}{5}$	-0.6990
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	0.9031		$\frac{1}{8}$	-0.9031
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	1.0000			-1.0000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16	1.2041			-1.2041
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20	1.3010			-1.3010
		50	1.6990			-1.6990
		100	2.0000			-2.0000


```
7. What pattern(s) can you see in the table from Exercise 6? Write a conjecture using logarithmic notation. For any real number x > 0, log (1/x) = −log(x).
8. Use the definition of logarithm to justify the conjecture you found in Exercise 7. If log (1/x) = a for some number a, then 10<sup>a</sup> = 1/x. Then, 10<sup>-a</sup> = x, and thus, log(x) = -a. We then have log (1/x) = −log(x).
```

Discussion (3 minutes)

MP.8

Ask groups to share the conjecture they formed in Exercise 7 with the class. Ensure that all students have the correct conjecture recorded in their notebooks or journals before continuing to the next example.

Lead the class through these calculations. Let them work either alone or in groups on parts (b)–(d) after leading them

Example 2 (5 minutes)

through part (a).

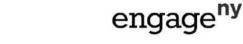
Example 2 Use the logarithm tables and the rules we have discovered to estimate the following logarithms to four decimal places: log(2100) a. $log(2100) = log(10^2 \cdot 21)$ $= 2 + \log(21)$ $= 2 + \log(3) + \log(7)$ $\approx 2 + 0.4771 + 0.8451$ ≈ 3.3222 b. log(0.00049) $\log(0.00049) = \log(10^{-5} \cdot 49)$ $= -5 + \log(49)$ $= -5 + \log(7) + \log(7)$ $\approx -5 + 0.8451 + 0.8451$ ≈ -3.3098 log(4200000) c. $log(42000000) = log(10^6 \cdot 42)$ $= 6 + \log(42)$ $= 6 + \log(6) + \log(7)$ $\approx 6 + 0.7782 + 0.8451$ ≈ 7.6233

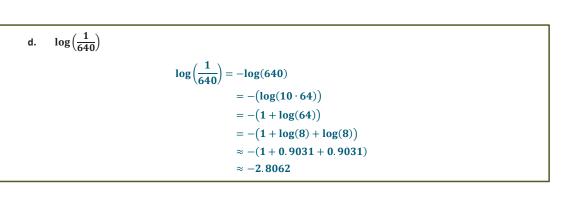
1: The Most Important Property of Logarithms

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

155

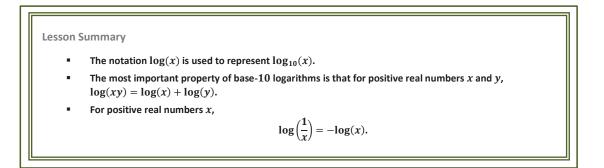
матн





Closing (2 minutes)

Ask students to summarize the important parts of the lesson, either in writing, to a partner, or as a class. Use this as an opportunity to informally assess understanding of the lesson. The following are some important summary elements:



Exit Ticket (4 minutes)

Name

Date _____

Lesson 11: The Most Important Property of Logarithms

Exit Ticket

- 1. Use the table below to approximate the following logarithms to four decimal places. Do not use a calculator.
 - a. log(9)

x	$\log(x)$
2	0.3010
3	0.4771
5	0.6990
7	0.8451

b. $\log\left(\frac{1}{15}\right)$

log(45000) с.

2. Suppose that k is an integer, a is a positive real number, and you know the value of log(a). Explain how to find the value of $\log(10^k \cdot a^2)$.

The Most Important Property of Logarithms

engage^{ny}

Exit Ticket Sample Solutions

a. $\log(9)$ $\log(9) = \log(3) + \log(3)$ $\approx 0.4771 + 0.4771$ ≈ 0.9542 b. $\log\left(\frac{1}{15}\right)$ $\log\left(\frac{1}{15}\right) = -\log(15)$ $= -(\log(3) + \log(5))$ $\approx -(0.4771 + 0.6990)$ ≈ -1.1761 c. $\log(45000)$ $\log(45000) = \log(10^3 \cdot 45)$ $= 3 + \log(45)$ $= 3 + \log(45)$ $= 3 + \log(9)$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of $\log(a)$. Explain how to find the value of $\log(10^k \cdot a^2)$. Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $\log(10^k \cdot a^2) = k + \log(a)$	1.	Use	the table below to approximate the following logarithms to four deci	mal places. Do	not use a calculator.
$log(9) = log(3) + log(3)$ $\approx 0.4771 + 0.4771$ ≈ 0.9542 b. $log(\frac{1}{15})$ $log(\frac{1}{15}) = -log(15)$ $= -(log(3) + log(5))$ $\approx -(0.4771 + 0.6990)$ ≈ -1.1761 c. $log(45000)$ $log(45000) = log(10^{3} \cdot 45)$ $= 3 + log(45)$ $= 3 + log(5) + log(9)$ $\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of log(a). Explain how to find the value of log(10^{k} \cdot a^{2}). Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $log(10^{k} \cdot a^{2}) = k + log(a^{2})$ $= k + log(a) + log(a)$	1				
$\frac{3}{2} \cdot 0.4771 + 0.4771$ ≈ 0.9542 $\frac{3}{15} \cdot 0.6990$ $7 0.8451$ b. $\log\left(\frac{1}{15}\right) = -\log(15)$ $= -(\log(3) + \log(5))$ $\approx -(0.4771 + 0.6990)$ ≈ -1.1761 c. $\log(45000)$ $\log(45000) = \log(10^3 \cdot 45)$ $= 3 + \log(45)$ $= 3 + \log(45)$ $= 3 + \log(45)$ $\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of $\log(a)$. Explain how to find the value of $\log(10^k \cdot a^2)$. Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $\log(10^k \cdot a^2) = k + \log(a)$		a.	log(9)	x	log(x)
≈ 0.9542 $\frac{3}{5} \frac{0.4771}{0.8451}$ b. $\log\left(\frac{1}{15}\right) = -\log(15)$ $= -(\log(3) + \log(5))$ $\approx -(0.4771 + 0.6990)$ ≈ -1.1761 c. $\log(45000)$ $\log(45000) = \log(10^3 \cdot 45)$ $= 3 + \log(45)$ $= 3 + \log(45)$ $= 3 + \log(5) + \log(9)$ $\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of $\log(a)$. Explain how to find the value of $\log(10^k \cdot a^2)$. Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $\log(10^k \cdot a^2) = k + \log(a^2)$ $= k + \log(a) + \log(a)$			$\log(9) = \log(3) + \log(3)$	2	0.3010
b. $\log\left(\frac{1}{15}\right)$ $\log\left(\frac{1}{15}\right) = -\log(15)$ $= -(\log(3) + \log(5))$ $\approx -(0.4771 + 0.6990)$ ≈ -1.1761 c. $\log(45000)$ $\log(45000) = \log(10^3 \cdot 45)$ $= 3 + \log(45)$ $= 3 + \log(5) + \log(9)$ $\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of $\log(a)$. Explain how to find the value of $\log(10^k \cdot a^2)$. Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $\log(10^k \cdot a^2) = k + \log(a^2)$ $= k + \log(a) + \log(a)$			pprox 0.4771 + 0.4771	3	0.4771
b. $\log\left(\frac{1}{15}\right)$ $\log\left(\frac{1}{15}\right) = -\log(15)$ $= -(\log(3) + \log(5))$ $\approx -(0.4771 + 0.6990)$ ≈ -1.1761 c. $\log(45000)$ $\log(45000) = \log(10^3 \cdot 45)$ $= 3 + \log(45)$ $= 3 + \log(5) + \log(9)$ $\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of $\log(a)$. Explain how to find the value of $\log(10^k \cdot a^2)$. Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $\log(10^k \cdot a^2) = k + \log(a^2)$ $= k + \log(a) + \log(a)$			≈ 0 .9542	5	0.6990
$\log\left(\frac{1}{15}\right) = -\log(15)$ $= -(\log(3) + \log(5))$ $\approx -(0.4771 + 0.6990)$ ≈ -1.1761 c. $\log(45000)$ $\log(45000) = \log(10^3 \cdot 45)$ $= 3 + \log(45)$ $= 3 + \log(5) + \log(9)$ $\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of $\log(a)$. Explain how to find the value of $\log(10^k \cdot a^2)$. Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $\log(10^k \cdot a^2) = k + \log(a^2)$ $= k + \log(a) + \log(a)$				7	0.8451
$= -(\log(3) + \log(5))$ $\approx -(0.4771 + 0.6990)$ ≈ -1.1761 c. $\log(45000)$ $\log(45000) = \log(10^3 \cdot 45)$ $= 3 + \log(45)$ $= 3 + \log(5) + \log(9)$ $\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of $\log(a)$. Explain how to find the value of $\log(10^k \cdot a^2)$. Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $\log(10^k \cdot a^2) = k + \log(a^2)$ $= k + \log(a) + \log(a)$		b.	$\log\left(\frac{1}{15}\right)$		
$\approx -(0.4771 + 0.6990)$ ≈ -1.1761 c. $\log(45000)$ $\log(45000) = \log(10^3 \cdot 45)$ $= 3 + \log(45)$ $= 3 + \log(5) + \log(9)$ $\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of $\log(a)$. Explain how to find the value of $\log(10^k \cdot a^2)$. Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $\log(10^k \cdot a^2) = k + \log(a^2)$ $= k + \log(a) + \log(a)$			$\log\left(\frac{1}{15}\right) = -\log(15)$		
≈ -1.1761 c. $\log(45000)$ $\log(45000) = \log(10^3 \cdot 45)$ $= 3 + \log(45)$ $= 3 + \log(5) + \log(9)$ $\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of $\log(a)$. Explain how to find the value of $\log(10^k \cdot a^2)$. Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $\log(10^k \cdot a^2) = k + \log(a^2)$ $= k + \log(a) + \log(a)$			$= -(\log(3) + \log(5))$		
c. $\log(45000)$ $\log(45000) = \log(10^3 \cdot 45)$ $= 3 + \log(45)$ $= 3 + \log(5) + \log(9)$ $\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of $\log(a)$. Explain how to find the value of $\log(10^k \cdot a^2)$. Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $\log(10^k \cdot a^2) = k + \log(a^2)$ $= k + \log(a) + \log(a)$			pprox -(0.4771 + 0.6990)		
$log(45000) = log(10^{3} \cdot 45)$ $= 3 + log(45)$ $= 3 + log(5) + log(9)$ $\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of log(a). Explain how to find the value of log(10 ^k · a ²). Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $log(10^{k} \cdot a^{2}) = k + log(a^{2})$ $= k + log(a) + log(a)$			≈ -1.1761		
$log(45000) = log(10^{3} \cdot 45)$ $= 3 + log(45)$ $= 3 + log(5) + log(9)$ $\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of log(a). Explain how to find the value of log(10 ^k · a ²). Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $log(10^{k} \cdot a^{2}) = k + log(a^{2})$ $= k + log(a) + log(a)$					
$= 3 + \log(45)$ $= 3 + \log(5) + \log(9)$ $\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of $\log(a)$. Explain how to find the value of $\log(10^k \cdot a^2)$. Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $\log(10^k \cdot a^2) = k + \log(a^2)$ $= k + \log(a) + \log(a)$		c.	log(45000)		
$= 3 + \log(5) + \log(9)$ $\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of log(a). Explain how to find the value of log(10 ^k · a ²). Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have log(10k · a2) = k + log(a2) = k + log(a) + log(a)			$\log(45000) = \log(10^3 \cdot 45)$		
$\approx 3 + 0.6990 + 0.9542$ ≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of log(a). Explain how to find the value of log(10 ^k · a ²). Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $log(10^{k} \cdot a^{2}) = k + log(a^{2})$ $= k + log(a) + log(a)$			$= 3 + \log(45)$		
≈ 4.6532 2. Suppose that k is an integer, a is a positive real number, and you know the value of log(a). Explain how to find the value of log($10^k \cdot a^2$). Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $log(10^k \cdot a^2) = k + log(a^2)$ $= k + log(a) + log(a)$			$= 3 + \log(5) + \log(9)$		
2. Suppose that k is an integer, a is a positive real number, and you know the value of $log(a)$. Explain how to find the value of $log(10^k \cdot a^2)$. Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $log(10^k \cdot a^2) = k + log(a^2)$ = k + log(a) + log(a)			pprox 3 + 0.6990 + 0.9542		
value of $\log(10^k \cdot a^2)$. Applying the rule for the logarithm of a number multiplied by a power of 10 and then the rule for the logarithm of a product, we have $\log(10^k \cdot a^2) = k + \log(a^2)$ $= k + \log(a) + \log(a)$			≈ 4 .6532		
product, we have $\log(10^k \cdot a^2) = k + \log(a^2)$ $= k + \log(a) + \log(a)$	2.			ne value of log(a). Explain how to find the
$= k + \log(a) + \log(a)$				10 and then the	rule for the logarithm of a
			$\log(10^k \cdot a^2) = k + \log(a^2)$		
			$= k + \log(a) + \log(a)$	g(a)	
$= k + 2 \log(a).$			$= k + 2\log(a).$		

Lesson 11:

a.	log(25)	b.	log(27	7)	x	$\log(x)$
	1.40		1.44	_	2	0.30
					3	0.48
с.	log(33)	d.	log(55	5)	5	0.70
	1.52		1.74	-	7	0.85
-	lag((2))	4	les (7)	->	11	1.04
e.	log(63)	f.	log(75		13	1.11
	1.81		1.88			
g.	log(81)	h.	log(99	9)		
	1.92		2.00			
i.	log(350)		j.	log(0.0014)		
	2.55			-2.85		
k.	log(0.077)		١.	log(49000)		
	-1.11			4.70		
m.	log(1.69)		n.	log(6.5)		
	0.22			0.81		
о.	$\log\left(\frac{1}{30}\right)$		p.	$\log\left(\frac{1}{35}\right)$		
	-1.48			-1.55		
q.	$\log\left(\frac{1}{40}\right)$		r.	$\log\left(\frac{1}{42}\right)$		
	-1.60			-1.63		
s.	$\log\left(\frac{1}{50}\right)$		t.	$\log\left(\frac{1}{64}\right)$		
	-1.70			-1.80		
2. Rec	luce each expression to a single lo	ogarithm of the	form log	<i>y</i> (<i>x</i>).		
a.	$\log(5) + \log(7)$		b.	log(3) + log(9)		
	log(35)			log(27)		
c.	log(15) - log(5)		d.	$\log(8) + \log\left(\frac{1}{4}\right)$		
	log(3)			log(2)		

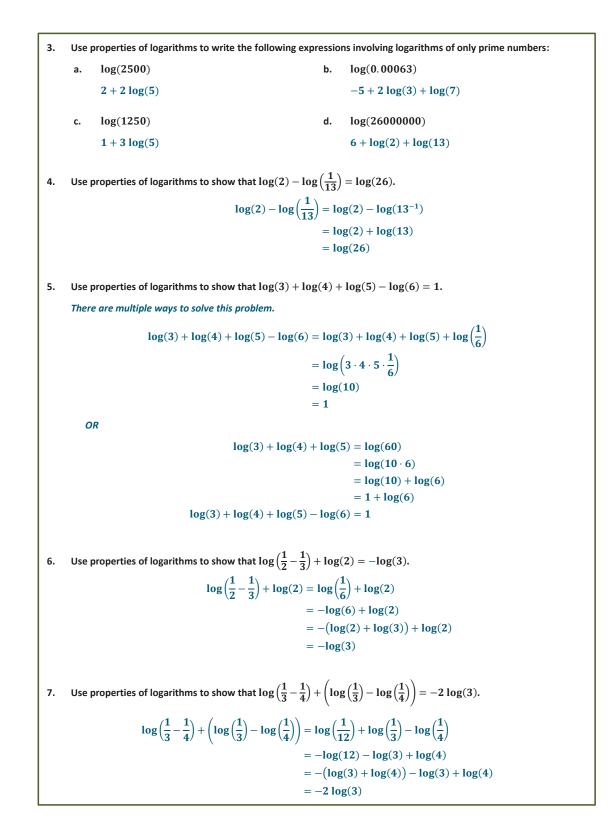
The Most Important Property of Logarithms

All of the exercises in this Problem Set should be completed without the use of a calculator.

M3

ALGEBRA II

Lesson 11



EUREKA

Lesson 11:

The Most Important Property of Logarithms

Student Outcomes

Students justify properties of logarithms using the definition and properties already developed.

Lesson Notes

In this lesson, students work exclusively with logarithms base 10; generalization of these results to a generic base *b* occurs in the next lesson. The opening of this lesson, which echoes homework from Lesson 11, is meant to launch a consideration of some properties of the common logarithm function. The centerpiece of the lesson is the theoretical approach to demonstrating six basic logarithm properties, as opposed to the numerical approach used in previous lessons. In the Problem Set, students apply these properties to calculating logarithms, rewriting logarithmic expressions, and solving base 10 exponential equations (A-SSE.A.2, F-LE.A.4).

Classwork

Opening Exercise (5 minutes)

Students should work in groups of two or three on this Opening Exercise. This exercise serves to remind students of the "most important property" of logarithms and prepare them for justifying the properties later in the lesson. Verify that students are using the property to break up the logarithm and evaluating the logarithm at known values (e.g., 0.1, 10, 100).

Opening Exercise

Use the approximation $log(2)\approx 0.3010$ to approximate the values of each of the following logarithmic expressions.

```
a. \log(20)

\log(20) = \log(10 \cdot 2)

= \log(10) + \log(2)

\approx 1 + 0.3010

\approx 1.3010

b. \log(0.2)

\log(0.2) = \log(0.1 \cdot 2)

= \log(0.1) + \log(2)

\approx -1 + 0.3010

\approx -0.6990
```

Scaffolding:

- Prompt students who are struggling with any part of the Opening Exercise with a question, such as "How is the number in parentheses related to 2?" Follow that with the question, "So, how might you find its logarithm given that you know log(2)?"
- Ask students to factor each number into powers of 10 and factors of 2 before splitting the factors using log(xy) = log(x) + log(y). Students still struggling can be given additional products to break down before finding the approximations of their logarithms.

$$4 = 2 \cdot 2$$

$$40 = 10^{1} \cdot 2 \cdot 2$$

$$0.4 = 10^{-1} \cdot 2 \cdot 2$$

$$400 = 10^{2} \cdot 2 \cdot 2$$

$$0.04 = 10^{-2} \cdot 2 \cdot 2$$

Challenge advanced students to find a general formula for $log(2^k)$ by looking for a pattern in $log(2^4)$, $log(2^5)$, $log(2^6)$, and so on.

c. $\log(2^4)$ $\log(2^4) = \log(2 \cdot 2 \cdot 2 \cdot 2)$ $= \log(2 \cdot 2) + \log(2 \cdot 2)$ $= \log(2) + \log(2) + \log(2) + \log(2)$ $\approx 4 \cdot (0.3010)$ ≈ 1.2040

Discussion (4 minutes)

Discuss the properties of logarithms used in the Opening Exercise.

- In all three parts of the Opening Exercise, we used the property log(xy) = log(x) + log(y).
- What are some other properties we used?
 - We also used $\log(10) = 1$ and $\log(0.1) = -1$.

Example (6 minutes)

Recall that, by definition, $L = \log(x)$ means $10^L = x$. Consider some possible values of x and L, noting that x cannot be a negative number. What is L ...

■ when *x* = 1?

□ *L* = 0

• when x = 0?

• The logarithm L is not defined. There is no exponent of 10 that yields a value of 0.

- when $x = 10^9$?
 - $\Box L = 9$
- when $x = 10^{n}$?
- L = n
- when $x = \sqrt[3]{10}$?
 - $\Box \quad L = \frac{1}{3}$

Exercises 1-6 (15 minutes)

Students should work in groups of two or three on each exercise. The first three should be straightforward in view of the definition of base 10 logarithms. Exercise 4 may look somewhat odd, but it, too, follows directly from the definition and presents an important property of logarithms. Exercises 5 and 6 are more difficult, which is why the hints are supplied. When all properties have been established, groups might be asked to show their explanations to the rest of the class as time permits.


```
Exercises
For Exercises 1–6, explain why each statement below is a property of base-10 logarithms.
                                                                                                          Scaffolding:
1.
     Property 1: log(1) = 0
                                                                                                          Establishing the logarithmic
                                                                                                          properties relies on the
     Because L = \log(x) means 10^L = x, then when x = 1, L = 0.
                                                                                                          exponential laws. Make sure
                                                                                                          that students have access to
2.
     Property 2: log(10) = 1.
                                                                                                          the exponential laws either
     Because L = \log(x) means 10^L = x, then when x = 10, L = 1.
                                                                                                          through a poster displayed in
                                                                                                          the classroom or through notes
                                                                                                          in their notebooks.
3. Property 3: For all real numbers r, log(10^r) = r.
     Because L = \log(x) means 10^L = x, then when x = 10^r, L = r.
                                                                                                          Scaffolding:
     Property 4: For any x > 0, 10^{\log(x)} = x.
4.
                                                                                                          Students in groups that
     Because L = \log(x) means 10^L = x, then x = 10^{\log(x)}.
                                                                                                          struggle with Exercises 3-6
                                                                                                          should be encouraged to check
5.
   Property 5: For any positive real numbers x and y, log(x \cdot y) = log(x) + log(y).
                                                                                                          the property with numerical
                                                                                                          values for k, x, m, and n. The
     Hint: Use an exponent rule as well as property 4.
                                                                                                          check may suggest a general
     By the rule a^b \cdot a^c = a^{b+c}, 10^{\log(x)} \cdot 10^{\log(y)} = 10^{\log(x) + \log(y)}.
                                                                                                          explanation.
     By property 4, 10^{\log(x)} \cdot 10^{\log(y)} = x \cdot y.
     Therefore, x \cdot y = 10^{\log(x) + \log(y)}. Again, by property 4, x \cdot y = 10^{\log(x \cdot y)}.
     Then, 10^{\log(x \cdot y)} = 10^{\log(x) + \log(y)}; so, the exponents must be equal, and \log(x \cdot y) = \log(x) + \log(y).
6. Property 6: For any positive real number x and any real number r, \log(x^r) = r \cdot \log(x).
     Hint: Use an exponent rule as well as property 4.
     By the rule (a^b)^c = a^{bc}, 10^{k \log(x)} = (10^{\log(x)})^k.
     By property 4, (10^{\log(x)})^r = x^r.
     Therefore, x^r = 10^{r \log(x)}. Again, by property 4, x^r = 10^{\log(x^r)}.
      Then, 10^{\log(x^r)} = 10^{r \log(x)}; so, the exponents must be equal, and \log(x^r) = r \cdot \log(x).
```

Exercises 7–10 (8 minutes)

MP.3

The next set of exercises bridges the gap between the abstract properties of logarithms and computational problems like those in the Problem Set. Allow students to work alone, in pairs, or in small groups. Circulate to ensure that students are applying the properties correctly. Calculators are not needed for these exercises and should not be used. In Exercises 9 and 10, students need to know that the logarithm is well defined; that is, for positive real numbers X and Y, if X = Y, then $\log(X) = \log(Y)$. This is why we can "take the log of both sides" of an equation in order to bring down an exponent and solve the equation. In these last two exercises, students need to choose an appropriate base for the logarithm to use to solve the equation. Any logarithm works to solve the equations if applied properly, so students may find equivalent answers that appear to be different from those listed here.

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

7.

ALGEBRA II

Apply properties of logarithms to rewrite the following expressions as a single logarithm or number. $\frac{1}{2}\log(25) + \log(4)$ a. $\log(5) + \log(4) = \log(20)$ $b. \quad \frac{1}{3}\log(8) + \log(16)$ $log(2) + log(2^4) = log(32)$ $3 \log(5) + \log(0.8)$ c. log(125) + log(0.8) = log(100) = 28. Apply properties of logarithms to rewrite each expression as a sum of terms involving numbers, log(x), and log(y), where x and y are positive real numbers. $log(3x^2y^5)$ a. $\log(3) + 2\log(x) + 5\log(y)$ b. $\log(\sqrt{x^7y^3})$ $\frac{7}{2}\log(x) + \frac{3}{2}\log(y)$ 9. In mathematical terminology, logarithms are well defined because if X = Y, then log(X) = log(Y) for X, Y > 0. This means that if you want to solve an equation involving exponents, you can apply a logarithm to both sides of the equation, just as you can take the square root of both sides when solving a quadratic equation. You do need to be careful not to take the logarithm of a negative number or zero. Use the property stated above to solve the following equations. $10^{10x} = 100$ а. $\log(10^{10x}) = \log(100)$ 10x = 2 $x=\frac{1}{5}$ b. $10^{x-1} = \frac{1}{10^{x+1}}$ $log(10^{x-1}) = -log(10^{x+1})$ x - 1 = -(x + 1)2x = 0x = 0 $100^{2x} = 10^{3x-1}$ c. $\log(100^{2x}) = \log(10^{3x-1})$ $2x \log(100) = (3x - 1)$ 4x = 3x - 1x = -1

Lesson 12: Properties of Logarithms

engage^{ny}

10.	Solv	e the following equations.
	a.	$10^x = 2^7$
		$\log(10^x) = \log(2^7)$
		$x = 7\log(2)$
	b.	$10^{x^2+1} = 15$
		$\log(10^{x^2+1}) = \log(15)$
		$x^2 + 1 = \log(15)$
		$x = \pm \sqrt{\log(15) - 1}$
	c	$4^{x} = 5^{3}$
	с.	
		$\log(4^x) = \log(5^3)$
		$x\log(4) = 3\log(5)$
		$x = \frac{3\log(5)}{2\log(3)}$
		$n = \log(4)$

Closing (2 minutes)

Point out that for each property 1–6, it has been established that the property holds, so these properties can be used in future work with logarithms. The Lesson Summary might be posted in the classroom for at least the rest of the module. Property 7 was established in Lesson 11 through numerical observation; students are now asked to verify both properties 7 and 8 using properties 1–6.

Lesson Summary We have established the following properties for base-10 logarithms, where x and y are positive real numbers and r is any real number: 1. log(1) = 02. log(10) = 13. $\log(10^r) = r$ $\mathbf{10}^{\log(x)} = x$ 4. 5. $\log(x \cdot y) = \log(x) + \log(y)$ 6. $\log(x^r) = r \cdot \log(x)$ Additional properties not yet established are the following: $\log\left(\frac{1}{x}\right) = -\log(x)$ 7. $\log\left(\frac{x}{y}\right) = \log(x) - \log(y)$ 8. Also, logarithms are well defined, meaning that for X, Y > 0, if X = Y, then log(X) = log(Y).

Exit Ticket (5 minutes)

Name

Date

Lesson 12: Properties of Logarithms

Exit Ticket

In this lesson, we have established six logarithmic properties for positive real numbers x and y and real numbers r.

- 1. $\log(1) = 0$
- 2. $\log(10) = 1$
- 3. $\log(10^r) = r$
- 4. $10^{\log(x)} = x$
- 5. $\log(x \cdot y) = \log(x) + \log(y)$
- 6. $\log(x^r) = r \cdot \log(x)$
- 1. Use properties 1–6 of logarithms to establish property 7: $\log(\frac{1}{x}) = -\log(x)$ for all x > 0.

2. Use properties 1–6 of logarithms to establish property 8: $\log(\frac{x}{y}) = \log(x) - \log(y)$ for x > 0 and y > 0.

engage^{ny}

Exit Ticket Sample Solutions

In this lesson, we have established six logarithmic properties for positive real numbers x and y and real numbers r. log(1) = 01. **2.** $\log(10) = 1$ 3. $\log(10^r) = r$ 4. $10^{\log(x)} = x$ 5. $\log(x \cdot y) = \log(x) + \log(y)$ $6. \quad \log(x^r) = r \cdot \log(x)$ 1. Use properties 1–6 of logarithms to establish property 7: $\log(\frac{1}{x}) = -\log(x)$ for all x > 0. By property 6, $\log(x^k) = k \cdot \log(x)$. Let k = -1; then for x > 0, $\log(x^{-1}) = (-1) \cdot \log(x)$, which is equivalent to $\log(\frac{1}{x}) = -\log(x)$. Thus, for any x > 0, $\log\left(\frac{1}{x}\right) = -\log(x)$. Use properties 1–6 of logarithms to establish property 8: $\log(\frac{x}{y}) = \log(x) - \log(y)$ for x > 0 and y > 0. 2. By property 5, $\log(x \cdot y) = \log(x) + \log(y)$. By Problem 1 above, for y > 0, $\log(y^{-1}) = (-1) \cdot \log(y)$. Therefore, $\log\left(\frac{x}{y}\right) = \log(x) + \log\left(\frac{1}{y}\right)$ $= \log(x) + (-1)\log(y)$ $= \log(x) - \log(y).$ Thus, for any x > 0 and y > 0, $\log\left(\frac{x}{y}\right) = \log(x) - \log(y)$.

Problem Set Sample Solutions

Problems 1–7 give students an opportunity to practice using the properties they have established in this lesson. In the remaining problems, students apply base-10 logarithms to solve simple exponential equations.

	Jse the approximate logarithm values below to estimate the value of each of the following logarithms. Indicate vhich properties you used.						
		log(2) = 0.3010	log(3) = 0.4771				
		log(5) = 0.6990	log(7) = 0.8451				
a. log(6) Using property 5,							
							$\log(6) = \log(3)$
	whic	 which properties you us a. log(6) Using property 5, 	which properties you used. $log(2) = 0.3010$ $log(5) = 0.6990$ a. $log(6)$	which properties you used. log(2) = 0.3010 $log(3) = 0.4771log(5) = 0.6990$ $log(7) = 0.8451a. log(6)Using property 5,$			

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

b. log(15) Using property 5, $log(15) = log(3) + log(5) \approx 1.1761.$ c. log(12) Using properties 5 and 6, $log(12) = log(3) + log(2^2) = log(3) + 2 log(2) \approx 1.0791.$ d. log(10⁷) Using property 3, $log(10^7) = 7.$ $\log\left(\frac{1}{5}\right)$ e. Using property 7, $\log\left(\frac{1}{5}\right) = -\log(5) \approx -0.6990.$ $\log\left(\frac{3}{7}\right)$ f. Using property 8, $\log\left(\frac{3}{7}\right) = \log(3) - \log(7) \approx -0.368.$ $\log(\sqrt[4]{2})$ g. Using property 6, $log(\sqrt[4]{2}) = log(2^{\frac{1}{4}}) = \frac{1}{4}log(2) \approx 0.0753.$ 2. Let log(X) = r, log(Y) = s, and log(Z) = t. Express each of the following in terms of r, s, and t. b. log(YZ) $\log\left(\frac{X}{Y}\right)$ a. s + tr-s $\log(X^r)$ $\log(\sqrt[3]{Z})$ d. c. r^2 t 3 $log(XY^2Z^3)$ f. $\log\left(\sqrt[4]{\frac{r}{Z}}\right)$ e. r + 2s + 3ts-t4

EUREKA MATH

3. Use the properties of logarithms to rewrite each expression in an equivalent form containing a single logarithm.
a.
$$\log\left(\frac{13}{5}\right) + \log\left(\frac{5}{4}\right)$$

 $\log\left(\frac{5}{4}\right)$
b. $\log\left(\frac{5}{6}\right) - \log\left(\frac{2}{3}\right)$
 $\log\left(\frac{5}{4}\right)$
c. $\frac{1}{2}\log(16) + \log(3) + \log\left(\frac{1}{4}\right)$
 $\log(3)$
4. Use the properties of logarithms to rewrite each expression in an equivalent form containing a single logarithm.
a. $\log(\sqrt{x}) + \frac{1}{2}\log\left(\frac{1}{x}\right) + 2\log(x)$
 $\log(x^2)$
b. $\log(\sqrt{x}) + \frac{1}{2}\log\left(\frac{1}{x}\right) + 2\log(x)$
 $\log(x)$
c. $\log(x) + 2\log(y) - \frac{1}{2}\log(z)$
 $\log\left(\frac{xy^2}{\sqrt{z}}\right)$
d. $\frac{1}{3}(\log(x) - 3\log(y) + \log(z))$
 $\log\left(\frac{\sqrt{x^2}}{\sqrt{y^2}}\right)$
e. $2(\log(x) - \log(3y)) + 3(\log(z) - 2\log(x))$
 $\log\left(\frac{(\frac{xy^2}{\sqrt{y^2}}\right)}{\log\left(\frac{xy^2}{\sqrt{y^2}}\right)} + \log\left(\left(\frac{z}{x^2}\right)^3\right) = \log\left(\frac{z^2}{9y^2x^4}\right)$
5. In each of the following expressions, *x*, *y*, and *z* represent positive real numbers. Use properties of logarithms to rewrite each expression protein gold $\left(\frac{3x^2y^4}{\sqrt{z}}\right)$
 $\log\left(\frac{3x^2y^4}{\sqrt{z}}\right)$
 $\log(3) + 2\log(x) + 4\log(y) - \frac{1}{2}\log(z)$

b. $\log\left(\frac{42\sqrt[3]{xy^7}}{x^2z}\right)$ $\log(42) - \frac{5}{3}\log(x) + \frac{7}{3}\log(y) - \log(z)$ c. $\log\left(\frac{100x^2}{y^3}\right)$ $2 + 2\log(x) - 3\log(y)$ d. $\log\left(\sqrt{\frac{x^3y^2}{10z}}\right)$ $\frac{1}{2} \big(3\log(x) + 2\log(y) - 1 - \log(z) \big)$ e. $\log\left(\frac{1}{10x^2z}\right)$ $-1 - 2\log(x) - \log(z)$ 6. Express $\log\left(\frac{1}{x} - \frac{1}{x+1}\right) + \left(\log\left(\frac{1}{x}\right) - \log\left(\frac{1}{x+1}\right)\right)$ as a single logarithm for positive numbers x. $\log\left(\frac{1}{x} - \frac{1}{x+1}\right) + \left(\log\left(\frac{1}{x}\right) - \log\left(\frac{1}{x+1}\right)\right) = \log\left(\frac{1}{x(x+1)}\right) + \log\left(\frac{1}{x}\right) - \log\left(\frac{1}{x+1}\right)$ $= -\log(x(x+1)) - \log(x) + \log(x+1)$ $= -\log(x) - \log(x+1) - \log(x) + \log(x+1)$ $= -2 \log(x)$ 7. Show that $\log(x + \sqrt{x^2 - 1}) + \log(x - \sqrt{x^2 - 1}) = 0$ for $x \ge 1$. $\log(x + \sqrt{x^2 - 1}) + \log(x - \sqrt{x^2 - 1}) = \log((x + \sqrt{x^2 - 1})(x - \sqrt{x^2 - 1}))$ $= \log\left(x^2 - \left(\sqrt{x^2 - 1}\right)^2\right)$ $= \log(x^2 - x^2 + 1)$ $= \log(1)$ = 0 If $xy = 10^{3.67}$ for some positive real numbers x and y, find the value of log(x) + log(y). 8. $xy = 10^{3.67}$ $3.67 = \log(xy)$ $\log(xy) = 3.67$ $\log(x) + \log(y) = 3.67$

engage

9. Solve the following exponential equations by taking the logarithm base 10 of both sides. Leave your answers stated in terms of logarithmic expressions. $10^{x^2} = 320$ а. $\log(10^{x^2}) = \log(320)$ $x^2 = \log(320)$ $x = \pm \sqrt{\log(320)}$ $10^{\frac{x}{8}} = 300$ b. $\log\left(10^{\frac{x}{8}}\right) = \log(300)$ $\frac{x}{8} = \log(10^2 \cdot 3)$ x $\frac{\pi}{8} = 2 + \log(3)$ $x = 16 + 8 \log(3)$ $10^{3x} = 400$ c. $\log(10^{3x}) = \log(400)$ $3x \cdot \log(10) = \log(10^2 \cdot 4)$ $3x \cdot 1 = 2 + \log(4)$ $x = \frac{1}{3} \left(2 + \log(4) \right)$ $5^{2x} = 200$ d. $\log(5^{2x}) = \log(200)$ $2x \cdot \log(5) = \log(100) + \log(2)$ $2x = \frac{2 + \log(2)}{\log(5)}$ $x = \frac{2 + \log(2)}{2\log(5)}$ $3^x = 7^{-3x+2}$ e. $\log(3^x) = \log(7^{-3x+2})$ $x \log(3) = (-3x + 2)\log(7)$ $x \log(3) + 3x \log(7) = 2 \log(7)$ $x(\log(3) + 3\log(7)) = 2\log(7)$ **2 log**(**7**) log(49) log(49) $x = \frac{1}{\log(3) + 3\log(7)} = \frac{1}{\log(3) + \log(343)} = \frac{1}{\log(1029)}$ (Any of the three equivalent forms given above are acceptable answers.) 10. Solve the following exponential equations. $10^{x} = 3$ a. $x = \log(3)$

b. $10^{y} = 30$ $y = \log(30)$ $10^{z} = 300$ c. z = log(300)d. Use the properties of logarithms to justify why x, y, and z form an arithmetic sequence whose constant difference is 1. Since $y = \log(30)$, $y = \log(10 \cdot 3) = 1 + \log(3) = 1 + x$. *Similarly,* $z = 2 + \log(3) = 2 + x$. Thus, the sequence x, y, z is the sequence log(3), 1 + log(3), 2 + log(3), and these numbers form an arithmetic sequence whose first term is log(3) with constant difference 1. 11. Without using a calculator, explain why the solution to each equation must be a real number between 1 and 2. $11^{x} = 12$ а. 12 is greater than 11^1 and less than 11^2 , so the solution is between 1 and 2. $21^{x} = 30$ b. 30 is greater than 21^1 and less than 21^2 , so the solution is between 1 and 2. $100^x = 2000$ с. $100^2 = 10000$, so 2,000 is between 100^1 and 00^2 , so the solution is between 1 and 2. d. $\left(\frac{1}{11}\right)^x = 0.01$ $\frac{1}{100}$ is between $\frac{1}{11}$ and $\frac{1}{121}$, so the solution is between 1 and 2. e. $\left(\frac{2}{2}\right)^x = \frac{1}{2}$ $\left(\frac{2}{3}\right)^2 = \frac{4}{9}$, and $\frac{1}{2}$ is between $\frac{4}{9}$ and $\frac{2}{3}$, so the solution is between 1 and 2. f. $99^{x} = 9000$ $99^2 = 9801$. Since 9,000 is less than 9,801 and greater than 99, the solution is between 1 and 2. 12. Express the exact solution to each equation as a base-10 logarithm. Use a calculator to approximate the solution to the nearest 1000th. $11^{x} = 12$ а. $\log(11^x) = \log(12)$ $x\log(11) = \log(12)$ $x = \frac{\log(12)}{\log(11)}$ $x \approx 1.036$

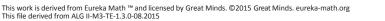
171

engage

Lesson 12 M3

ALGEBRA II

b. $21^{x} = 30$ $x = \frac{\log(30)}{\log(21)}$ $x \approx 1.117$ $100^{x} = 2000$ c. $x = \frac{\log(2000)}{\log(100)}$ $x \approx 1.651$ d. $(\frac{1}{11})^x = 0.01$ $x = -\frac{2}{\log\left(\frac{1}{11}\right)}$ $x \approx 1.921$ $\left(\frac{2}{3}\right)^x = \frac{1}{2}$ e. $x = \frac{\log\left(\frac{1}{2}\right)}{\log\left(\frac{2}{3}\right)}$ $x \approx 1.710$ $99^{x} = 9000$ f. $x = \frac{\log(9000)}{\log(99)}$ $x \approx 1.981$ 13. Show that for any real number r, the solution to the equation $10^x = 3 \cdot 10^r$ is $\log(3) + r$. Substituting $x = \log(3) + r$ into 10^x and using properties of exponents and logarithms gives $10^x = 10^{\log(3) + r}$ $= 10^{\log(3)} 10^r$ $= 3 \cdot 10^{r}$. Thus, $x = \log(3) + r$ is a solution to the equation $10^x = 3 \cdot 10^r$. 14. Solve each equation. If there is no solution, explain why. $3 \cdot 5^x = 21$ а. $5^{x} = 7$ $\log(5^x) = \log(7)$ $x\log(5) = \log(7)$ $x = \frac{\log(7)}{\log(5)}$



engage^{ny}

b. $10^{x-3} = 25$ $\log(10^{x-3}) = \log(25)$ $x = 3 + \log(25)$ $10^x + 10^{x+1} = 11$ c. $10^{x}(1+10) = 11$ $10^{x} = 1$ x = 0 $8 - 2^x = 10$ d. $-2^{x} = 2$ $2^{x} = -2$ There is no solution because 2^x is always positive for all real x. 15. Solve the following equation for *n*: $A = P(1 + r)^n$. $A = P(1+r)^n$ $\log(A) = \log[(P(1+r)^n]]$ $\log(A) = \log(P) + \log[(1+r)^n]$ $\log(A) - \log(P) = n \log(1+r)$ $n = \frac{\log(A) - \log(P)}{\log(1+r)}$ $n = \frac{\log\left(\frac{A}{P}\right)}{\log(1+r)}$

The remaining questions establish a property for the logarithm of a sum. Although this is an application of the logarithm of a product, the formula does have some applications in information theory and can help with the calculations necessary to use tables of logarithms, which are explored further in Lesson 15.

16. In this exercise, we will establish a formula for the logarithm of a sum. Let $L = \log(x + y)$, where x, y > 0. a. Show $\log(x) + \log\left(1 + \frac{y}{x}\right) = L$. State as a property of logarithms after showing this is a true statement. $\log(x) + \log\left(1 + \frac{y}{x}\right) = \log\left(x\left(1 + \frac{y}{x}\right)\right)$ $= \log\left(x + \frac{xy}{x}\right)$ $= \log(x + y)$ = LTherefore, for x, y > 0, $\log(x + y) = \log(x) + \log\left(1 + \frac{y}{x}\right)$.

engage^{ny}

Lesson 12 M3

ALGEBRA II

b. Use part (a) and the fact that log(100) = 2 to rewrite log(365) as a sum.

$$log(365) = log(100 + 265)$$
$$= log(100) + log\left(1 + \frac{265}{100}\right)$$
$$= log(100) + log(3.65)$$
$$= 2 + log(3.65)$$

c. Rewrite 365 in scientific notation, and use properties of logarithms to express log(365) as a sum of an integer and a logarithm of a number between 0 and 10.

 $\begin{aligned} 365 &= 3.65 \times 10^2 \\ log(365) &= log(3.65 \times 10^2) \\ &= log(3.65) + log(10^2) \\ &= 2 + log(3.65) \end{aligned}$

d. What do you notice about your answers to (b) and (c)?

Separating 365 into 100 + 265 and using the formula for the logarithm of a sum is the same as writing 365 in scientific notation and using the formula for the logarithm of a product.

e. Find two integers that are upper and lower estimates of log(365).

Since 1<3.65<10 , we know that 0<log(3.65)<1. This tells us that 2<2+log(3.65)<3 , so 2<log(365)<3.

Student Outcomes

- Students understand how to change logarithms from one base to another.
- Students calculate logarithms with any base using a calculator that computes only logarithms base 10 and base *e*.
- Students justify properties of logarithms with any base.

Lesson Notes

The first example in this lesson demonstrates how to use a base-10 logarithm to calculate a base-2 logarithm, leading to the change of base formula for logarithms. The change of base formula allows students to generalize the properties of base-10 logarithms developed in the previous few lessons to logarithms with general base *b*. This lesson introduces the natural logarithm $\ln(x) = \log_e(x)$. Calculators are used briefly in this lesson to compute both common and natural logarithms, and one of the goals of the lesson is to explain why the calculator only has a LOG and an LN key. Students solve exponential equations by applying the appropriate logarithm (**F-LE.A.4**).

Materials

Students need access either to graphing calculators or computer software capable of computing logarithms with base 10 and base *e*, such as the Wolfram Alpha engine.

Classwork

Example 1 (5 minutes)

The purpose of this example is to show how to find $log_2(x)$ using log(x).

We have been working primarily with base-10 logarithms, but in Lesson 7 we defined logarithms for any base b. For example, the number 2 might be the base. When logarithms have bases other than 10, it often helps to be able to rewrite the logarithm in terms of base 10 logarithms. Let

$$L = \log_2(x)$$
, and show that $L = \frac{\log(x)}{\log(2)}$

• Let
$$L = \log_2(x)$$
.
Then $2^L = x$.
Taking the logarithm of each side, we get

$$\log(2^{L}) = \log(x)$$
$$L \cdot \log(2) = \log(x)$$
$$L = \frac{\log(x)}{\log(2)}$$

Therefore, $\log_2(x) = \frac{\log(x)}{\log(2)}$

Scaffolding:

- Students who struggle with the first step of this example might need to be reminded of the definition of *logarithm* from Lesson 7: L = log_b(x) means b^L = x. Therefore,
 - $L = \log_2(x)$ means $2^L = x$. Advanced learners may want
- to immediately start with the second part of the example, converting $\log_b(x)$ into $\frac{\log(x)}{\log(b)}$

175

engage

Remember that log(2) is a number, so this shows that $log_2(x)$ is a rescaling of log(x).

- The example shows how we can convert $\log_2(x)$ to an expression involving $\log(x)$. More generally, suppose we are given a logarithm with base *b*. What is $\log_b(x)$ in terms of $\log(x)$?
 - Let $L = \log_b(x)$. Then $b^L = x$. Taking the logarithm of each side, we get

 $\log(b^{L}) = \log(x)$ $L \cdot \log(b) = \log(x)$ $L = \frac{\log(x)}{\log(b)}.$

Therefore, $\log_b(x) = \frac{\log(x)}{\log(b)}$.

• This equation not only allows us to change from $\log_b(x)$ to $\log(x)$ but to change the base in the other direction as well: $\log(x) = \log_b(x) \cdot \log(b)$.

Exercise 1 (3 minutes)

The first exercise deals with the general formula for changing the base of a logarithm. It follows the same pattern as Example 1. Take time for students to share their results from Exercise 1 in a class discussion before moving on to Exercise 2 so that all students understand how the base of a logarithm is changed. Ask students to work in pairs on this exercise.

Scaffolding:

Lesson 13

If students have difficulty with Exercise 1, they should review the argument in Example 1, noting that it deals with base 10, whereas this exercise generalizes that base to *a*.

Exercises

1. Assume that x, a, and b are all positive real numbers, so that $a \neq 1$ and $b \neq 1$. What is $\log_b(x)$ in terms of $\log_a(x)$? The resulting equation allows us to change the base of a logarithm from a to b. Let $L = \log_b(x)$. Then $b^L = x$. Taking the logarithm base a of each side, we get $\log_a(b^L) = \log_a(x)$ $L \cdot \log_a(b) = \log_a(x)$ $L = \frac{\log_a(x)}{\log_a(b)}$. Therefore, $\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$.

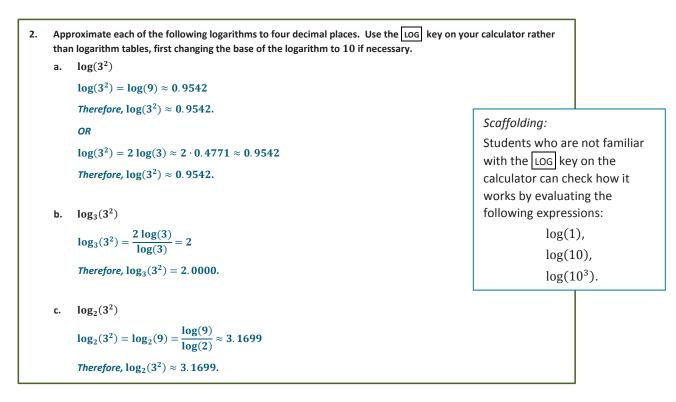
Discussion (2 minutes)

Ask a student to present the solution to Exercise 1 to the class to ensure that all students understand how to change the base of a logarithm and how the formula comes from the definition of the logarithm as an exponential equation. Be sure that students record the formula in their notebooks.

Change of Base Formula for Logarithms If x, a, and b are all positive real numbers with $a \neq 1$ and $b \neq 1$, then $\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$.

Exercise 2 (2 minutes)

In the second exercise, students practice changing bases. They need a calculator with the ability to calculate logarithms base 10. Later in the lesson, students need to calculate natural logarithms as well. Students should work in pairs on this exercise, with one student using the calculator and the other keeping track of the computation. Students should share their results for Exercise 2 in a class discussion before moving on to Exercise 3.



Exercise 3 (8 minutes)

In Lesson 12, we justified a number of properties of base-10 logarithms. Working in pairs, justify the following 3. properties of base-b logarithms: $\log_b(1) = 0$ а. Because $L = \log_b(x)$ means $b^L = x$, then when x = 1, L = 0. b. $\log_{b}(b) = 1$ Scaffolding: Because $L = \log_b(x)$ means $b^L = x$, then when x = b, L = 1. By working in pairs, students should be able to reconstruct c. $\log_b(\mathbf{b}^r) = r$ the arguments they used in Lesson 10. If they have trouble, Because $L = \log_{b}(x)$ means $b^{L} = x$, then when $x = b^{r}$, L = r.

they should be encouraged to use the definition and properties already justified.

Lesson 13: Changing the Base engage^{ny}


```
d.
        b^{\log_b(x)} = x
        Because L = \log_{b}(x) means b^{L} = x, then x = b^{\log_{b}(x)}.
        \log_b(x \cdot y) = \log_b(x) + \log_b(y)
e.
        By the rule a^q \cdot a^r = a^{q+r}, b^{\log_b(x)} \cdot b^{\log_b(y)} = b^{\log_b(x) + \log_b(y)}.
        By property 4. b^{\log_b(x)} \cdot b^{\log_b(y)} = x \cdot y.
        Therefore, x \cdot y = b^{\log_b(x) + \log_b(y)}. By property 4 again, x \cdot y = b^{\log_b(x \cdot y)}.
        So, the exponents must be equal, and \log_{h}(x \cdot y) = \log_{h}(x) + \log_{h}(y).
f.
        \log_{h}(x^{r}) = r \cdot \log_{h}(x)
        By the rule (a^q)^r = a^{qr}, b^{r \log_b(x)} = (b^{\log_b(x)})^r.
        By property 4, (b^{\log_b(x)})^r = x^r.
        Therefore, x^r = b^{r\log_b(x)}. By property 4 again, x^r = b^{\log_b(x^r)}.
        So, the exponents must be equal, and \log_b(x^r) = r \cdot \log_b(x).
       \log_{b}\left(\frac{1}{x}\right) = -\log_{b}(x)
g.
        By property 6, \log_b(x^k) = k \cdot \log_b(x).
        Let k = -1; then for x \neq 0, \log_{h}(x^{-1}) = (-1) \cdot \log_{h}(x).
        Thus, \log_b\left(\frac{1}{x}\right) = -\log_b(x).
     \log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)
h.
        By property 5, \log_b(x \cdot y) = \log_b(x) + \log_b(y).
        By property 7, for y \neq 0, \log_b(y^{-1}) = (-1) \cdot \log_b(y).
        Therefore, \log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y).
```

Discussion (2 minutes)

Define the natural logarithm in this Discussion. Because students often misinterpret the symbol ln as the word *in*, take the time to emphasize that the notation is an L followed by an N, which comes from the French for natural logarithm: le logarithme naturel.

- Recall Euler's number e from Lesson 5, which is an irrational number approximated by $e \approx 2.71828$ This number plays an important role in many parts of mathematics, and it is frequently used as the base of logarithms. Because exponential functions with base e are used to model growth and change of natural phenomena, a logarithm with base e is called a natural logarithm. The notation for the natural logarithm of a positive number x is $\ln(x) = \log_e(x)$.
- What is the value of $\ln(1)$?
 - $-\ln(1) = 0$

Lesson 13: Changing the Base

- What is the value of $\ln(e)$? The value of $\ln(e^2)$? Of $\ln(e^3)$?
 - $\ln(e) = 1$, $\ln(e^2) = 2$, and $\ln(e^3) = 3$
- Because scientists primarily use logarithms base 10 and base *e*, calculators often only have two logarithm buttons: LOG for calculating log(*x*) and LN for calculating ln(*x*). With the change of base formula, you can use either the common logarithm (base 10) or the natural logarithm (base *e*) to calculate the value of a logarithm with any allowable base *b*, so technically we only need one of those two buttons. However, each base has important uses, so most calculators are able to calculate logarithms in either base.

Exercises 4–6 (5 minutes)

Exercises 4–6 allow students to compare the values of $\ln(x)$ to the more familiar values of $\log(x)$ for a few values of x and to conclude that for any $x \ge 1$, $\log(x) \le \ln(x)$. Students need a calculator with an \mathbb{LN} key. They should work in pairs on these exercises, with one student using the calculator and the other recording the result. They should share their results for Exercise 4 in a class discussion before moving on.

						Scujjolullig.
4.		the LN and LOG mal places.	keys on your calcu	Students who are not familiar with the LN key on the		
5.	a. b. c. d. e. Mako	In(1) In(3) In(10) In(25) In(100) e a conjecture th	0.0000 1.0986 2.3026 3.2189 4.6052 hat compares value ≥ 1, $\log(x) \le \ln(x)$	calculator can check how it works by evaluating the following expressions: ln(1), ln(e), $ln(e^3).$		
6.	By th	ne change of bas	se formula, $\log(x)$ =	the change of base $= \frac{\ln(x)}{\ln(10)}$. Then $\ln(10)$ $= \ln(x)$, and thus $\log(x) \leq 1$	$0) \cdot \log(x) = \ln(x).$ Since	

Example 2 (3 minutes)

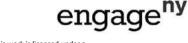
This example introduces more complicated expressions involving logarithms and showcases the power of logarithms in rearranging logarithmic expressions. Students have done similar exercises in their homework in prior lessons for base-10 logarithms, so this example and the following exercises demonstrate how the same procedures apply to natural logarithms. Remind students that Exercise 3 established that the logarithm properties developed for base-10 logarithms apply for logarithms of any base, including base *e*.

• Write as an expression containing only one logarithm: $\ln(k^2) + \ln(\frac{1}{k^2}) - \ln(\sqrt{k})$.

$$\ln(k^2) + \ln\left(\frac{1}{k^2}\right) - \ln(\sqrt{k}) = 2\ln(k) - 2\ln(k) - \frac{1}{2} \cdot \ln(k) = -\frac{1}{2}\ln(k)$$

• Therefore,
$$\ln(k^2) + \ln\left(\frac{1}{k^2}\right) - \ln(\sqrt{k}) = -\frac{1}{2}\ln(k).$$

EUREKA MATH



179

Lesson 13

Scaffolding

ALGEBRA II

Exercises 7-8 (6 minutes)

Exercise 7 follows Example 2 by asking students to simplify more complicated logarithmic expressions. In Exercise 7, students condense a sum of logarithmic expressions to an expression containing only one logarithm, while in Exercise 8, students take a single complicated logarithm and break it up into simpler parts. Students should work in pairs on these exercises, sharing their results in a class discussion before the Closing.

7. Write as a single logarithm. a. $\ln(4) - 3\ln(\frac{1}{3}) + \ln(2)$ $\ln(4) - 3\ln(\frac{1}{3}) + \ln(2) = \ln(4) + \ln(3^3) + \ln(2)$ $= \ln(4 \cdot 3^3 \cdot 2)$ $= \ln(216)$ $= \ln(6^3)$ $= 3 \ln(6)$ Any of the last three expressions is an acceptable final answer. b. $\ln(5) + \frac{3}{5}\ln(32) - \ln(4)$ $\ln(5) + \frac{3}{5}\ln(32) - \ln(4) = \ln(5) + \ln\left(32^{\frac{3}{5}}\right) - \ln(4)$ $= \ln(5) + \ln(8) - \ln(4)$ $= \ln(5 \cdot 8) - \ln(4)$ $=\ln\left(\frac{40}{4}\right)$ $= \ln(10)$ Therefore, $ln(5) + \frac{3}{5}ln(32) - ln(4) = ln(10)$. 8. Write each expression as a sum or difference of constants and logarithms of simpler terms. a. $\ln\left(\frac{\sqrt{5x^3}}{e^2}\right)$ $\ln\left(\frac{\sqrt{5x^{3}}}{e^{2}}\right) = \ln(\sqrt{5}) + \ln\left(\sqrt{x^{3}}\right) - \ln(e^{2})$ $= \frac{1}{2}\ln(5) + \frac{3}{2}\ln(x) - 2$ b. $\ln\left(\frac{(x+y)^2}{x^2+y^2}\right)$ $\ln\left(\frac{(x+y)^2}{x^2+y^2}\right) = \ln(x+y)^2 - \ln(x^2+y^2)$ $= 2\ln(x+y) - \ln(x^2+y^2)$ The point of this simplification is that neither of these terms can be simplified further.

Lesson 13: Changing the Base

180

engage

Closing (4 minutes)

Have students summarize the lesson by discussing the following questions and coming to a consensus before students record the answers in their notebooks:

- What is the definition of the logarithm base *b*?
 - If there exist numbers b, L, and x so that $b^L = x$, then $L = \log_b(x)$.
- What does ln(x) represent?
 - The notation $\ln(x)$ represents the logarithm of x base e; that is, $\ln(x) = \log_e(x)$.
- How can we use a calculator to approximate a logarithm to a base other than 10 or *e*?
 - Use the change of base formula to convert a logarithm with base b to one with base 10 or base e; then, use the appropriate calculator function.

```
Lesson Summary
We have established a formula for changing the base of logarithms from b to a:
                                                       \log_b(x) = \frac{\log_a(x)}{\log_a(b)}.
In particular, the formula allows us to change logarithms base b to common or natural logarithms, which are the
only two kinds of logarithms that most calculators compute:
                                                   \log_{b}(x) = \frac{\log(x)}{\log(b)} = \frac{\ln(x)}{\ln(b)}
We have also established the following properties for base b logarithms. If x, y, a, and b are all positive real
numbers with a \neq 1 and b \neq 1 and r is any real number, then:
      \log_b(1) = 0
1.
2.
     \log_b(b) = 1
    \log_b(b^r) = r
3.
    b^{\log_b(x)} = x
4.
5.
     \log_b(x \cdot y) = \log_b(x) + \log_b(y)
     \log_b(x^r) = r \cdot \log_b(x)
6.
    \log_b\left(\frac{1}{x}\right) = -\log_b(x)
7.
8.
     \log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y).
```

Exit Ticket (5 minutes)

181

engage

Name

Date _____

Lesson 13: Changing the Base

Exit Ticket

1. Are there any properties that hold for base-10 logarithms that would not be valid for the logarithm base e? Why? Are there any properties that hold for base-10 logarithms that would not be valid for some positive base b, such that $b \neq 1$?

- 2. Write each logarithm as an equivalent expression involving only logarithms base 10.
 - a. log₃(25)
 - b. $\log_{100}(x^2)$
- 3. Rewrite each expression as an equivalent expression containing only one logarithm.
 - a. $3\ln(p+q) 2\ln(q) 7\ln(p)$

b. $\ln(xy) - \ln\left(\frac{x}{y}\right)$

182

engage^{ny}

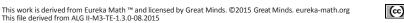
Exit Ticket Sample Solutions

Are there any properties that hold for base-10 logarithms that would not be valid for the logarithm base e? Why? 1. Are there any properties that hold for base-10 logarithms that would not be valid for some positive base b, such that $b \neq 1$? No. Any property that is true for a base-10 logarithm will be true for a base-e logarithm. The only difference between a common logarithm and a natural logarithm is a scale change because $log(x) = \frac{ln(x)}{ln(10)}$ and $\ln(x) = \frac{\log(x)}{\log(e)}$ Since $\log_b(x) = \frac{\log(x)}{\log(b)}$ we would only encounter a problem if $\log(b) = 0$, but this only happens when b = 1, and 1 is not a valid base for logarithms. 2. Write each logarithm as an equivalent expression involving only logarithms base 10. $log_{3}(25)$ a. $\log_3(25) = \frac{\log(25)}{\log(3)}$ $\log_{100}(x^2)$ b. $\log_{100}(x^2) = \frac{\log(x^2)}{\log(100)}$ $=\frac{2\log(x)}{2}$ $= \log(x)$ 3. Rewrite each expression as an equivalent expression containing only one logarithm. $3\ln(p+q) - 2\ln(q) - 7\ln(p)$ a. $3\ln(p+q) - 2\ln(q) - 7\ln(p) = \ln((p+q)^3) - (\ln(q^2) + \ln(p^7))$ $= \ln((p+q)^3) - \ln(q^2p^7)$ $= \ln\left(\frac{(p+q)^3}{q^2p^7}\right)$ $\ln(xy) - \ln\left(\frac{x}{y}\right)$ b. $\ln(xy) - \ln\left(\frac{x}{y}\right) = \ln(x) + \ln(y) - \ln(x) + \ln(y)$ $= 2 \ln(y)$ $= \ln(v^2)$ Therefore, $\ln(xy) - \ln(\frac{x}{y})$ is equivalent to both $2 \ln(y)$ and $\ln(y^2)$.

engage^{ny}

Problem Set Sample Solutions

```
Evaluate each of the following logarithmic expressions, approximating to four decimal places if necessary. Use the
1.
      LN or LOG key on your calculator rather than a table.
              log<sub>8</sub>(16)
       a.
              \log_8(16) = \frac{\log(10)}{\log(8)}
                              log(16)
                           =\frac{\log(2^4)}{\log(2^3)}
                           =\frac{4\cdot \log(2)}{3\cdot \log(2)}
                           =\frac{4}{3}
              Therefore, \log_8(16) = \frac{4}{3}.
       b.
              \log_7(11)
              log_7(11) = \frac{log(11)}{log(7)}
                           \approx 1.2323
              Therefore, \log_7(11) \approx 1.2323.
              log_{3}(2) + log_{2}(3)
       с.
              log_3(2) + log_2(3) = \frac{log(2)}{log(3)} + \frac{log(3)}{log(2)}
                                      \approx 2.2159
              Therefore, log_3(2) + log_2(3) \approx 2.2159.
      Use logarithmic properties and the fact that ln(2) \approx 0.69 and ln(3) \approx 1.10 to approximate the value of each of
2.
      the following logarithmic expressions. Do not use a calculator.
              \ln(e^4)
       а.
              \ln(e^4) = 4\ln(e)
                       = 4
              Therefore, \ln(e^4) = 4.
              ln(6)
       b.
              \ln(6) = \ln(2) + \ln(3)
                      \approx 0.69 + 1.10
                      \approx 1.79
              Therefore, ln(6) \approx 1.79.
```

engage^{ny}

Lesson 13 M3

ln(108) c. $\ln(108) = \ln(4 \cdot 27)$ $= \ln(4) + \ln(27)$ $\approx 2 \ln(2) + 3 \ln(3)$ $\approx 1.38 + 3.30$ ≈ 4.68 Therefore, $ln(108) \approx 4.68$. d. $\ln\left(\frac{8}{3}\right)$ $ln\left(\frac{8}{3}\right) = ln(8) - ln(3)$ $= \ln(2^3) - \ln(3)$ $\approx 3(0.69) - 1.10$ ≈ 0.97 Therefore, $\ln\left(\frac{8}{3}\right) \approx 0.97$. Compare the values of $log_{\frac{1}{2}}(10)$ and $log_{9}(\frac{1}{10})$ without using a calculator. 3. Using the change of base formula, $log_{\frac{1}{9}}(10) = \frac{log_9(10)}{log_9\left(\frac{1}{9}\right)}$ $=\frac{\log_9(10)}{-1}$ $= -\log_{9}(10)$ $=\log_9\left(\frac{1}{10}\right).$ *Thus,* $\log_{\frac{1}{9}}(10) = \log_{9}\left(\frac{1}{10}\right)$. 4. Show that for any positive numbers a and b with $a \neq 1$ and $b \neq 1$, $\log_a(b) \cdot \log_b(a) = 1$. Using the change of base formula, $\log_a(\mathbf{b}) = \frac{\log_b(\mathbf{b})}{\log_b(\mathbf{a})} = \frac{1}{\log_b(\mathbf{a})}.$ Thus, $\log_a(b) \cdot \log_b(a) = \frac{1}{\log_b(a)} \cdot \log_b(a) = 1.$ Express x in terms of a, e, and y if $\ln(x) - \ln(y) = 2a$. 5. $\ln(x) - \ln(y) = 2a$ $\ln\left(\frac{x}{y}\right) = 2a$ $\frac{x}{y} = e^{2a}$ $x = y e^{2a}$

Lesson 13: Changing the Base

engage^{ny}

-

6. Rewrite each expression in an equivalent form that only contains one base-10 logarithm.
a.
$$\log_2(800)$$

 $\log_2(800) = \frac{\log(800)}{\log(2)} = \frac{\log(2^3)+2}{\log(2)} = \frac{3 \log(2)+2}{\log(2)} = \frac{3 \log(2)}{\log(2)} + \frac{2}{\log(2)} = 3 + \frac{2}{\log(2)}$
b. $\log_x(\frac{1}{10})$, for positive real values of $x \neq 1$
 $\log_x(\frac{1}{10}) = \frac{\log(\frac{1}{100})}{\log(x)} = -\frac{1}{\log(x)}$
c. $\log_5(12500)$
 $\log_5(12500) = \frac{\log(5^3 \cdot 10^2)}{\log(5)} = \frac{\log(5^3) + \log(10^2)}{\log(5)} = \frac{3 \log(5) + 2 \log(10)}{\log(5)} = 3 + \frac{2}{\log(5)}$
d. $\log_5(0.81)$
 $\log_5(0.81) = \frac{\log(\frac{81}{100})}{\log(3)} = \frac{\log(81) - \log(100)}{\log(3)} = \frac{4 \log(3) - 2}{\log(3)} = 4 - \frac{2}{\log(3)}$
7. Write each number in terms of natural logarithms, and then use the properties of logarithms to show that it is a rational number.
a. $\log_5(\sqrt{27})$
 $\frac{\ln(\sqrt{27})}{\ln(2^2)} = \frac{\ln(3^2)}{\ln(3^2)} = \frac{3}{2} \frac{\ln(3)}{10} = \frac{3}{4}$
b. $\log_8(32)$
 $\frac{\ln(32)}{\ln(32)} = \frac{\ln(2^2)}{3} = \frac{5}{3}$
c. $\log_4(\frac{1}{8})$
 $\frac{\ln(\frac{1}{4})}{\ln(2^2)} = \frac{-3}{2}$
8. Write each expression as an equivalent expression with a single logarithm. Assume x, y, and z are positive real numbers.
a. $\ln(x) + 2 \ln(y) - 3 \ln(x)$
 $\ln(\frac{xy^2}{x^4})$

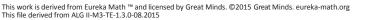
b. $\frac{1}{2}(\ln(x+y)-\ln(z))$ $\frac{x+y}{z}$ ln $(x+y) + \ln(z)$ c. $(x+y)\ln(e) + \ln(z) = \ln(e^{x+y}) + \ln(z) = \ln(e^{x+y} \cdot z)$ Rewrite each expression as sums and differences in terms of $\ln(x)$, $\ln(y)$, and $\ln(z)$. 9. $\ln(xyz^3)$ a. $\ln(x) + \ln(y) + 3\ln(z)$ b. $\ln\left(\frac{e^3}{xyz}\right)$ $3 - \ln(x) - \ln(y) - \ln(z)$ c. $\ln\left(\sqrt{\frac{x}{y}}\right)$ $\frac{1}{2} \left(\ln(x) - \ln(y) \right)$ 10. Use base-5 logarithms to rewrite each exponential equation as a logarithmic equation, and solve the resulting equation. Use the change of base formula to convert to a base-10 logarithm that can be evaluated on a calculator. Give each answer to 4 decimal places. If an equation has no solution, explain why. $5^{2x} = 20$ a. $2x = \log_5(20)$ $x = \frac{1}{2}\log_5(20)$ $x = \frac{\log(20)}{2\log(5)}$ $x \approx 0.9307$ $75 = 10 \cdot 5^{x-1}$ b. $7.5 = 5^{x-1}$ $x = \log_5(7.5) + 1$ $x = \frac{\log(7.5)}{\log(5)} + 1$ $x \approx 2.2519$

engage^{ny}

 $5^{2+x} - 5^x = 10$ c. $5^{x}(5^{2}-1) = 10$ $5^x = \frac{10}{24}$ $x = \log_5\left(\frac{10}{24}\right)$ $x = \frac{\log\left(\frac{10}{24}\right)}{\log(5)}$ $x = \frac{\log(10) - \log(24)}{\log(5)}$ $x \approx -0.5440$ d. $5^{x^2} = 0.25$ $x^2 = \log_5(0.25)$ $x^2 = \frac{\log(0.25)}{\log(5)}$ $x^2 \approx -0.8614$ This equation has no real solution because x^2 cannot be negative for any real number x. 11. In Lesson 6, you discovered that $log(x \cdot 10^k) = k + log(x)$ by looking at a table of logarithms. Use the properties of logarithms to justify this property for an arbitrary base b > 0 with $b \neq 1$. That is, show that $\log_b(x \cdot b^k) = k + \log_b(x).$ $\log_b(x \cdot b^k) = \log_b(x) + \log_b(b^k)$ $= k + \log_{h}(x)$ 12. Larissa argued that since $\log_2(2) = 1$ and $\log_2(4) = 2$, then it must be true that $\log_2(3) = 1.5$. Is she correct? Explain how you know. Larissa is not correct. If $\log_2(x) = 1.5$, then $2^{1.5} = x$, so $x = 2^{\frac{3}{2}} = 2\sqrt{2}$. Since $3 \neq 2\sqrt{2}$, Larissa's calculation is not correct. 13. Extension: Suppose that there is some positive number b so that $\log_{h}(2) = 0.36$ $\log_b(3) = 0.57$ $\log_b(5) = 0.84.$ Use the given values of $\log_b(2)$, $\log_b(3)$, and $\log_b(5)$ to evaluate the following logarithms. a. i. $\log_b(6)$ $\log_b(6) = \log_b(2 \cdot 3)$ $= \log_b(2) + \log_b(3)$ = 0.36 + 0.57= 0.93

MP.3

Lesson 13: Changing the Base



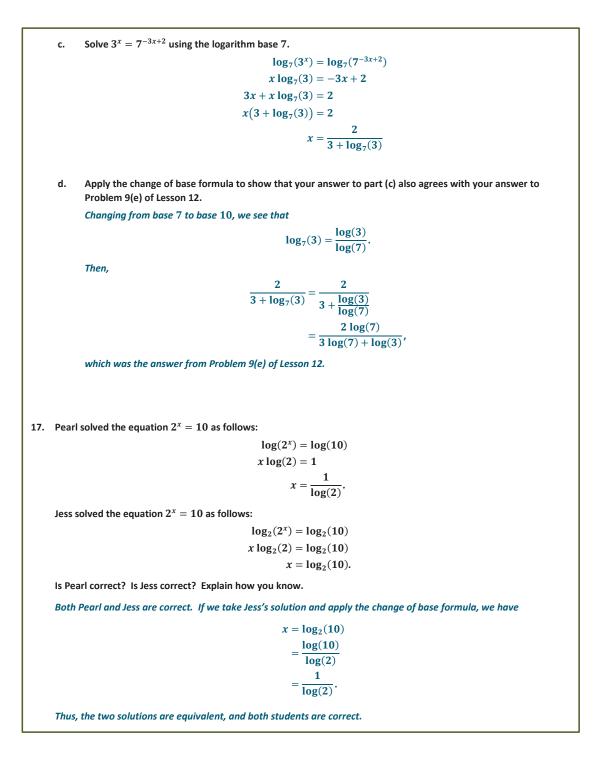
engage^{ny}

ii. $\log_b(8)$ $\log_b(8) = \log_b(2^3)$ $= 3 \cdot \log_b(2)$ $= 3 \cdot 0.36$ = **1**.08 iii. log_b(10) $\log_b(10) = \log_b(2 \cdot 5)$ $= \log_b(2) + \log_b(5)$ = 0.36 + 0.84= **1**.20 iv. $log_b(600)$ $\log_b(600) = \log_b(6 \cdot 100)$ $= \log_b(6) + \log_b(100)$ $= 0.93 + 2 \log_b(10)$ = 0.93 + 2(1.20)= 0.93 + 2.40= 3.33 Use the change of base formula to convert $\log_b(10)$ to base 10, and solve for b. Give your answer to four b. decimal places. From part (iii) above, $\log_b(10) = 1.20$. Then, $1.20 = \log_b(10)$ $1.20 = \frac{\log_{10}(10)}{\log_{10}(b)}$ $1.20 = \frac{1}{\log_{10}(b)}$ $\frac{1}{1.20} = \log_{10}(b)$ $b = 10^{\frac{1}{1.20}}$ $b \approx 6.8129.$ 14. Use a logarithm with an appropriate base to solve the following exponential equations. $2^{3x} = 16$ a. $\log_2(2^{3x}) = \log_2(16)$ 3x = 4 $x=\frac{4}{3}$

 $2^{x+3} = 4^{3x}$ b. $\log_2(2^{x+3}) = \log_2(4^{3x})$ $x + 3 = 3x \cdot \log_2(4)$ $x + 3 = 3x \cdot 2$ 5x = 3 $x = \frac{3}{5}$ $3^{4x-2} = 27^{x+2}$ c. $\log_3(3^{4x-2}) = \log_3(27^{x+2})$ $(4x-2)\log_3(3) = (x+2)\log_3(27)$ 4x - 2 = 3(x + 2)4x - 2 = 3x + 6*x* = 8 d. $4^{2x} = \left(\frac{1}{4}\right)^{3x}$ $\log_4(4^{2x}) = \log_4\left(\left(\frac{1}{4}\right)^{3x}\right)$ $2x\log_4(4) = 3x\log_4\left(\frac{1}{4}\right)$ 2x = 3x(-1)5x = 0x = 0 $5^{0.2x+3} = 625$ e. $\log_5(5^{0.2x+3}) = \log_5(625)$ $(0.2x+3)\log_5(5) = \log_5(5^4)$ 0.2x + 3 = 40.2x = 1x = 515. Solve each exponential equation. a. $3^{2x} = 81$ b. $6^{3x} = 36^{x+1}$ *x* = 2 *x* = 2 c. $625 = 5^{3x}$ d. $25^{4-x} = 5^{3x}$ $x=\frac{4}{3}$ $x = \frac{8}{5}$ f. $\frac{4^{2x}}{2^{x-3}} = 1$ e. $32^{x-1} = \frac{1}{2}$ $x=\frac{4}{5}$ x = -1

Lesson 13: Changing the Base

 $\frac{1}{8^{2x-4}} = 1$ h. $2^x = 81$ g. $x = \frac{\ln(81)}{\ln(2)}$ x = 2 $8 = 3^{x}$ $6^{x+2} = 12$ i. j. $x = \frac{\ln(8)}{\ln(3)}$ $x = -2 + \frac{\log(12)}{\log(6)}$ $10^{x+4} = 27$ $2^{x+1} = 3^{1-x}$ Ι. k. $x = \frac{\log(3) - \log(2)}{\log(2) + \log(3)}$ $x = -4 + \log(27)$ $3^{2x-3} = 2^{x+4}$ n. $e^{2x} = 5$ m. $x = \frac{\ln(5)}{2}$ $x = \frac{4\log(2) + 3\log(3)}{3\log(3) - \log(2)}$ $e^{x-1} = 6$ о. $x = 1 + \ln(6)$ 16. In Problem 9(e) of Lesson 12, you solved the equation $3^x = 7^{-3x+2}$ using the logarithm base 10. Solve $3^x = 7^{-3x+2}$ using the logarithm base 3. a. $\log_3(3^x) = \log_3(7^{-3x+2})$ $x = (-3x + 2)\log_3(7)$ $x = -3x \log_3(7) + 2 \log_3(7)$ $x + 3x \log_3(7) = 2 \log_3(7)$ $x(1+3\log_3(7)) = 2\log_3(7)$ $x = \frac{2\log_3(7)}{1 + 3\log_3(7)}$ Apply the change of base formula to show that your answer to part (a) agrees with your answer to Problem b. 9(e) of Lesson 12. Changing from base 3 to base 10, we see that $\log_3(7) = \frac{\log(7)}{\log(3)}$ Then. $\frac{2\log_3(7)}{1+3\log_3(7)} = \frac{2\left(\frac{\log(7)}{\log(3)}\right)}{1+3\left(\frac{\log(7)}{\log(3)}\right)}$ 2 log(7) $= \frac{1}{\log(3) + 3\log(7)},$ which was the answer from Problem 9(e) of Lesson 12.



EUREKA MATH

192

engage^{ny}

Student Outcomes

• Students solve simple logarithmic equations using the definition of logarithm and logarithmic properties.

Lesson Notes

In this lesson, students solve simple logarithmic equations by first putting them into the form $\log_b(Y) = L$, where *b* is either 2, 10, or *e*, *Y* is an expression, and *L* is a number, and then using the definition of logarithm to rewrite the equation in the form $b^L = Y$. Students are able to evaluate logarithms without technology by selecting an appropriate base; solutions are provided with this in mind. In Lesson 15, students learn the technique of solving exponential equations using logarithms of any base without relying on the definition. Students need to use the properties of logarithms developed in prior lessons to rewrite the equations in an appropriate form before solving (A-SSE.A.2, F-LE.A.4). The lesson starts with a few fluency exercises to reinforce the logarithmic properties before moving on to solving equations.

Classwork

Opening Exercise (3 minutes)

The following exercises provide practice with the definition of the logarithm and prepare students to solve logarithmic equations using the methods outlined later in the lesson. Encourage students to work alone on these exercises, but allow students to work in pairs if necessary.

Opening I	Opening Exercise		
Convert t	Convert the following logarithmic equations to equivalent exponential equations		
a.	log(10,000) = 4	$10^4 = 10,000$	
b.	$\log(\sqrt{10}) = \frac{1}{2}$	$10^{\frac{1}{2}}=\sqrt{10}$	
c.	$\log_2(256) = 8$	2 ⁸ = 256	
d.	$log_4(256)=4$	$4^4 = 256$	
e.	$\ln(1) = 0$	$e^{0} = 1$	
f.	$\log(x+2)=3$	$x + 2 = 10^3$	

Scaffolding:

 Remind students of the main properties that they use by writing the following on the board:

 $\log_{b}(x) = L \text{ means } b^{L} = x;$ $\log_{b}(xy) = \log_{b}(x) + \log_{b}(y);$ $\log_{b}\left(\frac{x}{y}\right) = \log_{b}(x) - \log_{b}(y);$ $\log_{b}(x^{r}) = r \cdot \log_{b}(x);$ (1)

$$\log_b\left(\frac{1}{x}\right) = -\log(x).$$

 Consistently using a visual display of these properties throughout the module is helpful.

Examples (6 minutes)

Students should be ready to take the next step from converting logarithmic equations to an equivalent exponential expression to solving the resulting equation. Decide whether or not students need to see a teacher-led example or can attempt to solve these equations in pairs. Anticipate that students neglect to check for extraneous solutions in these examples. After the examples, lead the discussion to the existence of an extraneous solution in Example 3.

Exa	mples		
Wri	Write each of the following equations as an equivalent exponential equation, and solve for x .		
1.	$\log(3x+7)=0$		
	$\log(3x+7)=0$		
	$10^0 = 3x + 7$		
	1 = 3x + 7		
	x = -2		
2.	$\log_2(x+5) = 4$		
	$\log_2(x+5) = 4$		
	$2^4 = x + 5$		
	16 = x + 5		
	<i>x</i> = 11		
3.	$\log(x+2) + \log(x+5) = 1$		
	log(x + 2) + log(x + 5) = 1		
	$\log\bigl((x+2)(x+5)\bigr) = 1$		
	$(x+2)(x+5) = 10^1$		
	$x^2 + 7x + 10 = 10$		
	$x^2 + 7x = 0$		
	x(x+7)= 0		
	x = 0 or x = -7		
	However, if $x = -7$, then $(x + 2) = -5$, and $(x + 5) = -2$, so both logarithms in the equation are undefined. Thus, -7 is an extraneous solution, and only 0 is a valid solution to the equation.		

Discussion (4 minutes)

Ask students to volunteer their solutions to the equations in the Opening Exercise. This line of questioning is designed to allow students to determine that there is an extraneous solution to Example 3. If the class has already discovered this fact, opt to accelerate or skip this discussion.

- What is the solution to the equation in Example 1?
 - □ -2
- What is the result if you evaluate log(3x + 7) at x = -2? Did you find a solution?
 - □ $\log(3(-2) + 7) = \log(1) = 0$, so -2 is a solution to $\log(3x + 7) = 0$.

Lesson 14

ALGEBRA II

What is the solution to the equation in Example 2?

• 11

What is the result if you evaluate $log_2(x + 5)$ at x = 11? Did you find a solution?

□ $\log_2(11+5) = \log_2(16) = 4$, so 11 is a solution to $\log_2(x+5) = 4$.

- What is the solution to the equation in Example 3?
 - There were two solutions: 0 and -7.
- What is the result if you evaluate log(x + 2) + log(x + 5) at x = 0? Did you find a solution?
 - $\log(2) + \log(5) = \log(2 \cdot 5) = \log(10) = 1$, so 0 is a solution to $\log(x + 2) + \log(x + 5) = 1$.
- What is the result if you evaluate log(x + 2) + log(x + 5) at x = -7? Did you find a solution?
 - $\log(-7+2)$ and $\log(-7+5)$ are not defined because -7+2 and -7+5 are negative. Thus, -7 is not a solution to the original equation.
- What is the term we use for an apparent solution to an equation that fails to solve the original equation?
 - It is called an extraneous solution.
- Remember to look for extraneous solutions and to exclude them when you find them.

Exercise 1 (4 minutes)

Allow students to work in pairs or small groups to think about the exponential equation below. This equation can be solved rather simply by an application of the logarithmic property $\log_b(x^r) = r \log_b(x)$. However, if students do not see to apply this logarithmic property, it can become algebraically difficult.

Exercises

MP.3

1. Drew said that the equation $\log_2[(x+1)^4] = 8$ cannot be solved because he expanded $(x+1)^4 = x^4 + 4x^3 + 6x^2 + 4x + 1$ and realized that he cannot solve the equation $x^4 + 4x^3 + 6x^2 + 4x + 1 = 2^8$. Is he correct? Explain how you know.

If we apply the logarithmic properties, this equation is solvable.

 $log_{2}[(x + 1)^{4}] = 8$ $4 log_{2}(x + 1) = 8$ $log_{2}(x + 1) = 2$ $x + 1 = 2^{2}$ x = 3

Check: If x = 3, then $\log_2[(3+1)^4] = 4\log_2(4) = 4 \cdot 2 = 8$, so 3 is a solution to the original equation.

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

Exercises 2-4 (6 minutes)

Students should work on these three exercises independently or in pairs to help develop fluency with these types of problems. Circulate around the room, and remind students to check for extraneous solutions as necessary.

```
Solve the equations in Exercises 2–4 for x.
2. \ln((4x)^5) = 15
       5 \cdot \ln(4x) = 15
           \ln(4x) = 3
                 e^{3} = 4x
                  x = \frac{e^3}{4}
      Check: Since 4\left(\frac{e^3}{4}\right) > 0, we know that \ln\left(\left(4 \cdot \frac{e^3}{5}\right)^5\right) is defined. Thus, \frac{e^3}{4} is the solution to the equation.
3. \log((2x+5)^2) = 4
       2 \cdot \log(2x+5) = 4
           log(2x + 5) = 2
                      10^2 = 2x + 5
                      100 = 2x + 5
                        95 = 2x
                         x = \frac{95}{2}
      Check: Since 2\left(\frac{95}{2}\right) + 5 \neq 0, we know that \log\left(\left(2 \cdot \frac{95}{2} + 5\right)^2\right) is defined.
      Thus, \frac{95}{2} is the solution to the equation.
4. \log_2((5x+7)^{19}) = 57
       19 \cdot \log_2(5x+7) = 57
             \log_2(5x+7) = 3
                            2^3 = 5x + 7
                             8 = 5x + 7
                             1 = 5x
                             x = \frac{1}{r}
      Check: Since 5\left(\frac{1}{5}\right) + 7 > 0, we know that \log_2\left(5 \cdot \frac{1}{5} + 7\right) is defined.
       Thus, \frac{1}{5} is the solution to this equation.
```


Example 4 (4 minutes)

Students encountered the first extraneous solution in Example 3, but there were no extraneous solutions in Exercises 2–4. After working through Example 4, debrief students to informally assess their understanding, and provide guidance to align their understanding with the concepts. Remind students that they generally need to apply logarithmic properties before being able to solve a logarithmic equation. Some sample questions are included with likely student responses. Remember to have students check for extraneous solutions in all cases.

$$log(x + 10) - log(x - 1) = 2$$
$$log\left(\frac{x + 10}{x - 1}\right) = 2$$
$$\frac{x + 10}{x - 1} = 10^{2}$$
$$x + 10 = 100(x - 99x) = 110$$
$$x = \frac{10}{9}$$

1)

- Is $\frac{10}{2}$ a valid solution? Explain how you know.
 - Yes; $\log\left(\frac{10}{9} + 10\right)$ and $\log\left(\frac{10}{9} 1\right)$ are both defined, so $\frac{10}{9}$ is a valid solution.
- Why could we not rewrite the original equation in exponential form using the definition of the logarithm immediately?
 - ^D The equation needs to be in the form $\log_b(Y) = L$ before using the definition of a logarithm to rewrite it in exponential form, so we had to use the logarithmic properties to combine terms first.

Example 5 (3 minutes)

Make sure students verify the solutions in Example 5 because there is an extraneous solution.

$$log_{2}(x + 1) + log_{2}(x - 1) = 3$$
$$log_{2}((x + 1)(x - 1)) = 3$$
$$log_{2}(x^{2} - 1) = 3$$
$$2^{3} = x^{2} - 1$$
$$0 = x^{2} - 9$$
$$0 = (x - 3)(x + 3)$$

Thus, x = 3 or x = -3. These solutions need to be checked to see if they are valid.

- Is 3 a valid solution?
 - $\log_2(3+1) + \log_2(3-1) = \log_2(4) + \log_2(2) = 2 + 1 = 3$, so 3 is a valid solution.

- Is −3 a valid solution?
 - Because -3 + 1 = -2, $\log_2(-3 + 1) = \log_2(-2)$ is undefined, so -3 not a valid solution. The value -3 is an extraneous solution, and this equation has only one solution: 3.
- What should we look for when determining whether or not a solution to a logarithmic equation is extraneous?
 - We cannot take the logarithm of a negative number or 0, so any solution that would result in the input to a logarithm being negative or 0 cannot be included in the solution set for the equation.

Exercises 5-9 (8 minutes)

Have students work on these exercises individually to develop fluency with solving logarithmic equations. Circulate throughout the classroom to informally assess understanding and provide assistance as needed.

Solve the logarithmic equations in Exercises 5–9, and identify any extraneous solutions. $\log(x^2 + 7x + 12) - \log(x + 4) = 0$ 5. $\log\left(\frac{x^2+7x+12}{x+4}\right)=0$ $\frac{x^2 + 7x + 12}{x + 4} = 10^0$ $\frac{x^2 + 7x + 12}{x + 4} = 1$ $x^2 + 7x + 12 = x + 4$ $0 = x^2 + 6x + 8$ 0 = (x+4)(x+2)x = -4 or x = -2Check: If x = -4, then $\log(x + 4) = \log(0)$, which is undefined. Thus, -4 is an extraneous solution. Therefore, the only solution is -2. $\log_2(3x) + \log_2(4) = 4$ 6. $\log_2(3x) + 2 = 4$ $\log_2(3x) = 2$ $2^2 = 3x$ 4 = 3x $x=\frac{4}{2}$ Check: Since $\frac{4}{3} > 0$, $\log_2\left(3 \cdot \frac{4}{3}\right)$ is defined. Therefore, $\frac{4}{3}$ is a valid solution.

198

engage^{ny}

 $2\ln(x+2) - \ln(-x) = 0$ 7. $\ln((x+2)^2) - \ln(-x) = 0$ $\ln\left(\frac{(x+2)^2}{-x}\right) = 0$ $1 = \frac{(x+2)^2}{-x}$ $-x = x^2 + 4x + 4$ $\mathbf{0} = x^2 + \mathbf{5}x + \mathbf{4}$ 0 = (x+4)(x+1)x = -4 or x = -1*Check: Thus, we get* x = -4 *or* x = -1 *as solutions to the quadratic equation. However, if* x = -4*, then* $\ln(x+2) = \ln(-2)$, so -4 is an extraneous solution. Therefore, the only solution is -1. $\log(x) = 2 - \log(x)$ 8. $\log(x) + \log(x) = 2$ $2 \cdot \log(x) = 2$ $\log(x) = 1$ x = 10Check: Since 10 > 0, log(10) is defined. Therefore, 10 is a valid solution to this equation. 9. $\ln(x+2) = \ln(12) - \ln(x+3)$ $\ln(x+2) + \ln(x+3) = \ln(12)$ $\ln((x+2)(x+3)) = \ln(12)$ (x+2)(x+3) = 12 $x^2 + 5x + 6 = 12$ $x^2 + 5x - 6 = 0$ (x-1)(x+6) = 0x = 1 or x = -6Check: If = -6, then the expressions $\ln(x + 2)$ and $\ln(x + 3)$ are undefined. Therefore, the only valid solution to the original equation is 1.

Closing (3 minutes)

Have students summarize the process they use to solve logarithmic equations in writing. Circulate around the classroom to informally assess student understanding.

- If an equation can be rewritten in the form $\log_b(Y) = L$ for an expression Y and a number L, then apply the definition of the logarithm to rewrite as $b^L = Y$. Solve the resulting exponential equation, and check for extraneous solutions.
- If an equation can be rewritten in the form $\log_b(Y) = \log_b(Z)$ for expressions Y and Z, then the fact that the logarithmic functions are one-to-one gives Y = Z. Solve this resulting equation, and check for extraneous solutions.

Exit Ticket (4 minutes)

Name

Date _____

Lesson 14: Solving Logarithmic Equations

Exit Ticket

Find all solutions to the following equations. Remember to check for extraneous solutions.

1. $\log_2(3x + 7) = 4$

2. $\log(x - 1) + \log(x - 4) = 1$

Exit Ticket Sample Solutions

Find all solutions to the following equations. Remember to check for extraneous solutions. 1. $\log_2(3x+7) = 4$ $\log_2(3x+7) = 4$ $3x + 7 = 2^4$ 3x = 16 - 7x = 3Since 3(3) + 7 > 0, we know 3 is a valid solution to the equation. 2. $\log(x-1) + \log(x-4) = 1$ $\log((x-1)(x-4)) = 1$ $\log(x^2 - 5x + 4) = 1$ $x^2 - 5x + 4 = 10$ $x^2 - 5x - 6 = 0$ (x-6)(x+1)=0x = 6 or x = -1*Check: Since the left side of the equation is not defined for* x = -1*, this is an extraneous solution.* Therefore, the only valid solution is 6.

Problem Set Sample Solutions

Solve the following logarithmic equations. 1. $\log(x) = \frac{5}{2}$ a. $\log(x) = \frac{5}{2}$ $x = 10^{\frac{5}{2}}$ $x = 100\sqrt{10}$ Check: Since $100\sqrt{10} > 0$, we know $\log(100\sqrt{10})$ is defined. Therefore, the solution to this equation is $100\sqrt{10}$. $5\log(x+4) = 10$ b. $\log(x+4) = 2$ $x + 4 = 10^2$ x + 4 = 100*x* = 96 Check: Since 96 + 4 > 0, we know log(96 + 4) is defined. Therefore, the solution to this equation is 96.

201

engage^{ny}

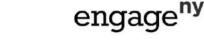
Lesson 14 **M3**

ALGEBRA II

 $\log_2(1-x) = 4$ c. $1 - x = 2^4$ x = -15Check: Since 1 - (-15) > 0, we know $log_2(1 - (-15))$ is defined. Therefore, the solution to this equation is -15. $\log_2(49x^2) = 4$ d. $\log_2[(7x)^2] = 4$ $2 \cdot \log_2(7x) = 4$ $\log_2(7x) = 2$ $7x = 2^2$ $x=\frac{4}{7}$ $\textit{Check: Since } 49\left(\frac{4}{7}\right)^2 > 0\textit{, we know } \log_2\left(49\left(\frac{4}{7}\right)^2\right)\textit{ is defined.}$ Therefore, the solution to this equation is $\frac{4}{7}$. $\log_2(9x^2 + 30x + 25) = 8$ e. $\log_2[(3x+5)^2] = 8$ $2 \cdot \log_2(3x+5) = 8$ $\log_2(3x+5) = 4$ $3x + 5 = 2^4$ 3x + 5 = 163x = 11 $x = \frac{11}{3}$ $\textit{Check: Since } 9\left(\frac{11}{3}\right)^2 + 30\left(\frac{11}{3}\right) + 25 = 256\textit{, and } 256 > 0\textit{, } \log_2\left(9\left(\frac{11}{3}\right)^2 + 30\left(\frac{11}{3}\right) + 25\right)\textit{ is defined.}$ Therefore, the solution to this equation is $\frac{11}{2}$. 2. Solve the following logarithmic equations. $\ln(x^6) = 36$ а. $\mathbf{6} \cdot \mathbf{ln}(x) = \mathbf{36}$ $\ln(x) = 6$ $x = e^6$ Check: Since $e^6 > 0$, we know $\ln((e^6)^6)$ is defined. Therefore, the only solution to this equation is e^{6} .

EUREKA матн

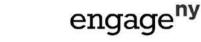
b. $\log[(2x^2 + 45x - 25)^5] = 10$ $5 \cdot \log(2x^2 + 45x - 25) = 10$ $\log(2x^2 + 45x - 25) = 2$ $2x^2 + 45x - 25 = 10^2$ $2x^2 + 45x - 125 = 0$ $2x^2 + 50x - 5x - 125 = 0$ 2x(x+25) - 5(x+25) = 0(2x-5)(x+25) = 0Check: Since $2x^2 + 45x - 25 > 0$ for both x = -25 and $x = \frac{5}{2}$, we know the left side of the original equation is defined at these values. Therefore, the two solutions to this equation are -25 and $\frac{5}{2}$. $\log[(x^2 + 2x - 3)^4] = 0$ c. $4\log(x^2 + 2x - 3) = 0$ $\log(x^2 + 2x - 3) = 0$ $x^2 + 2x - 3 = 10^0$ $x^2 + 2x - 3 = 1$ $x^2 + 2x - 4 = 0$ $x=\frac{-2\pm\sqrt{4+16}}{2}$ $= -1 + \sqrt{5}$ Check: Since $x^2 + 2x - 3 = 1$ when $x = -1 + \sqrt{5}$ or $x = -1 - \sqrt{5}$, we know the logarithm is defined for these values of x. Therefore, the two solutions to the equation are $-1 + \sqrt{5}$ and $-1 - \sqrt{5}$. Solve the following logarithmic equations. 3. log(x) + log(x - 1) = log(3x + 12)a. $\log(x) + \log(x - 1) = \log(3x + 12)$ $\log(x(x-1)) = \log(3x+12)$ x(x-1) = 3x + 12 $x^2 - 4x - 12 = 0$ (x+2)(x-6) = 0Check: Since log(-2) is undefined, -2 is an extraneous solution. Therefore, the only solution to this equation is 6.



b. $\ln(32x^2) - 3\ln(2) = 3$ $\ln(32x^2) - \ln(2^3) = 3$ $\ln\left(\frac{32x^2}{8}\right) = 3$ $4x^2 = e^3$ $x^{2} = \frac{e^{3}}{4}$ $x = \frac{\sqrt{e^{3}}}{2} \text{ or } x = -\frac{\sqrt{e^{3}}}{2}$ Check: Since the value of x in the logarithmic expression is squared, $\ln(32x^2)$ is defined for any nonzero value of x. Therefore, both $\frac{\sqrt{e^3}}{2}$ and $-\frac{\sqrt{e^3}}{2}$ are valid solutions to this equation. $\log(x) + \log(-x) = 0$ c. $\log(x(-x)) = 0$ $\log(-x^2) = 0$ $-x^2 = 10^0$ $x^2 = -1$ Since there is no real number x so that $x^2 = -1$, there is no solution to this equation. $\log(x+3) + \log(x+5) = 2$ d. $\log((x+3)(x+5)) = 2$ $(x+3)(x+5) = 10^2$ $x^2 + 8x + 15 - 100 = 0$ $x^2 + 8x - 85 = 0$ $x=\frac{-8\pm\sqrt{64+340}}{2}$ $=-4\pm\sqrt{101}$ Check: The left side of the equation is not defined for $x = -4 - \sqrt{101}$, but it is for $x = -4 + \sqrt{101}$. Therefore, the only solution to this equation is $x = -4 + \sqrt{101}$.

engage^{ny}

log(10x + 5) - 3 = log(x - 5)e. log(10x + 5) - log(x - 5) = 3 $\log\left(\frac{10x+5}{x-5}\right) = 3$ $\frac{10x+5}{x-5} = 10^{3}$ $\frac{10x+5}{x-5} = 1000$ 10x + 5 = 1000x - 50005005 = 990x $x=\frac{91}{18}$ Check: Both sides of the equation are defined for $x = \frac{91}{18}$ Therefore, the solution to this equation is $\frac{91}{18}$. f. $\log_2(x) + \log_2(2x) + \log_2(3x) + \log_2(36) = 6$ $\log_2(x \cdot 2x \cdot 3x \cdot 36) = 6$ $\log_2(6^3x^3) = 6$ $\log_2[(6x)^3] = 6$ $3 \cdot \log_2(6x) = 6$ $\log_2(6x) = 2$ $6x = 2^2$ $x=\frac{2}{3}$ Check: Since $\frac{2}{3} > 0$, all logarithmic expressions in this equation are defined for $x = \frac{2}{3}$. Therefore, the solution to this equation is $\frac{2}{3}$.



4. Solve the following equations. $\log_2(x) = 4$ $\log_6(x) = 1$ b. a. 16 6 $\log_3(x) = -4$ $\log_{\sqrt{2}}(x) = 4$ c. d. 1 4 81 $\log_3(x^2) = 4$ $\log_{\sqrt{5}}(x) = 3$ f. e. 9, -9 $5\sqrt{5}$ $\log_2(x^{-3}) = 12$ g. h. $\log_3(8x+9)=4$ 1 9 16 $2 = \log_4(3x - 2)$ $\log_5(3-2x)=0$ i. j. 1 6 $\ln(2x) = 3$ $\log_3(x^2 - 3x + 5) = 2$ k. ١. e^3 4, -12 $\log((x^2+4)^5) = 10$ $\log(x) + \log(x + 21) = 2$ m. n. 4 $4\sqrt{6}, -4\sqrt{6}$ $\log(x) - \log(x+3) = -1$ $\log_4(x-2) + \log_4(2x) = 2$ о. p. 4 1 3 $\log_4(x+3) - \log_4(x-5) = 2$ $\log(x) + 1 = \log(x + 9)$ q. r. 83 1 15 $\log_3(x^2 - 9) - \log_3(x + 3) = 1$ $1 - \log_8(x - 3) = \log_8(2x)$ s. t. 6 4 $\log_2(x^2 - 16) - \log_2(x - 4) = 1$ u. $\log\left(\sqrt{(x+3)^3}\right) = \frac{3}{2}$ v. No solution 7 $\ln(4x^2-1)=0$ $\ln(x+1) - \ln(2) = 1$ w. x. $\sqrt{2}$ $\sqrt{2}$ 2e - 12 2

Lesson 15: Why Were Logarithms Developed?

Student Outcomes

- Students use logarithm tables to calculate products and quotients of multi-digit numbers without technology.
- Students understand that logarithms were developed to speed up arithmetic calculations by reducing multiplication and division to the simpler operations of addition and subtraction.
- Students solve logarithmic equations of the form log(X) = log(Y) by equating X and Y.

Lesson Notes

This final lesson in Topic B includes two procedures that appear to be different but are closely related mathematically. First, students work with logarithm tables to see how applying logarithms simplified calculations in the days before computing machines and electronic technology. They also learn a bit of the history of how and why logarithms first appeared—a history often obscured when logarithmic functions are introduced as inverses of exponential functions. The last two pages of this document contain a base 10 table of logarithms that can be copied and distributed; such tables are also available on the Internet.

Second, students learn to solve the final type of logarithmic equation, log(X) = log(Y), where X and Y are either real numbers or expressions that take on positive real values (**A.SSE.A.2**, **F-LE.A.4**). Using either technique requires knowing that the logarithm is a one-to-one function; that is, if log(X) = log(Y), then X = Y. Students do not yet have the vocabulary to be told this directly, but it is stated as a fact in this lesson, and they further explore the idea of one-to-one functions in Precalculus and Advanced Topics. As with Lessons 10 and 12, this lesson involves only base-10 logarithms, but the Problem Set does require that students do some work with logarithms base *e* and base 2. Remind students to check for extraneous solutions when solving logarithmic equations.

Classwork

Discussion (4 minutes): How to Read a Table of Logarithms

- For this lesson, we will pretend that we live in the time when logarithms were discovered, before there were calculators or computing machines. In this time, scientists, merchants, and sailors needed to make calculations for both astronomical observation and navigation. Logarithms made these calculations much easier, faster, and more accurate than calculation with large numbers. In fact, noted mathematician Pierre-Simon LaPlace (France, circa 1800) said that "[logarithms are an] admirable artifice which, by reducing to a few days the labour of many months, doubles the life of the astronomer, and spares him the errors and disgust inseparable from long calculations."
- A typical table of common logarithms, like the table at the end of this document, has many rows of numbers arranged in ten columns. The numbers in the table are decimals. In our table, they are given to four decimal places, and there are 90 rows of them (some tables of logarithms have 900 rows). Down the left of the table are the numbers from 1.0 to 9.9. Across the top of the table are the numbers from 0 to 9. To read the table, you locate the number whose logarithm you want using the numbers down the left of the table followed by the numbers across the top.

- What does the number in the third row and second column represent (the entry for 1.21)?
 - The logarithm of 1.21, which is approximately 0.0828
- The logarithm of numbers larger than 9.9 and smaller than 1.0 can also be found using this table. Suppose you want to find log(365). Is there any way we can rewrite 365 to include a number between 1.0 and 9.9?
 - *Rewrite* 365 *in scientific notation:* 3.65×10^2 .
- Can we simplify $\log(3.65 \times 10^2)$?
 - We can apply the formula for the logarithm of a product. Then, we have $\log(10^2) + \log(3.65) = 2 + \log(3.65).$
- Now, all that is left is to find the value of log(3.65) using the table. What is the value of log(365)?
 - *The table entry is* 0.5623*. That means* $\log(365) \approx 2 + 0.5623$ *, so* $\log(365) \approx 2.5623$ *.*
- How would you find log(0.365)?
 - In scientific notation, $0.365 = 3.65 \times 10^{-1}$. So, once again, you would find the row for 3.6 and the column for 5, and you would again find the number 0.5623. But this time, you would have $\log(0.365) \approx -1 + 0.5623$, so $\log(0.365) \approx 0.4377$.

Example 1 (7 minutes)

Students multiply multi-digit numbers without technology and then use a table of logarithms to find the same product using logarithms.

- Find the product 3.42×2.47 without using a calculator.
 - Using paper and pencil, and without any rounding, students should get 8.4474. The point is to show how much time the multiplication of multidigit numbers can take.
- How could we use logarithms to find this product?
 - If we take the logarithm of the product, we can rewrite the product as a sum of logarithms.
- Rewrite the logarithm of the product as the sum of logarithms.
 - $\log(3.42 \times 2.47) = \log(3.42) + \log(2.47)$
- Use the table of logarithms to look up the values of log(3.42) and log(2.47).
 - According to the table, $\log(3.42) \approx 0.5340$, and $\log(2.47) \approx 0.3927$.
- Approximate the logarithm $\log(3.42 \times 2.47)$.
 - The approximate sum is

Lesson 15:

$$log(3.42 \times 2.47) \approx 0.5340 + 0.3927$$

 $\approx 0.9267.$

What if there is more than one number that has a logarithm of 0.9267? Suppose that there are two numbers X and Y that satisfy $\log(X) = 0.9267$ and $\log(Y) = 0.9267$. Then $10^{0.9267} = X$, and $10^{0.9267} = Y$, so that X = Y. This means that there is only one number that has the logarithm 0.9267. So, what is that number?

Why Were Logarithms Developed?

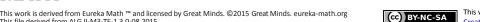
Scaffolding:

Lesson 15

ALGEBRA II

- Students may need to be reminded that if the logarithm is greater than 1, a power of 10 greater than 1 is involved, and only the decimal part of the number is found in the table.
- Struggling students should attempt a simpler product such as 1.20×6.00 to illustrate the process.
- Advanced students may use larger or more precise numbers as a challenge. To multiply a product such as 34.293 × 107.9821, students have to employ scientific notation and the property for the logarithm of a product.

This file derived from ALG II-M3-TE-1.3.0-08.2015



208

engage

MP.5 8 MP.6

- Can we find the exact number that has logarithm 0.9267 using the table?
 - The table says that $\log(8.44) \approx 0.9263$, and $\log(8.45) \approx 0.9269$.
- Which is closer?
 - □ $\log(8.45) \approx 0.9267$
- Since $\log(3.42 \times 2.47) \approx \log(8.45)$, what can we conclude is an approximate value for 3.42×2.47 ?
 - Since $\log(3.42 \times 2.47) \approx \log(8.45)$, we know that $3.42 \times 2.47 \approx 8.45$.
- Does this agree with the product you found when you did the calculation by hand?
 - Yes. By hand, we found that the product is 8.4474, which is approximately 8.45.

Discussion (2 minutes)

In Example 1, we showed that there was only one number that had logarithm 0.9267. This result generalizes to any number and any base of the logarithm: If $\log_b(X) = \log_b(Y)$, then X = Y. We need to know this property both to use a logarithm table to look up values that produce a certain logarithmic value and to solve logarithmic equations later in the lesson.

If X and Y are positive real numbers, or expressions that take on the value of positive real numbers, and $\log_b(X) = \log_b(Y)$, then X = Y.

Example 2 (4 minutes)

This example is a continuation of the first example, with the addition of scientific notation to further explain the power of logarithms. Because much of the reasoning was explained in Example 1, this should take much less time to work through.

- Now, what if we needed to calculate $(3.42 \times 10^{14}) \times (5.76 \times 10^{12})$?
- Take the logarithm of this product, and find its approximate value using the logarithm table.

$$\log((3.42 \times 10^{14}) \times (5.76 \times 10^{12})) = \log(3.42) + \log(10^{14}) + \log(5.76) + \log(10^{12})$$
$$= \log(3.42) + \log(5.76) + 14 + 12$$
$$\approx 0.5340 + 0.7604 + 26$$
$$\approx 27.2944$$

- Look up 0.2944 in the logarithm table.
 - Since $\log(1.97) \approx 0.2945$, we can say that $0.2944 \approx \log(1.97)$.
- How does that tell us which number has a logarithm approximately equal to 27.2944?
 - □ $\log(1.97 \times 10^{27}) = 27 + \log(1.97)$, so $\log(1.97 \times 10^{27}) \approx 27.2944$.
- Finally, what is an approximate value of the product $(3.42 \times 10^{14}) \times (5.76 \times 10^{12})$?

Example 3 (6 minutes)

- According to one estimate, the mass of the earth is roughly 5.28×10^{24} kg, and the mass of the moon is about 7.35×10^{22} kg. Without using a calculator but using the table of logarithms, find how many times greater the mass of Earth is than the mass of the moon.
 - Let *R* be the ratio of the two masses. Then $R = \frac{5.28 \times 10^{24}}{7.35 \times 10^{22}} = \frac{5.28}{7.35} \cdot 10^2$.

Taking the logarithm of each side,

$$\log(R) = \log\left(\frac{5.28}{7.35} \cdot 10^2\right)$$

= 2 + log $\left(\frac{5.28}{7.35}\right)$
= 2 + log (5.28) - log (7.35)
 \approx 2 + 0.7226 - 0.8663
 \approx 1.8563.

- Find 0.8563 in the table entries to estimate *R*.
 - In the table, 0.8563 is closest to $\log(7.18)$.
 - So, $\log(71.8) \approx 1.8563$, and therefore, the mass of Earth is approximately 71.8 times that of the moon.
- Logarithms turn out to be very useful in dealing with especially large or especially small numbers. How does it help to have those numbers expressed in scientific notation if we are going to use a logarithm table to perform multiplication or division?
 - Again, answers will differ, but students should at least recognize that scientific notation is helpful in working with very large or very small numbers. Using scientific notation, we can express each number as the product of a number between 1 and 10, and a power of 10. Taking the logarithm of the number allows us to use properties of logarithms base 10 to handle more easily any number n where 0 < n < 1 or $n \ge 10$. The logarithm of the number between 1 and 10 can be read from the table, and the exponent of the power of 10 can then be added to it.
- Whenever we have a number of the form $k \times 10^n$ where n is an integer and k is a number between 1.0 and 9.9, the logarithm of this number will always be $n + \log(k)$ and can be evaluated using a table of logarithms like the one included in this lesson.

Discussion (4 minutes)

Logarithms were devised by the Scottish mathematician John Napier (1550-1617) with the help of the English mathematician Henry Briggs (1561-1630) to simplify arithmetic computations with multi-digit numbers by turning multiplication and division into addition and subtraction. The basic idea is that while a sequence of powers like 2^0 , 2^1 , 2^2 , 2^3 , 2^4 , 2^5 , ... is increasing multiplicatively, the sequence of its exponents is increasing additively. If numbers can be represented as the powers of a base, they can be multiplied by adding their exponents and divided by subtracting their exponents. Napier and Briggs published the first tables of what came to be called base-10 or common logarithms.

- It was Briggs's idea to base the logarithms on the number 10. Why do you think he made that choice?
 - The number 10 is the base of our number system. So, taking 10 as the base of common logarithms makes hand calculations with logarithms easier. It is really the same argument that makes scientific notation helpful: Powers of 10 are easy to use in calculations.

Exercises (12 minutes)

Now that students know that if two logarithmic expressions with the same base are equal, then the arguments inside of the logarithms are equal, and students can solve a wider variety of logarithmic equations without invoking the definition each time. Due to the many logarithmic properties that students now know, there are multiple approaches to solving these equations. Discuss different approaches with students and their responses to Exercise 2.

```
Exercises
1.
     Solve the following equations. Remember to check for extraneous solutions because logarithms are only defined for
     positive real numbers.
           \log(x^2) = \log(49)
     а.
           x^2 = 49
           x = 7 or x = -7
           Check: Both solutions are valid since 7^2 and (-7)^2 are both positive numbers.
           The two solutions are 7 and -7.
                                                                                   Scaffolding:
                                                                                   If the class seems to be struggling with the
           \log(x+1) + \log(x+2) = \log(7x - 17)
     b.
                                                                                   process to solve logarithmic equations, then
           \log((x+1)(x-2)) = \log(7x-17)
                                                                                   either encourage them to create a graphic
                 (x+1)(x-2) = 7x - 17
                                                                                   organizer that summarizes the types of
                     x^2 - x - 2 = 7x - 17
                                                                                   problems and approaches that they should
                  x^2 - 8x + 15 = 0
                                                                                   use in each case, or hang one on the board
                 (x-5)(x-3)=0
                                                                                   for reference. A sample graphic organizer is
                              x = 3 \text{ or } x = 5
                                                                                   included.
           Check: Since x + 1, x - 2, and 7x - 17 are all positive for either
                                                                                       Rewrite Problem in the Form ...
           x = 3 or x = 5, both solutions are valid.
                                                                                         \log_{h}(Y) = L
                                                                                                             \log_{h}(Y) = \log_{h}(Z)
           Thus, the solutions to this equation are 3 and 5.
                                                                                       Then ...
                                                                                             b^L = Y
                                                                                                                      Y = Z
          \log(x^2 + 1) = \log(x(x - 2))
     c.
           x^2 + 1 = x(x - 2)
                  = x^2 - 2x
                 1 = -2x
                x = -\frac{1}{2}
           Check: Both \left(-\frac{1}{2}\right)^2 + 1 > 0 and -\frac{1}{2}(-\frac{1}{2}-2) > 0, so the solution -\frac{1}{2} is valid.
           Thus, -\frac{1}{2} is the only valid solution to this equation.
```


211

engage

d. $\log(x+4) + \log(x-1) = \log(3x)$ $\log((x+4)(x-1)) = \log(3x)$ (x+4)(x-1) = 3x $x^2 + 3x - 4 = 3x$ $x^2 - 4 = 0$ x = 2 or x = -2Check: Since log(3x) is undefined when x = -2, there is an extraneous solution of x = -2. The only valid solution to this equation is 2. $\log(x^2 - x) - \log(x - 2) = \log(x - 3)$ e. $log(x-2) + log(x-3) = log(x^2 - x)$ $\log((x-2)(x-3)) = \log(x^2 - x)$ $(x-2)(x-3) = x^2 - x$ $x^2 - 5x + 6 = x^2 - x$ 4x = 6 $x=\frac{3}{2}$ Check: When $x = \frac{3}{2}$, we have x - 2 < 0, so $\log(x - 2)$, $\log(x - 3)$, and $\log(x^2 - x)$ are all undefined. So, the solution $x = \frac{3}{2}$ is extraneous. There are no valid solutions to this equation. $\log(x) + \log(x - 1) + \log(x + 1) = 3\log(x)$ f. $\log(x(x-1)(x+1)) = \log(x^3)$ $\log(x^3 - x) = \log(x^3)$ $x^3 - x = x^3$ x = 0Since log(0) is undefined, x = 0 is an extraneous solution. There are no valid solutions to this equation. $\log(x-4) = -\log(x-2)$ g. Two possible approaches to solving this equation are shown. $\log(x-4) = \log\left(\frac{1}{x-2}\right)$ $\log(x-4) + \log(x-2) = 0$ $x-4 = \frac{1}{x-2}$ $\log((x-4)(x-2)) = \log(1)$ (x-4)(x-2) = 4(x-4)(x-2) = 1 $x^2 - 6x + 8 = 1$ $x^2-6x+8=1$ $x^2-6x+7=0$ $x^2 - 6x + 7 = 0$ $x = 3 \pm \sqrt{2}$ $x = 3 \pm \sqrt{2}$ Check: If $x = 3 - \sqrt{2}$, then x < 2, so $\log(x - 2)$ is undefined. Thus, $3 - \sqrt{2}$ is an extraneous solution. The only valid solution to this equation is $3 + \sqrt{2}$.

Lesson 15: Why Were Logarithms Developed?

engage^{ny}

2. How do you know if you need to use the definition of logarithm to solve an equation involving logarithms as we did in Lesson 15 or if you can use the methods of this lesson?

If the equation involves only logarithmic expressions, then it can be reorganized to be of the form $\log(X) = \log(Y)$ and then solved by equating X = Y. If there are constants involved, then the equation can be solved using the definition and properties of logarithms.

Closing (2 minutes)

Ask students the following questions, and after coming to a consensus, have students record the answers in their notebooks:

- How do we use a table of logarithms to compute a product of two numbers x and y?
 - We look up approximations to log(x) and log(y) in the table, add those logarithms, and then look up the sum in the table to extract the approximate product.
- Does this process provide an exact answer? Explain how you know.
 - It is only an approximation because the table only allows us to look up x to two decimal places and log(x) to four decimal places.
- How do we solve an equation in which every term contains a logarithm?
 - We rearrange the terms to get an equation of the form log(X) = log(Y), then equate X and Y, and solve from there.
- How does that differ from solving an equation that contains constant terms?
 - If an equation has constant terms, then we rearrange the equation to the form log(X) = c, apply the definition of the logarithm, and solve from there.

Lesson Summary		
A table of base- 10 logarithms can be used to simplify multiplication of multi-digit numbers:		
1.	To compute $A \cdot B$ for positive real numbers A and B , look up $\log(A)$ and $\log(B)$ in the logarithm table.	
2.	Add $log(A)$ and $log(B)$. The sum can be written as $k + d$, where k is an integer and $0 \le d < 1$ is the decimal part.	
3.	Look back at the table, and find the entry closest to the decimal part, $d.$	
4.	The product of that entry and 10^k is an approximation to $A\cdot B$.	
A similar process simplifies division of multi-digit numbers:		
1.	To compute $\frac{A}{B}$ for positive real numbers A and B, look up $log(A)$ and $log(B)$ in the logarithm table.	
2.	Calculate $log(A) - log(B)$. The difference can be written as $k + d$, where k is an integer and $0 \le d < 1$ is the decimal part.	
3.	Look back at the table to find the entry closest to the decimal part, $d.$	
4.	The product of that entry and 10^k is an approximation to $rac{A}{B}$.	
For any positive values X and Y, if $\log_b(X) = \log_b(Y)$, we can conclude that $X = Y$. This property is the essence of how a logarithm table works, and it allows us to solve equations with logarithmic expressions on both sides of the		

Exit Ticket (4 minutes)

equation.

Lesson 15: Why Were Logarithms Developed?

This work is derived from Eureka Math [™] and licensed by Great Minds. ©2015 Great Minds. eureka-math.org () This file derived from ALG II-M3-TE-1.3.0-08,2015

engage^{ny}

Name

Date _____

Lesson 15: Why Were Logarithms Developed?

Exit Ticket

The surface area of Jupiter is $6.14 \times 10^{10} \text{ km}^2$, and the surface area of Earth is $5.10 \times 10^8 \text{ km}^2$. Without using a calculator but using the table of logarithms, find how many times greater the surface area of Jupiter is than the surface area of Earth.

Exit Ticket Sample Solutions

The surface area of Jupiter is 6.14×10^{10} km², and the surface area of Earth is 5.10×10^8 km². Without using a calculator but using the table of logarithms, find how many times greater the surface area of Jupiter is than the surface area of Earth. Let R be the ratio of the two surface areas. Then $R = \frac{6.14 \times 10^{10}}{5.10 \times 10^8} = \frac{6.14}{5.10} \cdot 10^2$. Taking the logarithm of each side, $\log(R) = \log\left(\frac{6.14}{5.10} \cdot 10^2\right)$ $= 2 + \log\left(\frac{6.14}{5.10}\right)$ $= 2 + \log(6.14) - \log(5.10)$ $\approx 2 + 0.7882 - 0.7076$ ≈ 2.0806 . Find 0. 0806 in the table entries to estimate R. Look up 0. 0806, which is closest to $\log(1.20)$. Note that $2 + 0.0806 \approx \log(100) + \log(1.20)$, so $\log(120) \approx 2.0806$. Therefore, the surface area of Jupiter is approximately 120 times that of Earth.

Problem Set Sample Solutions

These problems give students additional practice using base-10 logarithms to perform arithmetic calculations and solve equations.

Use the table of logarithms to approximate solutions to the following logarithmic equations: 1. log(x) = 0.5044a. In the table, 0.5044 is closest to log(3.19), so $log(x) \approx log(3.19)$. *Therefore,* $x \approx 3.19$ *.* log(x) = -0.5044 (Hint: Begin by writing -0.5044 as [(-0.5044) + 1] - 1.) b. $\log(x) = [(-0.5044) + 1] - 1$ = 0.4956 - 1In the table, 0.4956 is closest to log(3.13), so $\log(x) \approx \log(3.13) - 1$ $\approx \log(3.13) - \log(10)$ $\approx log \biggl(\frac{3.\,13}{10} \biggr)$ $\approx \log(0.313).$ *Therefore,* $x \approx 0.313$ *.* Alternatively, -0.5044 is the opposite of 0.5044, so x is the reciprocal of the answer in part (a). Thus, $x \approx 3.19^{-1} \approx 0.313.$

Lesson 15: Why Were Logarithms Developed?

(cc) BY-NC-SA

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

log(x) = 35.5044c. log(x) = 35 + 0.5044 $= \log(10^{35}) + 0.5044$ $\approx \log(10^{35}) + \log(3.19)$ $\approx \log(3.19 \times 10^{35})$ Therefore, $x \approx 3.19 \times 10^{35}$. log(x) = 4.9201d. log(x) = 4 + 0.9201 $= \log(10^4) + 0.9201$ $\approx \log(10^4) + \log(8.32)$ $\approx log(8.32 \times 10^4)$ Therefore, $x \approx 83200$. 2. Use logarithms and the logarithm table to evaluate each expression. $\sqrt{2.33}$ а. $\log\left((2.33)^{\frac{1}{2}}\right) = \frac{1}{2}\log(2.33) \approx \frac{1}{2}(0.3674) \approx 0.1837$ Thus, $log(\sqrt{2.33}) \approx 0.1837$, and locating 0.1837 in the logarithm table gives a value of approximately 1.53. Therefore, $\sqrt{2.33} \approx 1.53$. 13500 · 3600 b. $log(1.35 \cdot 10^4 \cdot 3.6 \cdot 10^3) = log(1.35) + log(3.6) + 4 + 3$ $\approx 0.1303 + 0.5563 + 7$ ≈ **7**.6866 Thus, $log(13500 \cdot 3600) \approx 7.6866$. Locating 0.6866 in the logarithm table gives a value of 4.86. Therefore, the product is approximately 4.86×10^7 . 7.2×10⁹ C. 1.3×10⁵ $log(7.2) + log(10^9) - log(1.3) - log(10^5) \approx 0.8573 + 9 - 0.1139 - 5 \approx 4.7434$ Locating 0.7434 in the logarithm table gives 5.54. So, the quotient is approximately $5.54 imes 10^4$. 3. Solve for *x*: $\log(3) + 2 \log(x) = \log(27)$. log(3) + 2 log(x) = log(27) $\log(3) + \log(x^2) = \log(27)$ $\log(3x^2) = \log(27)$ $3x^2 = 27$ $x^2 = 9$ $x = \pm 3$ Because log(x) is only defined for positive real numbers x, the only solution to the equation is 3.

Lesson 15: Why Were Logarithms Developed?

engage^{ny}

4. Solve for *x*: $\log(3x) + \log(x+4) = \log(15)$. $\log(3x^2 + 12x) = \log(15)$ $3x^2 + 12x = 15$ $3x^2 + 12x - 15 = 0$ $3x^2 + 15x - 3x - 15 = 0$ 3x(x+5) - 3(x+5) = 0(3x-3)(x+5) = 0Thus, 1 and -5 solve the quadratic equation, but -5 is an extraneous solution to the logarithmic equation. Hence, 1 is the only solution. 5. Solve for x. a. $\log(x) = \log(y + z) + \log(y - z)$ $\log(x) = \log(y + z) + \log(y - z)$ $\log(x) = \log((y+z)(y-z))$ $\log(x) = \log(y^2 - z^2)$ $x = y^2 - z^2$ $\log(x) = (\log(y) + \log(z)) + (\log(y) - \log(z))$ b. $\log(x) = (\log(y) + \log(z)) + (\log(y) - \log(z))$ $\log(x) = 2\log(y)$ $\log(x) = \log(y^2)$ $x = y^2$ If x and y are positive real numbers, and log(y) = 1 + log(x), express y in terms of x. 6. Since $\log(10x) = 1 + \log(x)$, we see that $\log(y) = \log(10x)$. Then y = 10x. 7. If x, y, and z are positive real numbers, and log(x) - log(y) = log(y) - log(z), express y in terms of x and z. $\log(x) - \log(y) = \log(y) - \log(z)$ $\log(x) + \log(z) = 2\log(y)$ $\log(xz) = \log(y^2)$ $xz = y^2$ $y = \sqrt{xz}$ 8. If x and y are positive real numbers, and log(x) = y(log(y + 1) - log(y)), express x in terms of y. $\log(x) = y(\log(y+1) - \log(y))$ $\log(x) = y\left(\log\left(\frac{y+1}{y}\right)\right)$ $\log(x) = \log\left(\left(\frac{y+1}{y}\right)^{y}\right)$ $x = \left(\frac{y+1}{y}\right)^2$

Lesson 15: Why Were Logarithms Developed?

eloped?

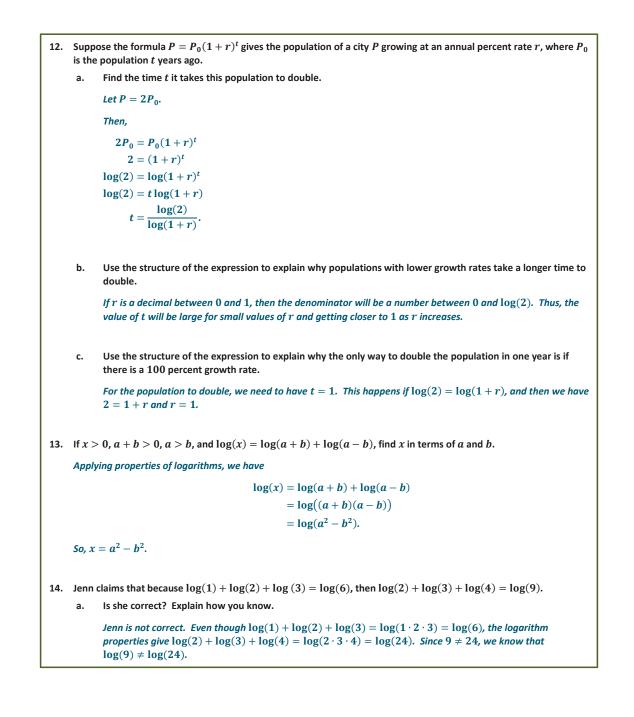
engage^{ny}

9. If x and y are positive real numbers, and log(y) = 3 + 2 log(x), express y in terms of x. Since $\log(1000x^2) = 3 + \log(x^2) = 3 + 2\log(x)$, we see that $\log(y) = \log(1000x^2)$. Thus, $y = 1000x^2$. 10. If x, y, and z are positive real numbers, and $\log(z) = \log(y) + 2\log(x) - 1$, express z in terms of x and y. Since $\log\left(\frac{x^2y}{10}\right) = \log(y) + 2\log(x) - 1$, we see that $\log(z) = \log\left(\frac{x^2y}{10}\right)$. Thus, $z = \frac{x^2y}{10}$. 11. Solve the following equations. $\ln(10) - \ln(7 - x) = \ln(x)$ a. $\ln\left(\frac{10}{7-x}\right) = \ln(x)$ $\frac{10}{7-x} = x$ 10 = x(7 - x) $x^2 - 7x + 10 = 0$ (x-5)(x-2) = 0x = 2 or x = 5Check: If x = 2 or x = 5, then the expressions x and 7 - x are positive. Thus, both 2 and 5 are valid solutions to this equation. $\ln(x+2) + \ln(x-2) = \ln(9x-24)$ b. $\ln((x+2)(x-2)) = \ln(9x-24)$ $x^2 - 4 = 9x - 24$ $x^2 - 9x + 20 = 0$ (x-4)(x-5)=0x = 4 or x = 5Check: If x = 4 or x = 5, then the expressions x + 2, x - 2, and 9x - 24 are all positive. Thus, both 4 and 5 are valid solutions to this equation. $\ln(x+2) + \ln(x-2) = \ln(-2x-1)$ c. $\ln((x+2)(x-2)) = \ln(-2x-1)$ $\ln(x^2 - 4) = \ln(-2x - 1)$ $x^2 - 4 = -2x - 1$ $x^2 + 2x - 3 = 0$ (x+3)(x-1)=0x = -3 or x = 1So, x = -3 or x = 1, but x = -3 makes the input to both logarithms on the left-hand side negative, and x = 1 makes the input to the second and third logarithms negative. Thus, there are no solutions to the original equation.

EUREKA

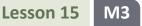
Lesson 15:

Why Were Logarithms Developed?



MP.3

Lesson 15: Why Were Logarithms Developed?

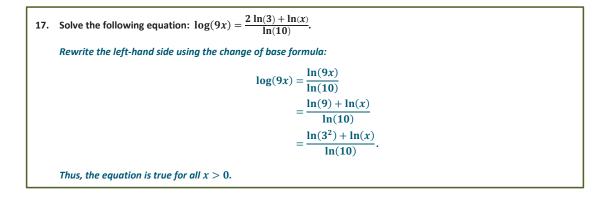


If log(a) + log(b) + log(c) = log(a + b + c), express c in terms of a and b. Explain how this result relates b. to your answer to part (a). $\log(a) + \log(b) + \log(c) = \log(a + b + c)$ $\log(abc) = \log(a + b + c)$ abc = a + b + cabc - c = a + bc(ab-1) = a+b $c = \frac{a+b}{ab-1}$ If $\log(2) + \log(3) + \log(4)$ were equal to $\log(9)$, then we would have $4 = \frac{2+3}{2\cdot 3-4}$. However, $\frac{2+3}{2\cdot 3-1} = \frac{5}{5} = 1 \neq 4$, so we know that $log(2) + log(3) + log(4) \neq log(9)$. Find other values of a, b, and c so that log(a) + log(b) + log(c) = log(a + b + c). c. Many answers are possible; in fact, any positive values of a and b where $ab \neq 1$ and $c = \frac{a+b}{ab-1}$ will satisfy log(a) + log(b) + log(c) = log(a + b + c). One such answer is a = 3, b = 7, and $c = \frac{1}{2}$. 15. In Problem 7 of the Lesson 12 Problem Set, you showed that for $x \ge 1$, $\log(x + \sqrt{x^2 - 1}) + \log(x - \sqrt{x^2 - 1}) = 0$. It follows that $\log(x + \sqrt{x^2 - 1}) = -\log(x - \sqrt{x^2 - 1})$. What does this tell us about the relationship between the expressions $x + \sqrt{x^2 - 1}$ and $x - \sqrt{x^2 - 1}$? Since we know $\log(x + \sqrt{x^2 - 1}) = -\log(x - \sqrt{x^2 - 1})$, and $-\log(x - \sqrt{x^2 - 1}) = \log\left(\frac{1}{x - \sqrt{x^2 - 1}}\right)$, we know that $\log(x + \sqrt{x^2 - 1}) = \log\left(\frac{1}{x - \sqrt{x^2 - 1}}\right)$. Then $x + \sqrt{x^2 - 1} = \frac{1}{x - \sqrt{x^2 - 1}}$. We can verify that these expressions are reciprocals by multiplying them together: $(x + \sqrt{x^2 - 1})(x - \sqrt{x^2 - 1}) = x^2 + x\sqrt{x^2 - 1} - x\sqrt{x^2 - 1} - (\sqrt{x^2 - 1})^2$ $= x^2 - (x^2 - 1)$ = 1. 16. Use the change of base formula to solve the following equations. $\log(x) = \log_{100}(x^2 - 2x + 6)$ а. $\log(x) = \frac{\log(x^2 - 2x + 6)}{\log(100)}$ $\log(x) = \frac{1}{2}\log(x^2 - 2x + 6)$ $2\log(x) = \log(x^2 - 2x + 6)$ $\log(x^2) = \log(x^2 - 2x + 6)$ $x^2 = x^2 - 2x + 6$ 2x = 6x = 3Since both sides of the equation are defined for x = 3, the only solution to this equation is 3.

EUREKA

Lesson 15: Why Were Logarithms Developed?

b. $\log(x - 2) = \log_{100}(14 - x)$ $\log(x-2) = \frac{\log(14-x)}{\log(100)}$ $\log(x-2) = \frac{1}{2}\log(14-x)$ $2\log(x-2) = \log(14-x)$ $log((x-2)^2) = log(14-x)$ $(x-2)^2 = 14 - x$ $x^2 - 4x + 4 = 14 - x$ $x^2 - 3x - 10 = 0$ (x-5)(x+2) = 0Thus, either x = 5 or x = -2. Since the left side of the equation is undefined when x = -2, but both sides are defined for x = 5, the only solution to the equation is 5. $\log_2(x+1) = \log_4(x^2 + 3x + 4)$ c. $\log_2(x+1) = \log_4(x^2 + 3x + 4)$ $\log_2(x+1) = \frac{\log_2(x^2+3x+4)}{\log_2(4)}$ $2\log_2(x+1) = \log_2(x^2 + 3x + 4)$ $\log_2((x+1)^2) = \log_2(x^2 + 3x + 4)$ $(x+1)^2 = x^2 + 3x + 4$ $x^2 + 2x + 1 = x^2 + 3x + 4$ 2x + 1 = 3x + 4x = -3Since the left side of the equation is undefined for x = -3, there is no solution to this equation. d. $\log_2(x-1) = \log_8(x^3 - 2x^2 - 2x + 5)$ $\log_2(x-1) = \frac{\log_2(x^3 - 2x^2 - 2x + 5)}{\log_2(8)}$ $3 \log_2(x-1) = \log_2(x^3 - 2x^2 - 2x + 5)$ $\log_2((x-1)^3) = \log_2(x^3 - 2x^2 - 2x + 5)$ $(x-1)^3 = x^3 - 2x^2 - 2x + 5$ $x^3 - 3x^2 + 3x - 1 = x^3 - 2x^2 - 2x + 5$ $x^2 - 5x + 6 = 0$ (x-3)(x-2)=0Since both sides of the equation are defined for x = 3 and x = 2, 2 and 3 are both valid solutions to this equation.



Common Logar	ithm Table
--------------	------------

N	0	1	2	3	4	5	6	7	8	9
1.0	0.0000	0.0043	0.0086	0.0128	0.0170	0.0212	0.0253	0.0294	0.0334	0.0374
1.1	0.0414	0.0453	0.0492	0.0531	0.0569	0.0607	0.0645	0.0682	0.0719	0.0755
1.2	0.0793	0.0828	0.0864	0.0899	0.0934	0.0969	0.1004	0.1038	0.1072	0.1106
1.3	0.1142	0.1173	0.1206	0.1239	0.1271	0.1303	0.1335	0.1367	0.1399	0.1430
1.4	0.1465	0.1492	0.1523	0.1553	0.1584	0.1614	0.1644	0.1673	0.1703	0.1732
1.5	0.1765	0.1790	0.1818	0.1847	0.1875	0.1903	0.1931	0.1959	0.1987	0.2014
1.6	0.2046	0.2068	0.2095	0.2122	0.2148	0.2175	0.2201	0.2227	0.2253	0.2279
1.7	0.2310	0.2330	0.2355	0.2380	0.2405	0.2430	0.2455	0.2480	0.2504	0.2529
1.8	0.2558	0.2577	0.2601	0.2625	0.2648	0.2672	0.2695	0.2718	0.2742	0.2765
1.9	0.2793	0.2810	0.2833	0.2856	0.2878	0.2900	0.2923	0.2945	0.2967	0.2989
2.0	0.3016	0.3032	0.3054	0.3075	0.3096	0.3118	0.3139	0.3160	0.3181	0.3201
2.1	0.3228	0.3243	0.3263	0.3284	0.3304	0.3324	0.3345	0.3365	0.3385	0.3404
2.2	0.3431	0.3444	0.3464	0.3483	0.3502	0.3522	0.3541	0.3560	0.3579	0.3598
2.3	0.3624	0.3636	0.3655	0.3674	0.3692	0.3711	0.3729	0.3747	0.3766	0.3784
2.4	0.3809	0.3820	0.3838	0.3856	0.3874	0.3892	0.3909	0.3927	0.3945	0.3962
2.5	0.3986	0.3997	0.4014	0.4031	0.4048	0.4065	0.4082	0.4099	0.4116	0.4133
2.6	0.4156	0.4166	0.4183	0.4200	0.4216	0.4232	0.4249	0.4265	0.4281	0.4298
2.7	0.4320	0.4330	0.4346	0.4362	0.4378	0.4393	0.4409	0.4425	0.4440	0.4456
2.8	0.4478	0.4487	0.4502	0.4518	0.4533	0.4548	0.4564	0.4579	0.4594	0.4609
2.9	0.4631	0.4639	0.4654	0.4669	0.4683	0.4698	0.4713	0.4728	0.4742	0.4757
3.0	0.4778	0.4786	0.4800	0.4814	0.4829	0.4843	0.4857	0.4871	0.4886	0.4900
3.1	0.4920	0.4928	0.4942	0.4955	0.4969	0.4983	0.4997	0.5011	0.5024	0.5038
3.2	0.5058	0.5065	0.5079	0.5092	0.5105	0.5119	0.5132	0.5145	0.5159	0.5172
3.3	0.5192	0.5198	0.5211	0.5224	0.5237	0.5250	0.5263	0.5276	0.5289	0.5302
3.4	0.5321	0.5328	0.5340	0.5353	0.5366	0.5378	0.5391	0.5403	0.5416	0.5428
3.5	0.5447	0.5453	0.5465	0.5478	0.5490	0.5502	0.5514	0.5527	0.5539	0.5551
3.6	0.5570	0.5575	0.5587	0.5599	0.5611	0.5623	0.5635	0.5647	0.5658	0.5670
3.7	0.5689	0.5694	0.5705	0.5717	0.5729	0.5740	0.5752	0.5763	0.5775	0.5786
3.8	0.5804	0.5809	0.5821	0.5832	0.5843	0.5855	0.5866	0.5877	0.5888	0.5899
3.9	0.5917	0.5922	0.5933	0.5944	0.5955	0.5966	0.5977	0.5988	0.5999	0.6010
4.0	0.6027	0.6031	0.6042	0.6053	0.6064	0.6075	0.6085	0.6096	0.6107	0.6117
4.1	0.6134	0.6138	0.6149	0.6160	0.6170	0.6180	0.6191	0.6201	0.6212	0.6222
4.2	0.6239	0.6243	0.6253	0.6263	0.6274	0.6284	0.6294	0.6304	0.6314	0.6325
4.3	0.6341	0.6345	0.6355	0.6365	0.6375	0.6385	0.6395	0.6405	0.6415	0.6425
4.4	0.6441	0.6444	0.6454	0.6464	0.6474	0.6484	0.6493	0.6503	0.6513	0.6522
4.5	0.6538	0.6542	0.6551	0.6561	0.6571	0.6580	0.6590	0.6599	0.6609	0.6618
4.6	0.6634	0.6637	0.6646	0.6656	0.6665	0.6675	0.6684	0.6693	0.6702	0.6712
4.7	0.6727	0.6730	0.6739	0.6749	0.6758	0.6767	0.6776	0.6785	0.6794	0.6803
4.8	0.6818	0.6821	0.6830	0.6839	0.6848	0.6857	0.6866	0.6875	0.6884	0.6893
4.9	0.6908	0.6911	0.6920	0.6928	0.6937	0.6946	0.6955	0.6964	0.6972	0.6981
5.0	0.6996	0.6998	0.7007	0.7016	0.7024	0.7033	0.7042	0.7050	0.7059	0.7067
5.1	0.7082	0.7084	0.7093	0.7101	0.7110	0.7118	0.7126	0.7135	0.7143	0.7152
5.2	0.7166	0.7168	0.7177	0.7185	0.7193	0.7202	0.7210	0.7218	0.7226	0.7235
5.3	0.7249	0.7251	0.7259	0.7267	0.7275	0.7284	0.7292	0.7210	0.7220	0.7255
5.4	0.7330	0.7332	0.7340	0.7348	0.7356	0.7364	0.7372	0.7380	0.7388	0.7396
5.4	0.7550	0.7554	0.7540	0.7340	0.7550	0.7504	0.1312	0.7500	0.7500	0.7390

Lesson 15: Why Were Logarithms Developed?

5.5 0.7404 0.7412 0.7413 0.7413 0.7451 0.7451 0.7450 0.7546 0.7544 0.7547 5.6 0.7559 0.7560 0.7510 0.7520 0.7560 0.7514 0.7582 0.7586 0.7541 0.7541 0.7582 0.7580 0.7760 0.7761 0.7715 0.77716 0.7713 0.7738 0.7782 0.7780 0.7780 0.7780 0.7780 0.7780 0.7780 0.7780 0.7781 0.7782 0.7880 0.7781 0.7782 0.7780 0.7780 0.7780 0.7780 0.7780 0.7780 0.7780 0.7780 0.7887 0.7887 0.7887 0.7887 0.7887 0.7887 0.7880 0.8035 0.8030 0.8010 0.8010 0.8010 0.8010 0.8010 0.8116 0.8122 0.8180 0.8162 0.8169 0.8176 0.8182 0.8184 0.8244 0.8255 0.8214 0.8225 0.8216 0.8176 0.8176 0.8176 0.8176 0.8181 0.8255	Ν	0	1	2	3	4	5	6	7	8	9
5.7 0.7559 0.7566 0.7574 0.7582 0.7589 0.7577 0.7604 0.7612 0.7612 0.7612 0.7612 0.7612 0.7612 0.7612 0.7612 0.7612 0.7612 0.7612 0.7712 0.7716 0.7773 0.7733 0.7738 0.7715 0.7715 0.7716 0.7716 0.7717 0.7716 0.7717 0.7716 0.7717 0.7716 <td>5.5</td> <td>0.7404</td> <td>0.7412</td> <td>0.7419</td> <td>0.7427</td> <td>0.7435</td> <td>0.7443</td> <td>0.7451</td> <td>0.7459</td> <td>0.7466</td> <td>0.7474</td>	5.5	0.7404	0.7412	0.7419	0.7427	0.7435	0.7443	0.7451	0.7459	0.7466	0.7474
5.8 0.7634 0.7642 0.7649 0.7657 0.7646 0.7769 0.7764 0.7764 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7785 0.7885 0.7885 0.7885 0.7885 0.7885 0.7885 0.7885 0.7885 0.7885 0.7985 0.7993 0.7910 0.7917 6.1 0.7835 0.7860 0.7880 0.7882 0.7895 0.7966 0.7973 0.7980 0.7980 0.7910 0.7917 6.2 0.7924 0.8000 0.8007 0.8012 0.8012 0.8102 0.8109 0.8116 0.8122 0.8136 0.8122 0.8123 0.8123 0.8123 0.8123 0.8123 0.8123 0.8123 0.8124 0.8245 0.8235 0.8235 0.8235 0.8235 0.8235 0.8245 0.8324 0.8340 0.8350 0.8445 0.8445 0.8445 0.8445 0.8445 0.8445 0.	5.6	0.7482	0.7490	0.7497	0.7505	0.7513	0.7520	0.7528	0.7536	0.7543	0.7551
5.9 0.7709 0.7716 0.7723 0.7738 0.7738 0.7752 0.7760 0.7767 0.7774 6.0 0.7782 0.7780 0.7786 0.7813 0.7818 0.7818 0.7825 0.7839 0.7846 6.1 0.7824 0.7931 0.7888 0.7875 0.7880 0.7889 0.7903 0.7901 0.7917 6.2 0.7924 0.7931 0.7880 0.7875 0.7880 0.7889 0.7903 0.7904 0.7916 6.4 0.8062 0.8069 0.8077 0.8081 0.8022 0.8160 0.8162 0.8116 0.8112 0.8116 0.8122 0.8161 0.8122 0.8181 0.8312 0.8316 6.6 0.8195 0.8202 0.8204 0.8247 0.8231 0.8316 0.8317 0.8316 0.8317 0.8316 0.8316 0.8316 0.8316 0.8316 0.8316 0.8316 0.8316 0.8316 0.8316 0.8316 0.8316 0.8316 0.8316 0.	5.7	0.7559	0.7566	0.7574	0.7582	0.7589	0.7597	0.7604	0.7612	0.7619	0.7627
6.0 0.7782 0.7789 0.7780 0.7810 0.7818 0.7825 0.7832 0.7839 0.7846 6.1 0.7853 0.7860 0.7868 0.7875 0.7882 0.7880 0.7903 0.7900 0.7910 0.7917 6.2 0.7931 0.7901 0.7931 0.7936 0.7903 0.7906 0.7973 0.7900 0.7910 0.7121 0.8132 0.8132 0.8132 0.8132 0.8132 0.8131 0.8211 0.8211 0.8414 0.8420 0.	5.8	0.7634	0.7642	0.7649	0.7657	0.7664	0.7672	0.7679	0.7686	0.7694	0.7701
6.1 0.7853 0.7860 0.7863 0.7875 0.7882 0.7889 0.7896 0.7903 0.7910 0.7917 6.2 0.7924 0.7931 0.7938 0.7944 0.7952 0.7950 0.7966 0.7973 0.7980 0.7987 6.3 0.7993 0.8000 0.8007 0.8014 0.8021 0.8028 0.8035 0.8041 0.8129 0.8116 0.8122 6.4 0.8020 0.8209 0.8215 0.8222 0.8235 0.8314 0.8315 0.8375 0.8324 0.8325 6.5 0.8227 0.8227 0.8235 0.8310 0.8375 0.8370 0.8376 0.8382 6.8 0.8325 0.8311 0.8340 0.8344 0.8451 0.8470 0.8445 0.8432 0.8439 0.8430 0.8370 0.8510 0.8511 0.8511 0.8511 0.8511 0.8511 0.8511 0.8511 0.8511 0.8511 0.8511 0.8511 0.8511 0.8511 0.8511 0.	5.9	0.7709	0.7716	0.7723	0.7731	0.7738	0.7745	0.7752	0.7760	0.7767	0.7774
6.2 0.7924 0.7931 0.7938 0.7945 0.7952 0.7950 0.7966 0.7973 0.7980 0.7987 6.3 0.7993 0.8000 0.8007 0.8014 0.8021 0.8025 0.8031 0.8048 0.8055 6.4 0.8062 0.8069 0.8075 0.8022 0.8026 0.8102 0.8176 0.8112 0.8122 6.5 0.8129 0.8136 0.8127 0.8226 0.8220 0.8220 0.8293 0.8293 0.8214 0.8122 0.8131 6.6 0.8195 0.8207 0.8247 0.8237 0.8237 0.8329 0.8316 0.8312 0.8316 6.9 0.8388 0.8395 0.8410 0.8414 0.8420 0.8432 <th0.843< th=""> <th0.855< th=""></th0.855<></th0.843<>	6.0	0.7782	0.7789	0.7796	0.7803	0.7810	0.7818	0.7825	0.7832	0.7839	0.7846
6.3 0.7993 0.8000 0.8017 0.8014 0.8021 0.8028 0.8035 0.8041 0.8048 0.8055 6.4 0.8062 0.8069 0.8075 0.8082 0.8089 0.8006 0.8102 0.8116 0.8122 0.8126 0.8169 0.8169 0.8116 0.8122 0.8228 0.8223 0.8229 0.8239 0.8293 0.8293 0.8306 0.8312 0.8348 6.6 0.8251 0.8227 0.8280 0.8215 0.8237 0.8293 0.8293 0.8306 0.8312 0.8312 0.8312 0.8312 0.8312 0.8312 0.8312 0.8312 0.8312 0.8415 7.0 0.8451 0.8457 0.8440 0.8420 0.8426 0.8488 0.8451 0.8577 0.8433 0.8414 0.8577 0.8453 0.8561 0.8577 0.8633 0.8611 0.8567 0.8663 0.8667 0.8663 0.8667 0.8663 0.8667 0.8663 0.8669 0.8774 0.8773 0.8773 <td>6.1</td> <td>0.7853</td> <td>0.7860</td> <td>0.7868</td> <td>0.7875</td> <td>0.7882</td> <td>0.7889</td> <td>0.7896</td> <td>0.7903</td> <td>0.7910</td> <td>0.7917</td>	6.1	0.7853	0.7860	0.7868	0.7875	0.7882	0.7889	0.7896	0.7903	0.7910	0.7917
6.4 0.8062 0.8069 0.8075 0.8082 0.8089 0.8102 0.8109 0.8116 0.8122 6.5 0.8129 0.8136 0.8142 0.8149 0.8156 0.8162 0.8169 0.8176 0.8122 0.8218 6.6 0.8195 0.8220 0.8208 0.8227 0.8228 0.8239 0.8306 0.8312 0.8319 6.8 0.8325 0.8331 0.8343 0.8341 0.8357 0.8363 0.8370 0.8376 0.8376 0.8376 6.9 0.8388 0.8395 0.8401 0.8407 0.8414 0.8420 0.8426 0.8432 0.8439 0.8506 7.1 0.8513 0.8517 0.8470 0.8470 0.8543 0.8549 0.8561 0.8567 7.3 0.8579 0.8585 0.8517 0.8663 0.8669 0.8675 0.8661 0.8667 7.3 0.8579 0.8570 0.8663 0.8674 0.8710 0.8716 0.8722 0.8721	6.2	0.7924	0.7931	0.7938	0.7945	0.7952	0.7959	0.7966	0.7973	0.7980	0.7987
6.5 0.8129 0.8136 0.8142 0.8149 0.8156 0.8162 0.8169 0.8176 0.8182 0.8189 6.6 0.8195 0.8202 0.8209 0.8215 0.8227 0.8293 0.8299 0.8206 0.8311 0.8318 6.8 0.8325 0.8331 0.8338 0.8344 0.8351 0.8353 0.8370 0.8363 0.8370 0.8370 0.8370 0.8370 0.8439 0.8445 7.0 0.8451 0.8457 0.8463 0.8470 0.8446 0.8422 0.8488 0.8494 0.8500 0.8567 7.1 0.8513 0.8577 0.8563 0.8667 0.8669 0.8675 0.8661 0.8677 7.3 0.8633 0.8649 0.8710 0.8716 0.8727 0.8733 0.8739 0.8737 0.8735 0.8711 0.8727 0.8733 0.8797 0.8802 7.4 0.8692 0.8874 0.8826 0.8817 0.8842 0.8848 0.8854 0.8857 <td>6.3</td> <td>0.7993</td> <td>0.8000</td> <td>0.8007</td> <td>0.8014</td> <td>0.8021</td> <td>0.8028</td> <td>0.8035</td> <td>0.8041</td> <td>0.8048</td> <td>0.8055</td>	6.3	0.7993	0.8000	0.8007	0.8014	0.8021	0.8028	0.8035	0.8041	0.8048	0.8055
6.6 0.8195 0.8202 0.8219 0.8215 0.8222 0.8228 0.8235 0.8241 0.8248 0.8214 6.7 0.8261 0.8267 0.8338 0.8338 0.8338 0.8331 0.8338 0.8336 0.8357 0.8363 0.8370 0.8376 0.8376 0.8376 0.8376 0.8376 0.8376 0.8376 0.8376 0.8376 0.8376 0.8376 0.8376 0.8376 0.8370 0.8376 0.8376 0.8439 0.8456 0.8457 0.8463 0.8477 0.8422 0.8488 0.8449 0.8506 7.1 0.8513 0.8519 0.8525 0.8511 0.8577 0.8603 0.8669 0.8615 0.8621 0.8627 7.3 0.8633 0.8643 0.8651 0.8657 0.8663 0.8649 0.8814 0.8827 0.8877 0.8872 0.8773 0.8773 0.8773 0.8773 0.8773 0.8773 0.8875 0.8875 0.8875 0.8875 0.8877 0.8842 0.8844 <td>6.4</td> <td>0.8062</td> <td>0.8069</td> <td>0.8075</td> <td>0.8082</td> <td>0.8089</td> <td>0.8096</td> <td>0.8102</td> <td>0.8109</td> <td>0.8116</td> <td>0.8122</td>	6.4	0.8062	0.8069	0.8075	0.8082	0.8089	0.8096	0.8102	0.8109	0.8116	0.8122
6.7 0.8261 0.8274 0.8280 0.8287 0.8293 0.8306 0.8312 0.8319 6.8 0.8325 0.8331 0.8338 0.8338 0.8351 0.8357 0.8363 0.8370 0.8376 0.8382 6.9 0.8388 0.8451 0.8457 0.8463 0.8470 0.8442 0.8482 0.8488 0.8494 0.8500 0.8507 7.1 0.8513 0.8519 0.8525 0.8531 0.8537 0.8643 0.8649 0.8577 0.8633 0.8609 0.8615 0.8621 0.8627 7.3 0.8633 0.8649 0.8710 0.8716 0.8722 0.8737 0.8755 0.8791 0.8765 7.6 0.8768 0.8714 0.8774 0.8779 0.8875 0.8891 0.8844 0.8854 0.8857 7.6 0.8808 0.8814 0.8820 0.8827 0.8892 0.8844 0.8894 0.8994 0.8904 0.8910 0.8915 7.7 0.8865	6.5	0.8129	0.8136	0.8142	0.8149	0.8156	0.8162	0.8169	0.8176	0.8182	0.8189
6.8 0.8325 0.8331 0.8338 0.8344 0.8357 0.8363 0.8370 0.8376 0.8382 6.9 0.8388 0.8395 0.8401 0.8407 0.8414 0.8420 0.8426 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8433 0.8501 0.8557 0.8551 0.8557 0.8561 0.8577 0.8563 0.8575 0.8561 0.8667 7.3 0.8633 0.8645 0.8651 0.8571 0.8575 0.8661 0.8667 0.8667 0.8661 0.8675 0.8661 0.8667 7.4 0.8692 0.8698 0.8710 0.8716 0.8721 0.8735 0.8711 0.8767 0.8862 0.8871 0.8872 0.8873 0.8842 0.8844 0.8891 0.8971 7.5 0.8751 0.8756 0.8871 0.8872 0.8871 0.8872 0.8873 0.8894 0.8904 0.8910	6.6	0.8195	0.8202	0.8209	0.8215	0.8222	0.8228	0.8235	0.8241	0.8248	0.8254
6.9 0.8388 0.8395 0.8401 0.8407 0.8414 0.8420 0.8426 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8432 0.8433 0.8555 0.8561 0.8567 7.1 0.8513 0.8519 0.8525 0.8531 0.8577 0.8603 0.8609 0.8615 0.8621 0.8677 7.3 0.8633 0.8639 0.8645 0.8651 0.8667 0.8603 0.8679 0.8673 0.8671 0.8673 0.8671 0.8672 0.8772 0.8733 0.8739 0.8745 7.5 0.8751 0.8762 0.8768 0.8774 0.8785 0.8771 0.8875 0.8801 0.8897 0.8893 0.8899 0.8904 0.8910 0.8915 7.5 0.8801 0.8820 0.8821 0.8837 0.8893 0.8899 0.8904 0.8900 0.8905 0.8971 7.8 0.	6.7	0.8261	0.8267	0.8274	0.8280	0.8287	0.8293	0.8299	0.8306	0.8312	0.8319
7.0 0.8451 0.8457 0.8463 0.8470 0.8476 0.8482 0.8488 0.8494 0.8500 0.8506 7.1 0.8513 0.8519 0.8525 0.8531 0.8537 0.8543 0.8549 0.8555 0.8561 0.8667 7.2 0.8573 0.8633 0.8645 0.8511 0.8597 0.8603 0.8609 0.8615 0.8621 0.8627 7.3 0.8633 0.8698 0.8704 0.8710 0.8774 0.8722 0.8733 0.8739 0.8745 7.5 0.8751 0.8756 0.8762 0.8768 0.8874 0.8892 0.8893 0.8994 0.8914 0.8894 0.8854 0.8895 7.6 0.8865 0.8871 0.8822 0.8887 0.8893 0.8899 0.8904 0.8910 0.8915 7.7 0.8876 0.8982 0.8973 0.8993 0.8993 0.8994 0.8904 0.8910 0.9015 0.9020 0.9025 7.9 0.8976	6.8	0.8325	0.8331	0.8338	0.8344	0.8351	0.8357	0.8363	0.8370	0.8376	0.8382
7.1 0.8513 0.8519 0.8525 0.8531 0.8537 0.8543 0.8549 0.8555 0.8561 0.8567 7.2 0.8573 0.8579 0.8585 0.8591 0.8597 0.8603 0.8609 0.8615 0.8621 0.8627 7.3 0.8633 0.8639 0.8645 0.8611 0.8716 0.8722 0.8733 0.8733 0.8739 0.8745 7.5 0.8751 0.8756 0.8762 0.8768 0.8774 0.8779 0.8785 0.8791 0.8797 0.8802 7.6 0.8808 0.8814 0.8820 0.8825 0.8831 0.8842 0.8842 0.8844 0.8859 7.7 0.8865 0.8812 0.8827 0.8893 0.8993 0.8999 0.8904 0.8910 0.8915 7.8 0.8976 0.8982 0.8977 0.9053 0.9063 0.9069 0.9074 0.9079 8.1 0.9036 0.9042 0.9047 0.9053 0.9165 0.9170	6.9	0.8388	0.8395	0.8401	0.8407	0.8414	0.8420	0.8426	0.8432	0.8439	0.8445
7.2 0.8573 0.8573 0.8579 0.8597 0.8603 0.8609 0.8615 0.8621 0.8627 7.3 0.8633 0.8639 0.8645 0.8651 0.8657 0.8663 0.8669 0.8725 0.8615 0.8681 0.8686 7.4 0.8692 0.8698 0.8714 0.8716 0.8722 0.8727 0.8733 0.8739 0.8745 7.5 0.8751 0.8756 0.8762 0.8768 0.8774 0.8779 0.8785 0.8791 0.8797 0.8802 7.6 0.8808 0.8814 0.8820 0.8825 0.8831 0.8837 0.8842 0.8848 0.8848 0.8859 7.7 0.8865 0.8871 0.8876 0.8822 0.8887 0.8893 0.8994 0.8904 0.8915 7.8 0.8971 0.8976 0.8982 0.8987 0.8993 0.9949 0.9005 0.9020 0.9025 8.0 0.9071 0.9026 0.9047 0.9053 0.9058 0.9063 0.9069 0.9074 0.9079 8.1 0.9035 0.9090 0.9046 0.9110 0.9165 0.9170 0.9175 0.9180 0.9186 8.3 0.9143 0.9149 0.9154 0.9269 0.9274 0.9279 0.9224 0.9228 8.4 0.9248 0.9233 0.9258 0.9269 0.9274 0.9279 0.9284 0.9289 8.5 0.9294 0.9299 0.9304 <td>7.0</td> <td>0.8451</td> <td>0.8457</td> <td>0.8463</td> <td>0.8470</td> <td>0.8476</td> <td>0.8482</td> <td>0.8488</td> <td>0.8494</td> <td>0.8500</td> <td>0.8506</td>	7.0	0.8451	0.8457	0.8463	0.8470	0.8476	0.8482	0.8488	0.8494	0.8500	0.8506
7.3 0.8633 0.8639 0.8645 0.8651 0.8657 0.8663 0.8669 0.8675 0.8681 0.8686 7.4 0.8692 0.8698 0.8704 0.8710 0.8716 0.8722 0.8727 0.8733 0.8739 0.8745 7.5 0.8751 0.8756 0.8762 0.8768 0.8774 0.8779 0.8785 0.8791 0.8797 0.8802 7.6 0.8808 0.8814 0.8820 0.8825 0.8831 0.8837 0.8842 0.8848 0.8854 0.8859 7.7 0.8865 0.8871 0.8876 0.8822 0.8882 0.8893 0.8994 0.8904 0.8906 0.8965 0.8971 7.8 0.8921 0.8927 0.8932 0.8938 0.8943 0.8949 0.8954 0.8960 0.8965 0.8971 7.9 0.8976 0.8982 0.8987 0.8933 0.8948 0.8954 0.8960 0.8965 0.8971 7.9 0.9031 0.9036 0.9042 0.9047 0.9053 0.9003 0.9005 0.9003 0.9020 0.9025 8.0 0.9031 0.9036 0.9101 0.9105 0.9112 0.9117 0.9122 0.9128 0.9138 8.2 0.9133 0.9143 0.9149 0.9154 0.9159 0.9165 0.9170 0.9175 0.9180 0.9186 8.3 0.9143 0.9248 0.9229 0.9248 0.9223 0.9224	7.1	0.8513	0.8519	0.8525	0.8531	0.8537	0.8543	0.8549	0.8555	0.8561	0.8567
7.3 0.8633 0.8639 0.8645 0.8651 0.8657 0.8663 0.8669 0.8675 0.8681 0.8686 7.4 0.8692 0.8698 0.8704 0.8710 0.8716 0.8722 0.8727 0.8733 0.8739 0.8745 7.5 0.8751 0.8756 0.8762 0.8768 0.8774 0.8779 0.8785 0.8791 0.8797 0.8802 7.6 0.8808 0.8814 0.8820 0.8825 0.8831 0.8837 0.8842 0.8848 0.8854 0.8859 7.7 0.8865 0.8871 0.8876 0.8822 0.8882 0.8893 0.8994 0.8904 0.8906 0.8965 0.8971 7.8 0.8921 0.8927 0.8932 0.8938 0.8943 0.8949 0.8954 0.8960 0.8965 0.8971 7.9 0.8976 0.8982 0.8987 0.8933 0.8948 0.8954 0.8960 0.8965 0.8971 7.9 0.9031 0.9036 0.9042 0.9047 0.9053 0.9003 0.9005 0.9003 0.9020 0.9025 8.0 0.9031 0.9036 0.9101 0.9105 0.9112 0.9117 0.9122 0.9128 0.9138 8.2 0.9133 0.9143 0.9149 0.9154 0.9159 0.9165 0.9170 0.9175 0.9180 0.9186 8.3 0.9143 0.9248 0.9229 0.9248 0.9223 0.9224	7.2	0.8573	0.8579	0.8585	0.8591	0.8597	0.8603	0.8609	0.8615	0.8621	0.8627
7.4 0.8692 0.8698 0.8704 0.8710 0.8716 0.8722 0.8727 0.8733 0.8739 0.8745 7.5 0.8751 0.8756 0.8762 0.8768 0.8774 0.8779 0.8785 0.8791 0.8797 0.8802 7.6 0.8808 0.8814 0.8820 0.8825 0.8811 0.8877 0.8842 0.8848 0.8848 0.8854 0.8859 7.7 0.8865 0.8871 0.8876 0.8822 0.8887 0.8933 0.8999 0.8904 0.8900 0.8910 0.8915 7.8 0.8921 0.8927 0.8932 0.8938 0.8943 0.8949 0.8954 0.8960 0.8965 0.8971 7.9 0.8976 0.8982 0.8987 0.8993 0.8998 0.9004 0.9009 0.9015 0.9020 0.9025 8.0 0.9031 0.9036 0.9047 0.9053 0.9058 0.9063 0.9074 0.9079 8.1 0.9035 0.9090 0.9096 0.9111 0.9112 0.9117 0.9122 0.9128 0.9133 8.2 0.9138 0.9143 0.9149 0.9154 0.9217 0.9222 0.9227 0.9232 0.9238 8.4 0.9243 0.9248 0.9253 0.9269 0.9274 0.9279 0.9244 0.9289 8.5 0.9244 0.9229 0.9304 0.9309 0.9315 0.9325 0.9330 0.9335 0.9330 <td>7.3</td> <td>0.8633</td> <td>0.8639</td> <td>0.8645</td> <td>0.8651</td> <td>0.8657</td> <td>0.8663</td> <td>0.8669</td> <td>0.8675</td> <td>0.8681</td> <td></td>	7.3	0.8633	0.8639	0.8645	0.8651	0.8657	0.8663	0.8669	0.8675	0.8681	
7.5 0.8751 0.8756 0.8762 0.8768 0.8774 0.8779 0.8785 0.8791 0.8797 0.8802 7.6 0.8808 0.8814 0.8820 0.8825 0.8831 0.8837 0.8842 0.8848 0.8854 0.8859 7.7 0.8865 0.8871 0.8876 0.8822 0.8882 0.8893 0.8993 0.8994 0.8994 0.8904 0.8910 0.8915 7.8 0.8921 0.8927 0.8932 0.8938 0.8943 0.8949 0.8954 0.8960 0.8965 0.8971 7.9 0.8976 0.8982 0.8987 0.8993 0.9044 0.9009 0.9015 0.9020 0.9025 8.0 0.9031 0.9036 0.9047 0.9053 0.9058 0.9063 0.9069 0.9074 0.9079 8.1 0.9085 0.9090 0.9096 0.9111 0.9165 0.9170 0.9175 0.9180 0.9186 8.3 0.9113 0.9149 0.9154 0.9159 0.9165 0.9170 0.9175 0.9180 0.9186 8.3 0.9113 0.9149 0.9201 0.9206 0.9217 0.9222 0.9227 0.9232 0.9238 8.4 0.9243 0.9248 0.9253 0.9258 0.9263 0.9269 0.9274 0.9279 0.9284 0.9289 8.5 0.9294 0.9299 0.9304 0.9309 0.9315 0.9370 0.9375 0.9330											0.8745
7.6 0.8808 0.8814 0.8820 0.8825 0.8831 0.8837 0.8842 0.8848 0.8854 0.8859 7.7 0.8865 0.8871 0.8876 0.8822 0.8887 0.8933 0.8999 0.8904 0.8910 0.8915 7.8 0.8921 0.8927 0.8932 0.8938 0.8943 0.8949 0.8954 0.8960 0.8965 0.8971 7.9 0.8976 0.8922 0.8987 0.8993 0.8998 0.9004 0.9009 0.9015 0.9020 0.9025 8.0 0.9031 0.9036 0.9042 0.9047 0.9053 0.9058 0.9063 0.9069 0.9074 0.9079 8.1 0.9085 0.9090 0.9096 0.9111 0.9166 0.9112 0.9117 0.9122 0.9128 0.9138 8.2 0.9138 0.9143 0.9149 0.9154 0.9159 0.9165 0.9170 0.9175 0.9180 0.9186 8.3 0.9191 0.9166 0.9211 0.9224 0.9227 0.9232 0.9238 0.9238 0.9335		0.8751	0.8756	0.8762	0.8768	0.8774	0.8779	0.8785	0.8791	0.8797	0.8802
7.7 0.8865 0.8871 0.8876 0.8882 0.8887 0.8893 0.8894 0.8904 0.8910 0.8915 7.8 0.8921 0.8927 0.8932 0.8938 0.8943 0.8949 0.8954 0.8960 0.8965 0.8971 7.9 0.8976 0.8982 0.8987 0.8993 0.8998 0.9004 0.9009 0.9015 0.9020 0.9025 8.0 0.9031 0.9036 0.9042 0.9047 0.9053 0.9058 0.9063 0.9069 0.9074 0.9079 8.1 0.9085 0.9090 0.9096 0.9111 0.9166 0.9112 0.9117 0.9122 0.9128 0.9138 8.2 0.9138 0.9143 0.9149 0.9154 0.9159 0.9165 0.9170 0.9175 0.9180 0.9186 8.3 0.9191 0.9166 0.9201 0.9266 0.9217 0.9222 0.9227 0.9232 0.9238 8.4 0.9243 0.9248 0.9253 0.9258 0.9300 0.9315 0.9302 0.9325 0.9330 0.9335			0.8814			0.8831			0.8848	0.8854	
7.80.89210.89270.89320.89380.89430.89490.89540.89600.89650.89717.90.89760.89820.89870.89930.89980.90040.90090.90150.90200.90258.00.90310.90360.90420.90470.90530.90580.90630.90690.90740.90798.10.90850.90900.90960.91010.91060.91120.91170.91220.91280.91388.20.91380.91430.91490.91540.91590.91650.91700.91750.91800.91868.30.91910.91960.92010.92060.92120.92170.92220.92270.92320.92388.40.92430.92480.92530.92580.92630.92690.92740.92790.92840.92898.50.92940.92990.93040.93090.93150.93200.93250.93300.93350.93008.70.93950.94000.94050.94100.94150.94200.94250.94300.94350.94408.80.94450.94500.94550.94600.94650.94690.94740.94790.94840.94898.90.94440.94990.95040.95090.95130.95180.95230.95280.95330.95869.10.95900.95550.96600.96610.96660.96710.96750.96809.2		0.8865	0.8871		0.8882	0.8887	0.8893	0.8899	0.8904	0.8910	0.8915
8.00.90310.90360.90420.90470.90530.90580.90630.90690.90740.90798.10.90850.90900.90960.91010.91060.91120.91170.91220.91280.91338.20.91380.91430.91490.91540.91590.91650.91700.91750.91800.91868.30.91910.91960.92010.92060.92120.92170.92220.92270.92320.92388.40.92430.92480.92530.92580.92630.92690.92740.92790.92840.92898.50.92940.92990.93040.93090.93150.93200.93250.93300.93350.93408.60.93450.93500.93550.93600.94650.94700.94250.94300.94350.94008.70.93950.94000.94050.94100.94150.94200.94250.94300.94350.94408.80.94450.94500.94550.94600.94650.94690.94740.94790.94840.94898.90.94940.94990.95040.95090.95130.95180.95230.95280.95330.95869.10.95900.95950.96000.96050.96090.96140.96190.96240.96280.96339.20.96380.96430.96470.96520.96570.96610.96660.96710.96750.									0.8960		
8.0 0.9031 0.9036 0.9042 0.9047 0.9053 0.9058 0.9063 0.9069 0.9074 0.9079 8.1 0.9085 0.9090 0.9096 0.9101 0.9106 0.9112 0.9117 0.9122 0.9128 0.9133 8.2 0.9138 0.9143 0.9149 0.9154 0.9159 0.9165 0.9170 0.9127 0.9227 0.9232 0.9232 0.9238 8.3 0.9191 0.9196 0.9201 0.9206 0.9212 0.9217 0.9222 0.9227 0.9232 0.9238 8.4 0.9243 0.9248 0.9253 0.9258 0.9269 0.9274 0.9279 0.9284 0.9289 8.5 0.9294 0.9299 0.9304 0.9309 0.9315 0.9320 0.9325 0.9330 0.9335 0.9340 8.6 0.9345 0.9355 0.9360 0.9455 0.9400 0.9445 0.9420 0.9425 0.9430 0.9435 0.9440 8.7 0.9395 0.9400 0.9455 0.9460 0.9465 0.9474 0.9479	7.9	0.8976	0.8982	0.8987	0.8993	0.8998	0.9004	0.9009	0.9015	0.9020	0.9025
8.1 0.9085 0.9090 0.9096 0.9101 0.9106 0.9112 0.9117 0.9122 0.9128 0.9133 8.2 0.9138 0.9143 0.9149 0.9154 0.9159 0.9165 0.9170 0.9175 0.9180 0.9186 8.3 0.9191 0.9196 0.9201 0.9206 0.9212 0.9217 0.9222 0.9227 0.9232 0.9238 8.4 0.9243 0.9248 0.9253 0.9258 0.9269 0.9274 0.9279 0.9284 0.9289 8.5 0.9294 0.9299 0.9304 0.9309 0.9315 0.9320 0.9325 0.9330 0.9335 0.9340 8.6 0.9345 0.9350 0.9355 0.9360 0.9365 0.9370 0.9375 0.9380 0.9385 0.9390 8.7 0.9395 0.9400 0.9405 0.9410 0.9415 0.9420 0.9425 0.9430 0.9435 0.9440 8.8 0.9445 0.9450 0.9455 0.9460 0.9465 0.9469 0.9474 0.9479 0.9484 0.9489											
8.2 0.9138 0.9143 0.9149 0.9154 0.9159 0.9165 0.9170 0.9175 0.9180 0.9186 8.3 0.9191 0.9196 0.9201 0.9206 0.9212 0.9217 0.9222 0.9227 0.9232 0.9238 8.4 0.9243 0.9248 0.9253 0.9258 0.9263 0.9269 0.9274 0.9279 0.9284 0.9289 8.5 0.9294 0.9299 0.9304 0.9309 0.9315 0.9320 0.9325 0.9330 0.9335 0.9340 8.6 0.9345 0.9350 0.9355 0.9360 0.9365 0.9370 0.9375 0.9380 0.9385 0.9390 8.7 0.9395 0.9400 0.9405 0.9410 0.9415 0.9420 0.9425 0.9430 0.9435 0.9440 8.8 0.9445 0.9450 0.9455 0.9460 0.9465 0.9474 0.9479 0.9484 0.9489 8.9 0.9494 0.9499 0.9504 0.9509 0.9513 0.9518 0.9523 0.9528 0.9533 0.9586				0.9096	0.9101		0.9112	0.9117	0.9122	0.9128	0.9133
8.3 0.9191 0.9196 0.9201 0.9206 0.9212 0.9217 0.9222 0.9227 0.9232 0.9238 8.4 0.9243 0.9248 0.9253 0.9258 0.9263 0.9269 0.9274 0.9279 0.9284 0.9289 8.5 0.9294 0.9299 0.9304 0.9309 0.9315 0.9320 0.9325 0.9330 0.9335 0.9340 8.6 0.9345 0.9350 0.9355 0.9360 0.9365 0.9370 0.9375 0.9380 0.9385 0.9390 8.7 0.9395 0.9400 0.9405 0.9410 0.9415 0.9420 0.9425 0.9430 0.9435 0.9440 8.8 0.9445 0.9450 0.9455 0.9460 0.9465 0.9469 0.9474 0.9479 0.9484 0.9489 8.9 0.9494 0.9499 0.9504 0.9509 0.9513 0.9518 0.9523 0.9528 0.9533 0.9538 9.0 0.9542 0.9547 0.9552 0.9557 0.9566 0.9571 0.9576 0.9581 0.9586											
8.40.92430.92480.92530.92580.92630.92690.92740.92790.92840.92898.50.92940.92990.93040.93090.93150.93200.93250.93300.93350.93408.60.93450.93500.93550.93600.93650.93700.93750.93800.93850.93908.70.93950.94000.94050.94100.94150.94200.94250.94300.94350.94408.80.94450.94500.94550.94600.94650.94690.94740.94790.94840.94898.90.94940.94990.95040.95090.95130.95180.95230.95280.95330.95869.00.95420.95470.95520.96050.96090.96140.96190.96240.96280.96339.20.96380.96430.96470.96520.96570.96610.96660.96710.96750.96809.30.96850.96890.96940.96990.97030.97540.97590.97630.97680.97739.40.97310.97360.97410.97450.97500.97540.97590.97630.97680.97739.50.97770.97820.97860.97910.97950.98000.98050.98090.98140.98189.60.98230.98270.98320.98360.98900.98940.98990.99030.9908<											
8.50.92940.92990.93040.93090.93150.93200.93250.93300.93350.93408.60.93450.93500.93550.93600.93650.93700.93750.93800.93850.93908.70.93950.94000.94050.94100.94150.94200.94250.94300.94350.94408.80.94450.94500.94550.94600.94650.94690.94740.94790.94840.94898.90.94940.94990.95040.95090.95130.95180.95230.95280.95330.95889.00.95420.95470.95520.95570.96620.96660.95710.95760.95810.96869.10.95900.95950.96000.96050.96090.96140.96190.96240.96280.96339.20.96380.96430.96470.96520.96570.96610.96660.96710.96750.96809.30.96850.96890.96940.96990.97030.97080.97130.97170.97220.97279.40.97310.97360.97410.97450.97500.97540.98090.98140.98189.60.98230.98270.98320.98360.98410.98450.98500.98540.98590.98639.70.98680.98720.98770.98810.98860.98900.98940.98990.99030.9908<											
8.60.93450.93500.93550.93600.93650.93700.93750.93800.93850.93908.70.93950.94000.94050.94100.94150.94200.94250.94300.94350.94408.80.94450.94500.94550.94600.94650.94690.94740.94790.94840.94898.90.94940.94990.95040.95090.95130.95180.95230.95280.95330.95869.00.95420.95470.95520.95570.95620.95660.95710.95760.95810.95869.10.95900.95950.96000.96050.96090.96140.96190.96240.96280.96339.20.96380.96430.96470.96520.95770.96610.96660.96710.96750.96809.30.96850.96890.96940.96990.97030.97080.97130.97170.97220.97279.40.97310.97360.97410.97450.97500.97540.98090.98140.98189.60.98230.98270.98320.98360.98410.98450.98500.98540.98590.98639.70.98680.98720.98770.98810.98860.98900.98940.98990.99030.99089.80.99120.99170.99210.99260.99300.99340.99390.99430.99480.9952<											
8.70.93950.94000.94050.94100.94150.94200.94250.94300.94350.94408.80.94450.94500.94550.94600.94650.94690.94740.94790.94840.94898.90.94940.94990.95040.95090.95130.95180.95230.95280.95330.95869.00.95420.95470.95520.95570.95620.95660.95710.95760.95810.95869.10.95900.95950.96000.96050.96090.96140.96190.96240.96280.96339.20.96380.96430.96470.96520.96570.96610.96660.96710.96750.96809.30.96850.96890.96940.96990.97030.97080.97130.97170.97220.97279.40.97310.97360.97410.97450.97500.97540.98090.98040.98140.98189.60.98230.98270.98320.98360.98410.98450.98500.98540.98590.98639.70.98680.98720.98770.98810.98860.98900.98940.98990.99030.99089.80.99120.99170.99210.99260.99300.99340.99390.99430.99480.9952											
8.80.94450.94500.94550.94600.94650.94690.94740.94790.94840.94898.90.94940.94990.95040.95090.95130.95180.95230.95280.95330.95389.00.95420.95470.95520.95570.95620.95660.95710.95760.95810.95869.10.95900.95950.96000.96050.96090.96140.96190.96240.96280.96339.20.96380.96430.96470.96520.96570.96610.96660.96710.96750.96809.30.96850.96890.96940.96990.97030.97080.97130.97170.97220.97279.40.97310.97360.97410.97450.97500.97540.97590.96330.97680.97739.50.97770.97820.97860.97910.97950.98000.98050.98090.98140.98189.60.98230.98270.98320.98360.98410.98450.98500.98540.98590.98639.70.98680.98720.98770.98810.98860.98900.98940.98990.99030.99089.80.99120.99170.99210.99260.99300.99340.99390.99430.99480.9952											
8.90.94940.94990.95040.95090.95130.95180.95230.95280.95330.95389.00.95420.95470.95520.95570.95620.95660.95710.95760.95810.95869.10.95900.95950.96000.96050.96090.96140.96190.96240.96280.96339.20.96380.96430.96470.96520.96570.96610.96660.96710.96750.96809.30.96850.96890.96940.96990.97030.97080.97130.97170.97220.97279.40.97310.97360.97410.97450.97500.97540.97590.97630.97680.97739.50.97770.97820.97860.97910.97950.98000.98050.98090.98140.98189.60.98230.98270.98320.98360.98410.98450.98500.98540.98590.98639.70.98680.98720.98770.98810.98860.98900.98940.99990.99030.99089.80.99120.99170.99210.99260.99300.99340.99390.99430.99480.9952											
9.00.95420.95470.95520.95570.95620.95660.95710.95760.95810.95869.10.95900.95950.96000.96050.96090.96140.96190.96240.96280.96339.20.96380.96430.96470.96520.96570.96610.96660.96710.96750.96809.30.96850.96890.96940.96990.97030.97080.97130.97170.97220.97279.40.97310.97360.97410.97450.97500.97540.97590.97630.97680.97739.50.97770.97820.97860.97910.97950.98000.98050.98090.98140.98189.60.98230.98270.98320.98360.98410.98450.98500.98540.98590.98639.70.98680.98720.98770.98810.98860.98900.98940.98990.99030.99089.80.99120.99170.99210.99260.99300.99340.99390.99430.99480.9952											
9.10.95900.95950.96000.96050.96090.96140.96190.96240.96280.96339.20.96380.96430.96470.96520.96570.96610.96660.96710.96750.96809.30.96850.96890.96940.96990.97030.97080.97130.97170.97220.97279.40.97310.97360.97410.97450.97500.97540.97590.97630.97680.97739.50.97770.97820.97860.97910.97950.98000.98050.98090.98140.98189.60.98230.98270.98320.98360.98410.98450.98500.98540.98590.98639.70.98680.98720.98770.98810.98860.98900.98940.98990.99030.99089.80.99120.99170.99210.99260.99300.99340.99390.99430.99480.9952											
9.20.96380.96430.96470.96520.96570.96610.96660.96710.96750.96809.30.96850.96890.96940.96990.97030.97080.97130.97170.97220.97279.40.97310.97360.97410.97450.97500.97540.97590.97630.97680.97739.50.97770.97820.97860.97910.97950.98000.98050.98090.98140.98189.60.98230.98270.98320.98360.98410.98450.98500.98540.98590.98639.70.98680.98720.98770.98810.98860.98900.98940.98990.99030.99089.80.99120.99170.99210.99260.99300.99340.99390.99430.99480.9952											
9.30.96850.96890.96940.96990.97030.97080.97130.97170.97220.97279.40.97310.97360.97410.97450.97500.97540.97590.97630.97680.97739.50.97770.97820.97860.97910.97950.98000.98050.98090.98140.98189.60.98230.98270.98320.98360.98410.98450.98500.98540.98590.98639.70.98680.98720.98770.98810.98860.98900.98940.98990.99030.99089.80.99120.99170.99210.99260.99300.99340.99390.99430.99480.9952											
9.40.97310.97360.97410.97450.97500.97540.97590.97630.97680.97739.50.97770.97820.97860.97910.97950.98000.98050.98090.98140.98189.60.98230.98270.98320.98360.98410.98450.98500.98540.98590.98639.70.98680.98720.98770.98810.98860.98900.98940.98990.99030.99089.80.99120.99170.99210.99260.99300.99340.99390.99430.99480.9952											
9.50.97770.97820.97860.97910.97950.98000.98050.98090.98140.98189.60.98230.98270.98320.98360.98410.98450.98500.98540.98590.98639.70.98680.98720.98770.98810.98860.98900.98940.98990.99030.99089.80.99120.99170.99210.99260.99300.99340.99390.99430.99480.9952											
9.6 0.9823 0.9827 0.9832 0.9836 0.9841 0.9845 0.9850 0.9854 0.9859 0.9863 9.7 0.9868 0.9872 0.9877 0.9881 0.9886 0.9890 0.9894 0.9899 0.9903 0.9908 9.8 0.9912 0.9921 0.9926 0.9930 0.9934 0.9939 0.9943 0.9948 0.9952											
9.7 0.9868 0.9872 0.9877 0.9881 0.9886 0.9890 0.9894 0.9899 0.9903 0.9908 9.8 0.9912 0.9917 0.9921 0.9926 0.9930 0.9934 0.9939 0.9943 0.9948 0.9952											
9.8 0.9912 0.9917 0.9921 0.9926 0.9930 0.9934 0.9939 0.9943 0.9948 0.9952											
	<i></i>	0.7950	0.9901	0.2705	0.7707	0.2214	0.7978	0.2205	0.7907	0.7771	0.7770

engage^{ny}

C Lesson 16: Rational and Irrational Numbers

Student Outcomes

- Students interpret addition and multiplication of two irrational numbers in the context of logarithms and find better-and-better decimal approximations of the sum and product, respectively.
- Students work with and interpret logarithms with irrational values in preparation for graphing logarithmic functions.

Lesson Notes

This foundational lesson revisits the fundamental differences between rational and irrational numbers. We begin by reviewing how to locate an irrational number on the number line by squeezing its infinite decimal expansion between two rational numbers, a process students may recall from Grade 8 Module 7 Lesson 7. In preparation for graphing logarithmic functions, the main focus of this lesson is to understand the process of locating values of logarithms on the number line (**F-IF.C.7e**). We then go a step further to understand this process in the context of adding two irrational logarithmic expressions (**N-RN.B.3**). Although students have addressed **N-RN.B.3** in Algebra I and have worked with irrational numbers in previous lessons in this module, such as Lesson 5, students need to fully understand how to sum two irrational logarithmic expressions in preparation for graphing logarithmic functions in the next lesson, in alignment with **F-IF.C.7e**. Students have been exposed to two approaches to adding rational numbers: a geometric approach by placing the numbers on the number line, as reviewed in Module 1 Lesson 24, and a numerical approach by applying an addition algorithm. In the Opening Exercise, students are asked to recall both methods for adding rational numbers. Both approaches fail with irrational numbers, and we locate the sum of two irrational numbers. Emphasize to students that since they have been performing addition for many, many years, we are more interested in the process of addition than in the result.

This lesson emphasizes mathematical practice standard MP.3 as students develop and then justify conjectures about sums and products of irrational logarithmic expressions.

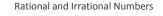
Classwork

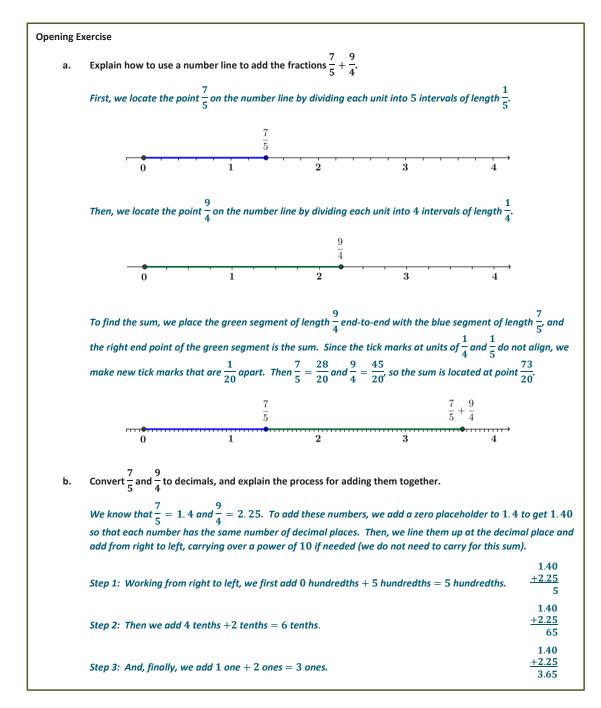
Opening Exercise (4 minutes)

Have students work in pairs or small groups on the sums below. Remind them that we are interested in the process of addition as much as obtaining the correct result. Ask groups to volunteer their responses at the end of the allotted time.

Scaffolding:

- Ask struggling students to represent a simpler sum, such as ¹/₅ + ¹/₄.





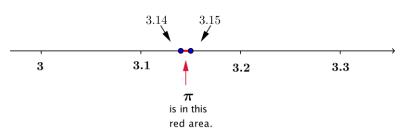
Discussion (8 minutes)

- How would we add two numbers such as $\pi + \frac{7}{5}$?
 - Student answers will vary, but the point is that our algorithm that adds rational numbers in decimal form does not apply to sums that involve irrational numbers.

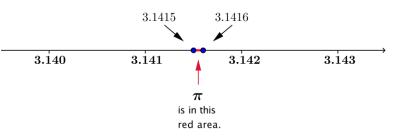
• Many of the numbers we have been working with are irrational numbers, such as $\sqrt{2}$, e, $\log(2)$, and π , meaning that we cannot write them as quotients of integers. One of the key distinctions between rational and irrational numbers is that rational numbers can be expressed as a decimal that either terminates (such as

 $\frac{1}{8} = 0.125$) or repeats infinitely (such as $\frac{1}{9} = 0.11111$...) Irrational numbers cannot be exactly represented by a decimal expansion because the digits to the right of the decimal point never end and never repeat predictably. The best we can do to represent irrational numbers with a decimal expansion is to find an approximation.

- For example, consider the number π . What is the value of π ?
 - 3.14 (Students may answer this question with varying degrees of accuracy.)
- Is that the exact value of π?
 - No. We cannot write a decimal expansion for the exact value of π .
- What is the *last digit* of π ?
 - Since the decimal expansion for π never terminates, there is no last digit of π .

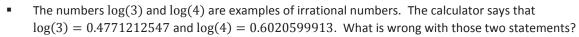


- Where is π on the number line?
 - The number π is between 3.14 and 3.15.
- What kind of numbers are 3.14 and 3.15?
 - Rational numbers
- Can we get better under and over estimates than that?
 - *Yes, since* $\pi \approx 3.14159$ *, we know that* $3.1415 < \pi < 3.1416$.



- What kind of numbers are 3.1415 and 3.1416?
 - Rational numbers
- Can we find rational numbers with 10 digits that are good upper and lower bounds for π? How?
 - Yes. Just take the expansion for π on the calculator and round up and down.
- So, how can we add two irrational numbers? Let's turn our attention back to logarithms.

Lesson 16



- ^a Since log(3) and log(4) are irrational numbers, their decimal expansions do not terminate so the calculator gives approximations and not exact values.
- So, we really should write log(3) = 0.4771212547 ... and log(4) = 0.6020599913 ... This means there are more digits that we cannot see. What happens when we try to add these decimal expansions together numerically?
 - There is no last digit for us to use to start our addition algorithm, which moves from right to left. We cannot even start adding these together using our usual method.
- So, our standard algorithm for adding numbers fails. How can we add log(3) + log(4)?

Example 1 (8 minutes)

Begin these examples with direct instruction and teacher modeling, and gradually release responsibility to the students when they are ready to tackle these questions in pairs or small groups.

- Since we do not have a direct method to add log(3) + log(4), we should try another approach. Remember that according to the calculator, log(3) = 0.4771212547 ... and log(4) = 0.6020599913 ... While we could use the calculator to add these approximations to find an estimate of log(3) + log(4), we are interested in making sense of the operation.
- What if we just need an approximation of log(3) + log(4) to one decimal place, that is, to an accuracy of 10^{-1} ? If we do not need more accuracy than that, we can use $log(3) \approx 0.477$ and $log(4) \approx 0.602$. Then,

 $0.47 \le \log(3) \le 0.48;$ $0.60 \le \log(4) \le 0.61.$

- Based on these inequalities, what statement can we make about the sum log(3) + log(4)? Explain why you believe your statement is correct.
 - Adding terms together, we have

 $1.07 \le \log(3) + \log(4) \le 1.09.$

Rounding to one decimal place, we have

 $1.1 \le \log(3) + \log(4) \le 1.1.$

So, to one decimal place, $\log(3) + \log(4) \approx 1.1$.

- What if we wanted to find the value of log(3) + log(4) to two decimal places? What are the under and over estimates for log(3) and log(4) that we should start with before we add? What do we get when we add them together?
 - We should start with

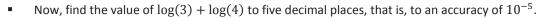
 $0.477 \le \log(3) \le 0.478;$ $0.602 \le \log(4) \le 0.603.$

Then we have

$$1.079 \le \log(3) + \log(4) \le 1.081.$$

To two decimal places, $\log(3) + \log(4) \approx 1.08$.

Lesson 16



• We should start with

 $0.477121 \le \log(3) \le 0.477122;$ $0.602059 \le \log(4) \le 0.602060.$

Then we have

 $1.079180 \le \log(3) + \log(4) \le 1.079182.$

To five decimal places, $\log(3) + \log(4) \approx 1.07918$.

• Now, find the value of log(3) + log(4) to eight decimal places, that is, to an accuracy of 10^{-8} .

• We should start with

$$0.477121254 \le \log(3) \le 0.477121255$$

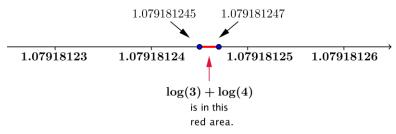
 $0.602059991 \le \log(4) \le 0.602059992.$

Then we have

 $1.079181245 \le \log(3) + \log(4) \le 1.079181247.$

To eight decimal places, $\log(3) + \log(4) \approx 1.07918125$.

Notice that we are squeezing the actual value of log(3) + log(4) between two rational numbers. Since we know how to plot a rational number on the number line, we can get really close to the location of the irrational number log(3) + log(4) by squeezing it between two rational numbers.



- Could we keep going? If we knew enough digits of the decimal expansions of log(3) and log(4), could we find an approximation of log(3) + log(4) to 20 decimal places? Or 50 decimal places? Or 1,000 decimal places?
 - Yes. There is no reason that we cannot continue this process, provided we know enough digits of the original irrational numbers log(3) and log(4).
- Summarize what you have learned from this example in your notebook. (Allow students a minute or so to record the main points of this example.)

Exercises 1–5 (8 minutes)

Have students complete these exercises in pairs or small groups. Expect students to react with surprise to the results: In the previous example, the sum log(3) + log(4) was irrational, so the decimal expansion never terminated. In this set of exercises, the sum log(4) + log(25) is rational with the exact value 2, and at each step, their estimate of the sum will be exact.

Lesson 16

M3

Exercises According to the calculator, log(4) = 0.6020599913 ... and log(25) = 1.3979400087 Find an 1. approximation of log(4) + log(25) to one decimal place, that is, to an accuracy of 10^{-1} . 0.60 < log(4) < 0.61 $1.39 < \log(25) < 1.40$ $1.99 < \log(4) + \log(25) < 2.01$ $log(4) + log(25) \approx 2.0$ Find the value of log(4) + log(25) to an accuracy of 10^{-2} . 2. $0.602 < \log(4) < 0.603$ $1.397 < \log(25) < 1.398$ $1.\,999 < log(4) + log(25) < 2.\,001$ $log(4) + log(25) \approx 2.00$ Find the value of log(4) + log(25) to an accuracy of 10^{-8} . 3. $0.602059991 \leq log(4) \leq 0.602059992$ $1.397940008 \le log(25) \le 1.397940009$ $1.999999999 \le \log(4) + \log(25) \le 2.00000001$ $log(4) + log(25) \approx 2.00000000$ Make a conjecture: Is log(4) + log(25) a rational or an irrational number? 4. It appears that log(4) + log(25) = 2 exactly, so my conjecture is that log(4) + log(25) is a rational number. Why is your conjecture in Exercise 4 true? 5. The logarithm rule that says log(x) + log(y) = log(xy) applies here. $\log(4) + \log(25) = \log(4 \cdot 25)$ $= \log(100)$ $= \log(10^2)$ = 2

Discussion (3 minutes)

- We have seen how we can squeeze the sum of two irrational numbers between rational numbers and get an approximation of the sum to whatever accuracy we want. What about multiplication?
- Make a conjecture: Without actually calculating it, what is the value of log(4) · log(25)?

Allow students time to discuss this question with a partner and write down a response before allowing students to put forth their ideas to the class. This would be an ideal time to use personal white boards, if you have them, for students to record and display their conjectures. Ensure that students have a written record of this conjecture that will be disproven in the next set of exercises.

• Conjectures will vary; some might be $log(4) \cdot log(25) = log(29)$ or $log(4) \cdot log(25) = log(100)$.

MP.3

Exercises 6-8 (6 minutes)

Remember that the calculator gives the following values: $log(4) = 0.6020599913 \dots$ and $log(25) = 1.3979400087 \dots$ Find the value of $log(4) \cdot log(25)$ to three decimal places. 6. $0.\,6020 \leq log(4) \leq 0.\,6021$ $1.3979 \le \log(25) \le 1.3980$ $0.8415358 \leq log(4) \cdot log(25) \leq 0.8417358$ $log(4) \cdot log(25) \approx 0.842$ 7. Find the value of $log(4) \cdot log(25)$ to five decimal places. $0.602059 \le \log(4) \le 0.602060$ $1.397940 \le log(25) \le 1.397941$ $0.8416423585 \le \log(4) \cdot \log(25) \le 0.8416443585$ $log(4) \cdot log(25) \approx 0.84164$ Does your conjecture from the above discussion appear to be true? 8. No. The work from Exercise 6 shows that $log(4) \cdot log(25) \neq log(29)$, and $log(4) \cdot log(25) \neq log(100)$. (Answers will vary based on student conjectures.)

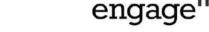
Closing (3 minutes)

Ask students to respond to the following prompts independently, and then have them share their responses with a partner. After students have a chance to write and discuss, go through the key points in the Lesson Summary below.

• List five rational numbers.

• Student responses will vary; possible responses include $1, 10, \frac{3}{5}, 17, and -\frac{42}{13}$.

- List five irrational numbers.
 - Student responses will vary; possible responses include $\sqrt{3}$, π , e, $1 + \sqrt{2}$, and π^3 .
- Is 0 a rational or irrational number? Explain how you know.
 - Since 0 is an integer, we can write $0 = \frac{0}{1}$, which is a quotient of integers. Thus, 0 is a rational number.
- If a number is given as a decimal, how can you tell if it is a rational or an irrational number?
 - If the decimal representation terminates or repeats at some point, then the number is rational and can be expressed as the quotient of two integers. Otherwise, the number is irrational.



Lesson Summary

- Irrational numbers occur naturally and frequently.
- The *n*th roots of most integers and rational numbers are irrational.
- Logarithms of most positive integers or positive rational numbers are irrational.
- We can locate an irrational number on the number line by trapping it between lower and upper estimates. The infinite process of squeezing the irrational number in smaller and smaller intervals locates exactly where the irrational number is on the number line.
- We can perform arithmetic operations such as addition and multiplication with irrational numbers using lower and upper approximations and squeezing the result of the operation in smaller and smaller intervals between two rational approximations to the result.

Exit Ticket (5 minutes)

Name

Date _____

Lesson 16: Rational and Irrational Numbers

Exit Ticket

The decimal expansions of *e* and $\sqrt{5}$ are given below.

 $e \approx 2.71828182 \dots \\ \sqrt{5} \approx 2.23606797 \dots$

a. Find an approximation of $\sqrt{5} + e$ to three decimal places. Do not use a calculator.

b. Explain how you can locate $\sqrt{5} + e$ on the number line. How is this different from locating 2.6 + 2.7 on the number line?

Exit Ticket Sample Solutions

The decimal expansions of e and $\sqrt{5}$ are given below. $e \approx 2.71828182 \dots$ $\sqrt{5} \approx 2.23606797 \dots$ a. Find an approximation of $\sqrt{5} + e$ to three decimal places. Do not use a calculator. $2.2360 \le \sqrt{5} \le 2.2361$ $2.7182 \le e \le 2.7183$ $4.9542 \le \sqrt{5} + e \le 4.9544$

Thus, to three decimal places, $\sqrt{5} + e pprox 4.954$.

b. Explain how you can locate $\sqrt{5} + e$ on the number line. How is this different from locating 2.6 + 2.7 on the number line?

We cannot locate $\sqrt{5} + e$ precisely on the number line because the sum is irrational, but we can get as close to it as we want by squeezing it between two rational numbers, r_1 and r_2 , that differ only in the last decimal place, $r_1 \le \sqrt{5} + e \le r_2$. Since we can locate rational numbers on the number line, we can get arbitrarily close to the true location of $\sqrt{5} + e$ by starting with more and more accurate decimal representations of $\sqrt{5}$ and e. This differs from pinpointing the location of sums of rational numbers because we can precisely locate the sum 2.6 + 2.7 = 5.3 by dividing the interval [5, 6] into 10 parts of equal length 0.1. Then, the point 5.3 is located exactly at the point between the third and fourth parts.

Problem Set Sample Solutions

1.	Given that $\sqrt{5}pprox 2.2360679775$ and $\pipprox 3.1415926535$, find the sum $\sqrt{5}+\pi$ to an accuracy of 10^{-8} without using a calculator.									
	From the estimations we are given, we know that									
	$2.236067977 < \sqrt{5} < 2.236067978$									
	$3.141592653 < \pi < 3.141592654.$									
	Adding these together gives									
	$5.377660630 < \sqrt{5} + \pi < 5.377660632.$									
	Then, to an accuracy of 10^{-8} , we have									
	$\sqrt{5} + \pi \approx 5.37766063.$									
2.	Put the following numbers in order from least to greatest.									
	$\sqrt{2}, \pi, 0, e, \frac{22}{7}, \frac{\pi^2}{3}, 3.14, \sqrt{10}$									
	$0, \sqrt{2}, e, 3. 14, \pi, \frac{22}{7}, \sqrt{10}, \frac{\pi^2}{3}$									

Find a rational number between the specified two numbers. 3. $\frac{4}{13}$ and $\frac{5}{13}$ Many answers are possible. Since $\frac{4}{13} = \frac{8}{26}$ and $\frac{5}{13} = \frac{10}{26}$, we know that $\frac{4}{13} < \frac{9}{26} < \frac{5}{13}$. b. $\frac{3}{2}$ and $\frac{5}{2}$ Many answers are possible. Since $\frac{3}{8} = \frac{27}{72}$ and $\frac{5}{9} = \frac{40}{72}$, we know that $\frac{30}{72} = \frac{5}{12}$ is between $\frac{3}{8}$ and $\frac{5}{9}$. 1.7299999 and 1.73 с. Many answers are possible. 1.72999999 < 1.72999995 < 1.73. d. $\frac{\sqrt{2}}{7}$ and $\frac{\sqrt{2}}{9}$ Many answers are possible. Since $\frac{\sqrt{2}}{9} \approx 0.157135$ and $\frac{\sqrt{2}}{7} \approx 0.202031$, we know $\frac{\sqrt{2}}{9} < 0.2 < \frac{\sqrt{2}}{7}$. π and $\sqrt{10}$ e. Many answers are possible. Since $\pi \approx 3.14159$ and $\sqrt{10} \approx 3.16228$, we know $\pi < 3.15 < \sqrt{10}$. Knowing that $\sqrt{2}$ is irrational, find an irrational number between $rac{1}{2}$ and $rac{5}{9}$ One such number is $r\sqrt{2}$, for some rational number r. Then $\frac{1}{2} < r\sqrt{2} < \frac{5}{9'}$ so we have $\frac{1}{2\sqrt{2}} < r < \frac{5}{9\sqrt{2}}$. Since $\frac{1}{2\sqrt{2}} \approx 0.3536$ and $\frac{5}{9\sqrt{2}} \approx 0.3929$, we can let r = 0.36. Then, $0.36\sqrt{2}$ is an irrational number between $\frac{1}{2}$ and $\frac{5}{9}$. Give an example of an irrational number between e and π . 5. Many answers are possible, such as $\frac{\pi + e}{2}$, $\sqrt{\pi e}$, or $\frac{10}{11}\pi$. Given that $\sqrt{2}$ is irrational, which of the following numbers are irrational? 6. $\frac{\sqrt{2}}{2}$, 2 + $\sqrt{2}$, $\frac{\sqrt{2}}{2\sqrt{2}}$, $\frac{2}{\sqrt{2}}$, $(\sqrt{2})^2$ Note that $\frac{\sqrt{2}}{2\sqrt{2}} = \frac{1}{2}$, $\frac{2}{\sqrt{2}} = \sqrt{2}$, and $(\sqrt{2})^2 = 2$. The numbers $\frac{\sqrt{2}}{2}$, $2 + \sqrt{2}$, and $\frac{2}{\sqrt{2}}$ are irrational. Given that π is irrational, which of the following numbers are irrational? 7. $\frac{\pi}{2}, \frac{\pi}{2\pi}, \sqrt{\pi}, \pi^2$ The numbers $\frac{\pi}{2}$, $\sqrt{\pi}$, and π^2 are irrational.

engage

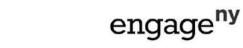
8.

9.

Which of the following numbers are irrational? $1, 0, \sqrt{5}, \sqrt[3]{64}, e, \pi, \frac{\sqrt{2}}{2}, \frac{\sqrt{8}}{\sqrt{2}}, \cos\left(\frac{\pi}{3}\right), \sin\left(\frac{\pi}{3}\right)$ The numbers $\sqrt{5}$, e, π , $\frac{\sqrt{2}}{2}$, and $\sin\left(\frac{\pi}{3}\right)$ are irrational. Find two irrational numbers x and y so that their average is rational If $x = 1 + \sqrt{2}$ and $y = 3 - \sqrt{2}$, then $\frac{x+y}{2} = \frac{1}{2}((1 + \sqrt{2}) + (3 - \sqrt{2})) = 2$. So, the average of x and y is rational. 10. Suppose that $\frac{2}{2}x$ is an irrational number. Explain how you know that x must be an irrational number. (Hint: What would happen if there were integers a and b so that $x = \frac{a}{b}$?) If x is rational, then there are integers a and b so that $x = \frac{a}{b}$. Then $\frac{2a}{3b}$ is rational, so $\frac{2}{3}x$ is also rational. This contradicts the given fact that $\frac{2}{3}x$ is irrational, so it is not possible for x to be rational. Thus, x must be an irrational number 11. If r and s are rational numbers, prove that r + s and r - s are also rational numbers. If r and s are rational numbers, then there exist integers a, b, c, d with $b \neq 0$ and $d \neq 0$ so that $r = \frac{a}{b}$ and $s = \frac{c}{dr}$ Then, $r+s=\frac{a}{b}+\frac{c}{d}$ $= \frac{ad}{bd} + \frac{bc}{bd}$ $= \frac{ad + bc}{bd}$ $r-s=\frac{a}{b}-\frac{c}{d}$ $=\frac{ad-bc}{bd}$ Since ad + bc, ad - bc, and bd are integers, r + s and r - s are rational numbers. 12. If r is a rational number and x is an irrational number, determine whether the following numbers are always rational, sometimes rational, or never rational. Explain how you know. r + xa. If r + x = y and y is rational, then r - y = -x would be rational by Problem 11. Since x is irrational, we know -x is irrational, so y cannot be rational. Thus, the sum r + x is never rational. b. r-xIf r - x = y and y is rational, then r - y = x would be rational by Problem 11. Since x is irrational, y cannot be rational. Thus, the difference r - x is never rational.

c.
$$rx$$

If $rx = y, r \neq 0$, and y is rational, then there are integers a, b, c, d with $a \neq 0, b \neq 0$, and $d \neq 0$ so that
 $r = \frac{a}{b}$ and $y = \frac{c}{d}$. Then $x = \frac{y}{r} = \frac{cb}{ad^{2}}$ so x is rational. Since x was not rational, the only way that rx can be
rational is if $r = 0$. Thus, rx is sometimes rational (in only one case).
d. x^{r}
If $x = \sqrt{k}$ for some rational number k , then $x^{r} = k$ is rational. For example, $(\sqrt{5})^{2} = 5$ is rational. But, π^{r} is
never rational for any exponent r , so x^{r} is sometimes rational.
13. If x and y are irrational numbers, determine whether the following numbers are always rational, sometimes
rational, or never rational. Explain how you know.
a. $x + y$
This is sometimes rational. For example, $\pi + \sqrt{2}$ is irrational, but $(1 + \sqrt{2}) + (1 - \sqrt{2}) = 2$ is rational.
b. $x - y$
This is sometimes rational. For example, $\pi - \sqrt{2}$ is irrational, but $(5 + \sqrt{3}) - (1 + \sqrt{3}) = 4$ is rational.
c. xy
This is sometimes rational. For example, $\pi \sqrt{2}$ is irrational, but $\sqrt{2} \cdot \sqrt{8} = 4$ is rational.
d. $\frac{x}{y}$
This is sometimes rational. For example, $\frac{\pi}{\sqrt{2}}$ is irrational, but $\sqrt{\frac{\sqrt{8}}{\sqrt{2}}} = 2$ is rational.



Student Outcomes

• Students graph the functions $f(x) = \log(x)$, $g(x) = \log_2(x)$, and $h(x) = \ln(x)$ by hand and identify key features of the graphs of logarithmic functions.

Lesson Notes

In this lesson, students work in pairs or small groups to generate graphs of $f(x) = \log(x)$, $g(x) = \log_2(x)$, or $h(x) = \log_5(x)$. Students compare the graphs of these three functions to derive the key features of graphs of general logarithmic functions for bases b > 1. Tables of function values are provided so that calculators are not needed in this lesson; all graphs should be drawn by hand. Students relate the domain of the logarithmic functions to the graph in accordance with **F-IF.B.5**. After the graphs are generated and conclusions drawn about their properties, students use properties of logarithms to find additional points on the graphs. Continue to rely on the definition of the logarithm, which was stated in Lesson 8, and properties of logarithms developed in Lessons 12 and 13:

LOGARITHM: If three numbers, *L*, *b*, and *x* are related by $x = b^L$, then *L* is the *logarithm base b* of *x*, and we write $\log_b(x)$. That is, the value of the expression $L = \log_b(x)$ is the power of *b* needed to obtain *x*. Valid values of *b* as a base for a logarithm are 0 < b < 1 and b > 1.

Classwork

Opening (1 minute)

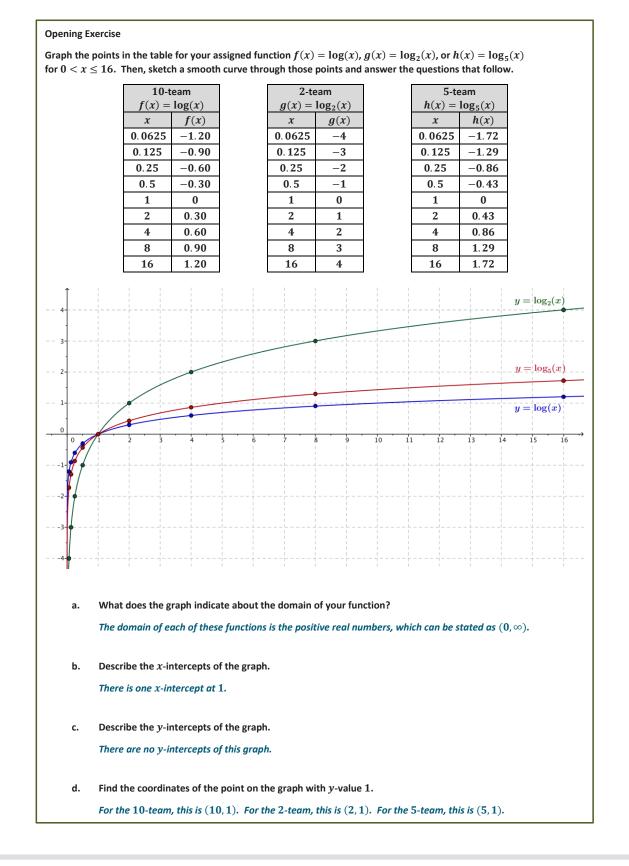
Divide the students into pairs or small groups; ideally, the number of groups formed is a multiple of three. Assign the function $f(x) = \log(x)$ to one-third of the groups, and refer to these groups as the 10-team. Assign the function $g(x) = \log_2(x)$ to the second third of the groups, and refer to these groups as the 2-team. Assign the function $h(x) = \log_5(x)$ to the remaining third of the groups, and refer to these groups as the 5-team.

Opening Exercise (8 minutes)

While student groups are creating graphs and responding to the prompts that follow, circulate and observe student work. Select three groups to present their graphs and results at the end of the exercise.

- Scaffolding:
 - Struggling students may benefit from watching the teacher model the process of plotting points.
- Consider assigning struggling students to the 2-team because the function values are integers.
- Alternatively, assign advanced students to the 2-team and ask them to generate the graph of y = log₂(x) without the given table.

7: Graphing the Logarithm Function

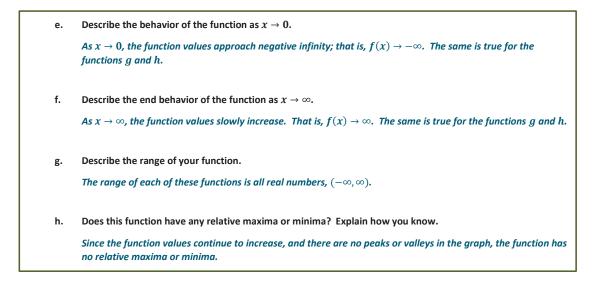


Lesson 17: Graphing the Logarithm Function

This work is derived from Eureka Math [™] and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

267

engage^{ny}



Presentations (5 minutes)

Select three groups of students to present each of the three graphs, projecting each graph through a document camera or copying the graph onto a transparency sheet and displaying on an overhead projector. Ask students to point out the key features they identified in the Opening Exercise on the displayed graph. If students do not mention it, emphasize that the long-term behavior of these functions is they are always increasing, although very slowly.

As representatives from each group make their presentations, record their findings on a chart. This chart can be used to help summarize the lesson and to later display in the classroom.

	$f(x) = \log(x)$	$g(x) = \log_2(x)$	$h(x) = \log_5(x)$
Domain of the Function	(0 ,∞)	(0 ,∞)	(0 ,∞)
Range of the Function	(−∞,∞)	(−∞,∞)	(−∞,∞)
x-intercept	1	1	1
y-intercept	None	None	None
Point with y-value 1	(10, 1)	(2, 1)	(5,1)
Behavior as $x o 0$	$f(x) \to -\infty$	$g(x) \to -\infty$	$h(x) \rightarrow -\infty$
End Behavior as $x \to \infty$	$f(x) \to \infty$	$g(x) \to \infty$	$h(x) \rightarrow \infty$

Discussion (5 minutes)

Debrief the Opening Exercise by asking students to generalize the key features of the graphs $y = \log_b(x)$. If possible, display the graph of all three functions $f(x) = \log(x)$, $g(x) = \log_2(x)$, and $h(x) = \log_5(x)$ together on the same axes during this discussion.

We saw in Lesson 5 that the expression 2^x is defined for all real numbers x; therefore, the range of the function $g(x) = \log_2(x)$ is all real numbers. Likewise, the expressions 10^x and 5^x are defined for all real numbers x, so the range of the functions f and h is all real numbers. Notice that since the range is all real numbers in each case, there must be logarithms that are irrational. We saw examples of such logarithms in Lesson 16.

M3

Lesson 17

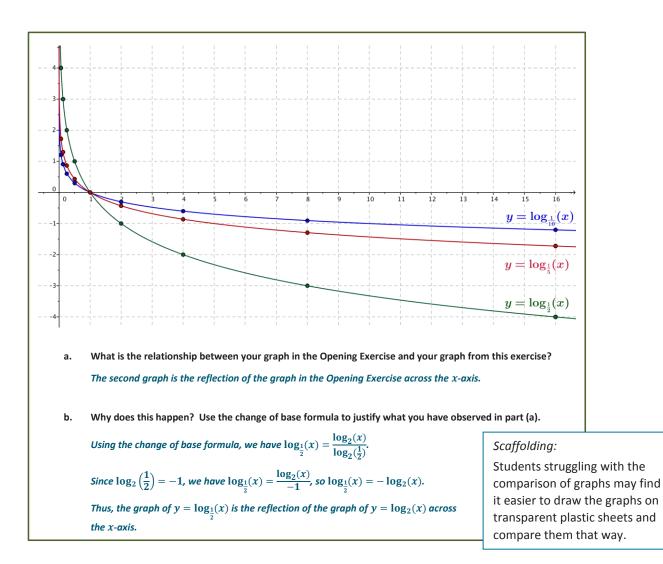
- What are the domain and range of the logarithm functions?
 - ^a The domain is the positive real numbers, and the range is all real numbers.
- What do the three graphs of $f(x) = \log(x)$, $g(x) = \log_2(x)$, and $h(x) = \log_5(x)$ have in common?
 - The graphs all cross the x-axis at (1, 0).
 - None of the graphs intersect the y-axis.
 - They have the same end behavior as $x \to \infty$, and they have the same behavior as $x \to 0$.
 - The functions all increase quickly for 0 < x < 1, then increase more and more slowly.
- What do you expect the graph of $y = \log_3(x)$ to look like?
 - It will look just like the other graphs, except that it will lie between the graphs of $y = \log_2(x)$ and $y = \log_5(x)$ because 2 < 3 < 5.
- What do you expect the graph of $y = \log_b(x)$ to look like for any number b > 1?
 - It will have the same key features of the other graphs of logarithmic functions. As the value of b increases, the graph will flatten as $x \to \infty$.

Exercise 1 (8 minutes)

Keep students in the same groups for this exercise. Students plot points and sketch the graph of $y = \log_{\frac{1}{2}}(x)$ for

b = 10, b = 2, or b = 5, depending on whether they are on the 10-team, the 2-team, or the 5-team. Then, students observe the relationship between their two graphs, justify the relationship using properties of logarithms, and generalize the observed relationship to graphs of $y = \log_b(x)$ and $y = \log_1(x)$ for b > 0, $b \neq 1$.

Graph the	points in the	table for y	our assigne	ed function	$r(x) = \mathbf{lo}$	$g_{1}(x), s(x)$	$) = \log_1(x)$), or $t(x) =$	= log1()
	6. Then, ske					10	-		5
	10-t r(x) = 1	team $\log_{\frac{1}{10}}(x)$		$\frac{2-te}{s(x)=1}$			e-te $t(x) = 1$		
	x	r(x)		x	<i>s</i> (<i>x</i>)		x	t(x)	
	0.0625	1.20		0.0625	4		0.0625	1.72	
	0.125	0.90		0.125	3		0.125	1.29	
	0.25	0.60		0.25	2		0.25	0.86	
	0.5	0.30		0.5	1		0.5	0.43	
	1	0		1	0		1	0	
	2	-0.30	1	2	-1		2	-0.43	
	4	-0.60	1	4	-2		4	-0.86	
	8	-0.90	1	8	-3		8	-1.29	
	16	-1.20		16	-4		16	-1.72	



Discussion (4 minutes)

Ask students from each team to share their graphs results from part (a) of Exercise 1 with the class. During their presentations, complete the chart below.

	$r(x) = \log_{\frac{1}{10}}(x)$	$s(x) = \log_{\frac{1}{2}}(x)$	$t(x) = \log_{\frac{1}{5}}(x)$
Domain of the Function	(0 ,∞)	(0 ,∞)	(0 ,∞)
Range of the Function	$(-\infty,\infty)$	$(-\infty,\infty)$	$(-\infty,\infty)$
<i>x</i> -intercept	1	1	1
y-intercept	None	None	None
Point with y -value -1	(10, -1)	(2, -1)	(5, -1)
Behavior as $x \to 0$	$r(x) \to \infty$	$s(x) \to \infty$	$t(x) \to \infty$
End Behavior as $x \to \infty$	$r(x) \to \infty$	$s(x) \to -\infty$	$t(x) \rightarrow -\infty$

Then proceed to hold the following discussion.

- From what we have seen of these three sets of graphs of functions, can we state the relationship between the graphs of $y = \log_b(x)$ and $y = \log_1(x)$, for $b \neq 1$?
 - If $b \neq 1$, then the graphs of $y = \log_b(x)$ and $y = \log_{\frac{1}{b}}(x)$ are reflections of each other across the *x*-axis.
- Describe the key features of the graph of $y = \log_b(x)$ for 0 < b < 1.
 - The graph crosses the x-axis at (1, 0).
 - The graph does not intersect the y-axis.
 - The graph passes through the point (b, -1).
 - As $x \to 0$, the function values increase quickly; that is, $f(x) \to \infty$.
 - As $x \to \infty$, the function values continue to decrease; that is, $f(x) \to -\infty$.
 - There are no relative maxima or relative minima.

Exercises 2-3 (6 minutes)

Keep students in the same groups for this set of exercises. Students plot points and sketch the graph of $y = \log_b(bx)$ for b = 10, b = 2, or b = 5, depending on whether they are on the 10-team, the 2-team, or the 5-team. Then, students observe the relationship between their two graphs, justify the relationship using properties of logarithms, and generalize the observed relationship to graphs of $y = \log_b(x)$ and $y = \log_b(x)$ for b > 0, $b \neq 1$. If there is time at the end of these exercises, consider using GeoGebra or other dynamic geometry software to demonstrate the property illustrated in Exercise 3 below by graphing $y = \log_2(x)$, $y = \log_2(2x)$, and $y = 1 + \log_2(x)$ on the same axes.

Consider having students graph these functions on the same axes as used in the Opening Exercise.

In general, what is the relationship between the graph of a function y = f(x) and the graph of y = f(kx) for a 2. constant k? The graph of y = f(kx) is a horizontal scaling of the graph of y = f(x). 3. Graph the points in the table for your assigned function $u(x) = \log(10x)$, $v(x) = \log_2(2x)$, or $w(x) = \log_5(5x)$ for $0 < x \le 16$. Then sketch a smooth curve through those points, and answer the questions that follow. 10-team 2-team 5-team $u(x) = \log(10x)$ $v(x) = \log_2(2x)$ $w(x) = \log_5(5x)$ x u(x)x v(x)x w(x)0.0625 -0.200.0625 0.0625 -0.72-30.125 0.10 0.125 -20.125 -0.29 0.250.400.25-1 0.250.14 0.5 0.70 0.5 0 0.5 0.57 1 1 1 1 1 1 2 1.30 2 2 2 1.43 1.86 4 1.60 3 4 4 1.90 4 2.29 8 8 8 16 2.20 16 5 16 2.72

a. Describe a transformation that takes the graph of your team's function in this exercise to the graph of your team's function in the Opening Exercise.

The graph produced in this exercise is a vertical translation of the graph from the Opening Exercise by one unit upward.

b. Do your answers to Exercise 2 and part (a) agree? If not, use properties of logarithms to justify your observations in part (a).

The answers to Exercise 2 and part (a) do not appear to agree. However, because $\log_b(bx) = \log_b(b) + \log_b(x) = 1 + \log_b(x)$, the graph of $y = \log_b(bx)$ and the graph of $y = 1 + \log_b(x)$ coincide.

Closing (3 minutes)

Ask students to respond to these questions in writing or orally to a partner.

- In which quadrants is the graph of the function $f(x) = \log_b(x)$ located?
 - D The first and fourth quadrants
- When b > 1, for what values of x are the values of the function $f(x) = \log_b(x)$ negative?
 - When b > 1, $f(x) = \log_b(x)$ is negative for 0 < x < 1.
- When 0 < b < 1, for what values of x are the values of the function $f(x) = \log_b(x)$ negative?
 - When 0 < b < 1, $f(x) = \log_b(x)$ is negative for x > 1.
- What are the key features of the graph of a logarithmic function $f(x) = \log_b(x)$ when b > 1?
 - The domain of the function is all positive real numbers, and the range is all real numbers. The *x*-intercept is 1, the graph passes through (b, 1) and there is no *y*-intercept. As $x \to 0$, $f(x) \to -\infty$ quickly, and as $x \to \infty$, $f(x) \to \infty$ slowly.
- What are the key features of the graph of a logarithmic function $f(x) = \log_b(x)$ when 0 < b < 1?
 - The domain of the function is the positive real numbers, and the range is all real numbers. The *x*-intercept is 1, the graph passes through (b, -1), and there is no *y*-intercept. As $x \to 0$, $f(x) \to \infty$ quickly, and as $x \to \infty$, $f(x) \to -\infty$ slowly.

Lesson Summary

```
The function f(x) = \log_b(x) is defined for irrational and rational numbers. Its domain is all positive real numbers.
Its range is all real numbers.
The function f(x) = \log_b(x) goes to negative infinity as x goes to zero. It goes to positive infinity as x goes to
```

positive infinity.

The larger the base *b*, the more slowly the function $f(x) = \log_b(x)$ increases.

By the change of base formula, $log_1(x) = -log_b(x)$.

Exit Ticket (5 minutes)

272

engage

M3

ALGEBRA II

Name

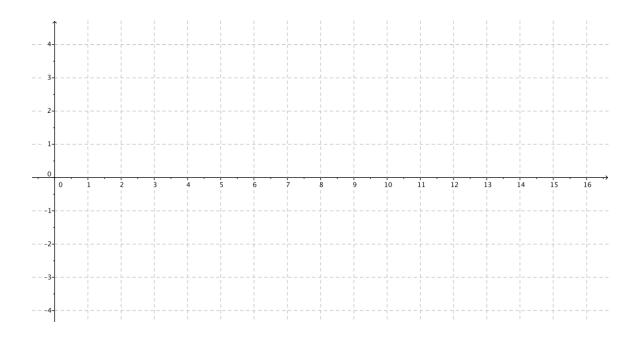
Date _____

Lesson 17

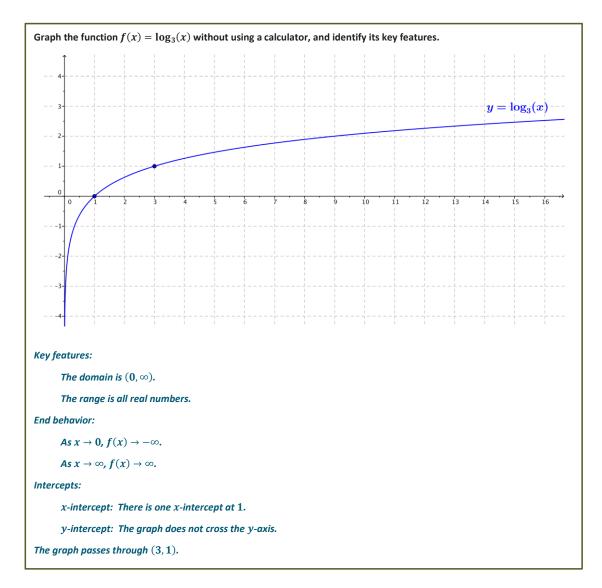
Lesson 17: Graphing the Logarithm Function

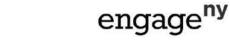
Exit Ticket

Graph the function $f(x) = \log_3(x)$ without using a calculator, and identify its key features.



Exit Ticket Sample Solutions

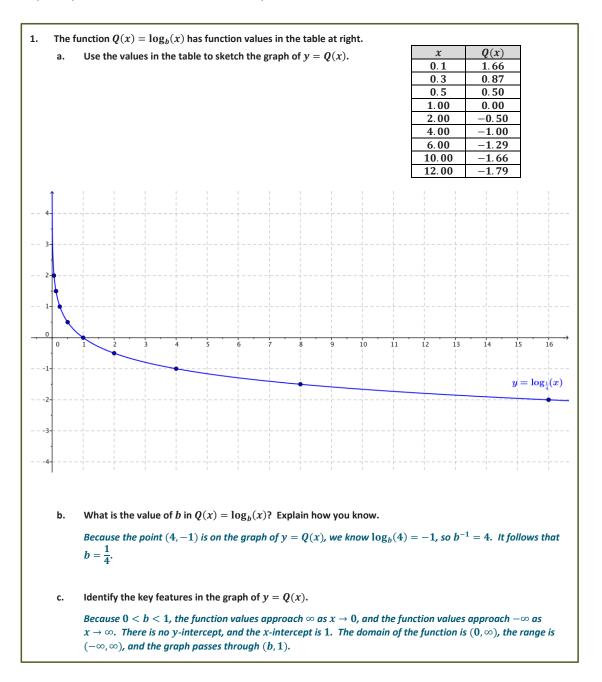




Problem Set Sample Solutions

For the Problem Set, students need graph paper. They should not use calculators or other graphing technology, except where specified in extension Problems 11 and 12. In Problems 2 and 3, students compare different representations of logarithmic functions. Problems 4–6 continue the reasoning from the lesson in which students observed logarithmic properties through the transformations of logarithmic graphs.

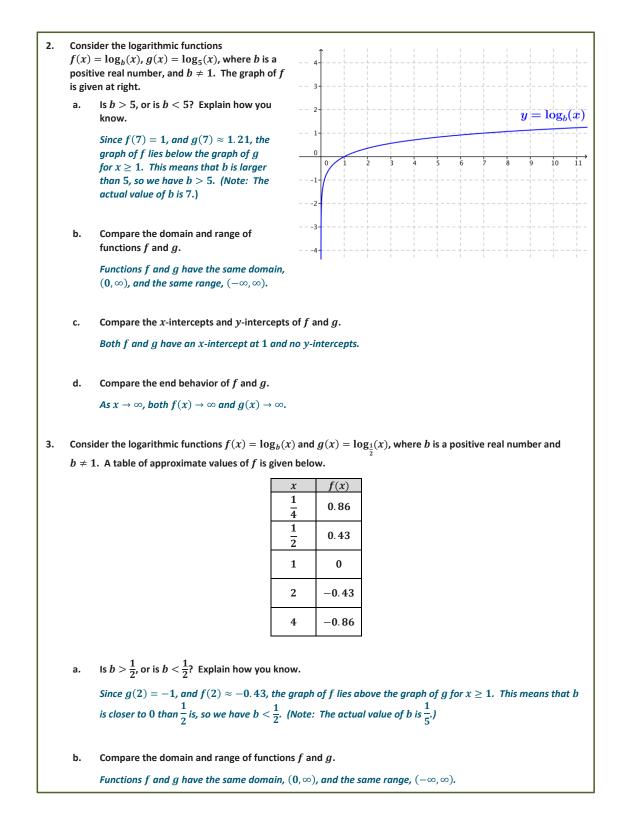
Fluency problems 9–10 are a continuation of work done in Algebra I and have been placed in this lesson so that students recall concepts required in Lesson 19. Similar review problems occur in the next lesson.

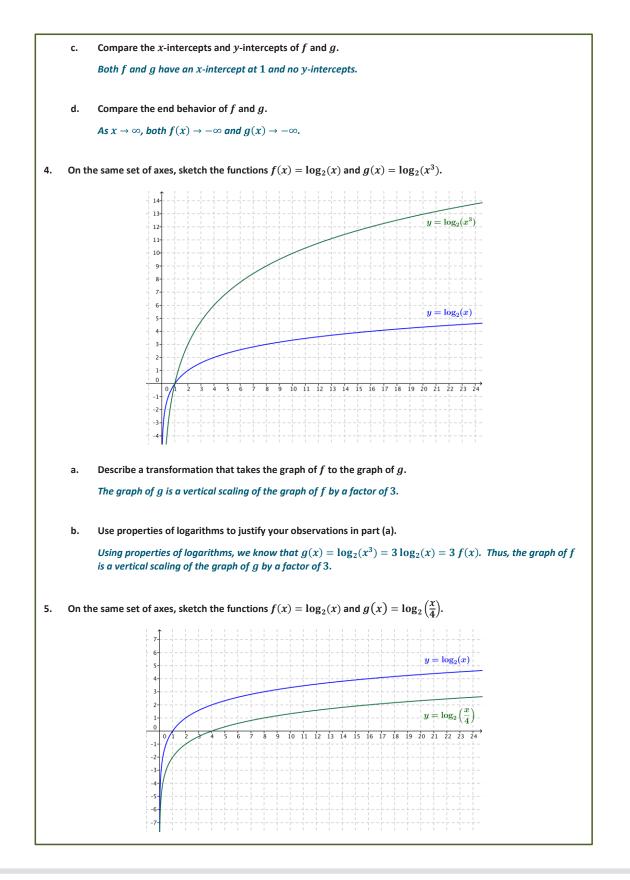


Lesson 17: Graphing the Logarithm Function

275

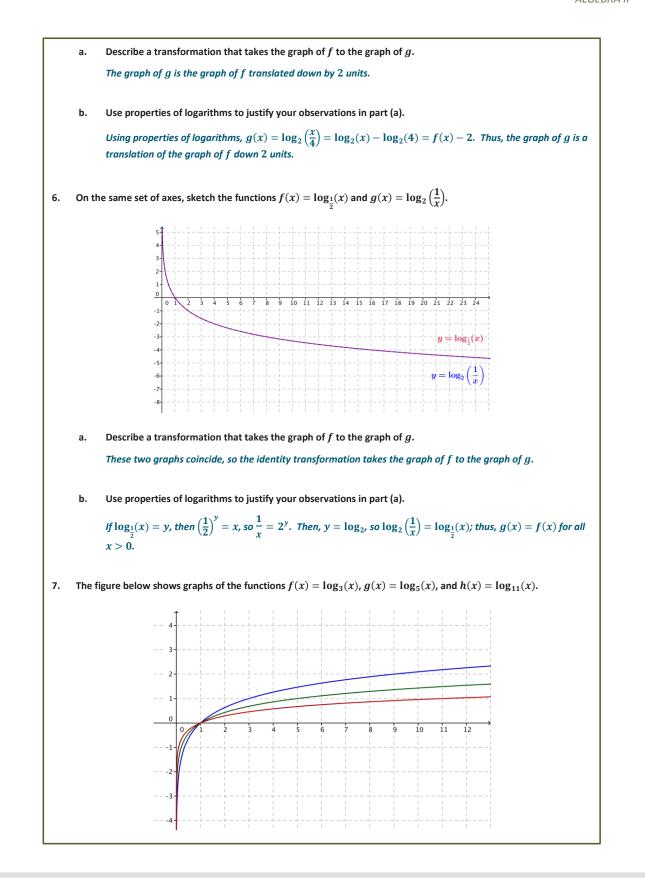
engage^{ny}



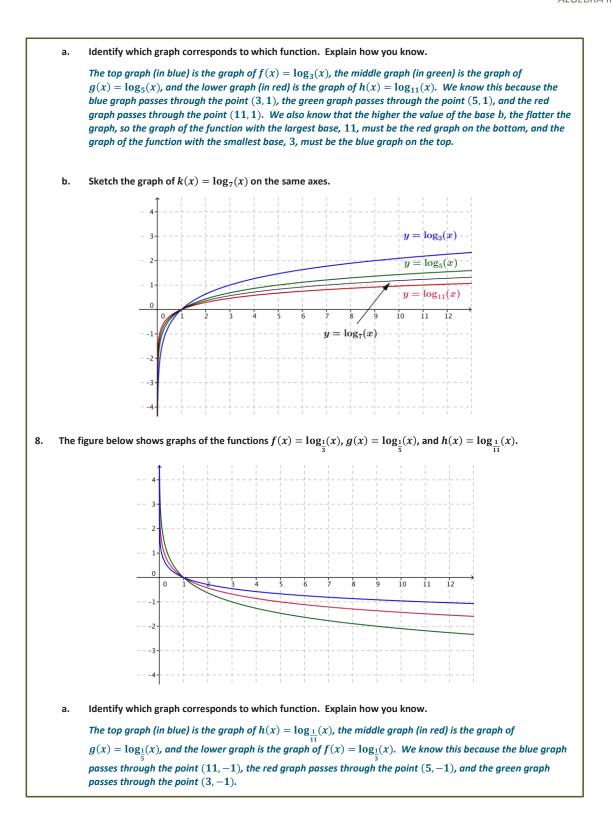


Lesson 17: Graphing the Logarithm Function

engage^{ny}

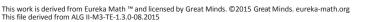


Lesson 17: Graphing the Logarithm Function



EUREKA MATH

Lesson 17: Graphing the Logarithm Function



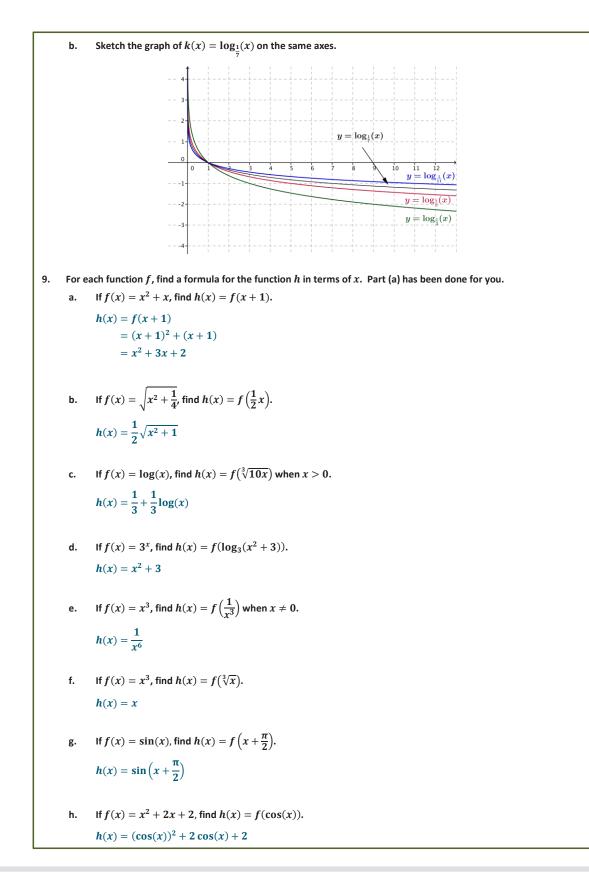
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

(cc) BY-NC-SA

engage^{ny}

M3

Lesson 17



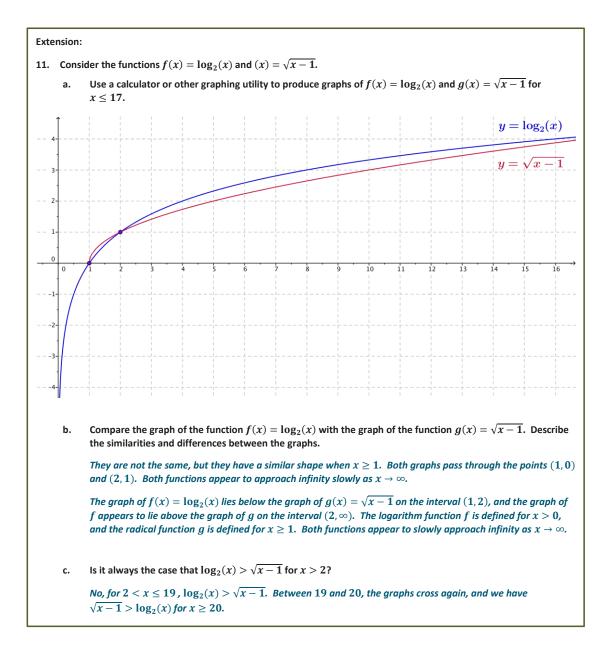
Lesson 17: Graphing the Logarithm Function

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

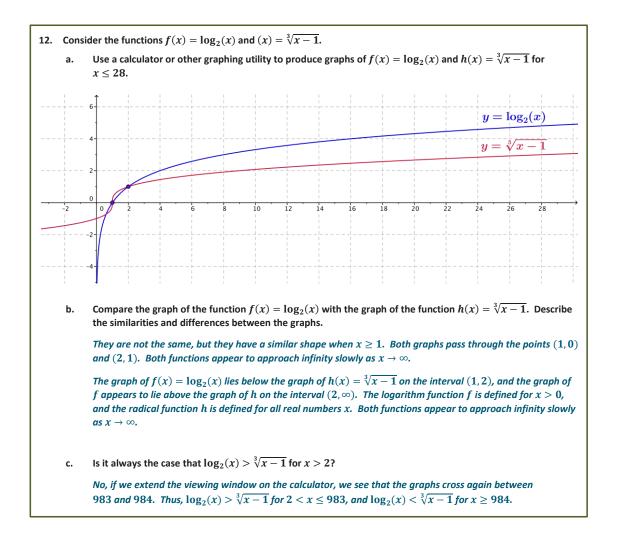
engage^{ny}

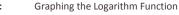
10. For each of the functions f and g below, write an expression for (i) f(g(x)), (ii) g(f(x)), and (iii) f(f(x)) in terms of x. Part (a) has been done for you. $f(x) = x^2, g(x) = x + 1$ a. f(g(x)) = f(x+1)i. $=(x+1)^{2}$ $g(f(x)) = g(x^2)$ ii. $= x^2 + 1$ iii. $f(f(x)) = f(x^2)$ $=(x^2)^2$ $= x^4$ b. $f(x) = \frac{1}{4}x - 8$, g(x) = 4x + 1i. $f(g(x)) = x - \frac{31}{4}$ ii. g(f(x)) = x - 31iii. $f(f(x)) = \frac{1}{16}x - 10$ $f(x) = \sqrt[3]{x+1}, g(x) = x^3 - 1$ c. i. f(g(x)) = xii. g(f(x)) = xiii. $f(f(x)) = \sqrt[3]{\sqrt[3]{x+1}+1}$ d. $f(x) = x^3, g(x) = \frac{1}{x}$ i. $f(g(x)) = \frac{1}{x^3}$ ii. $g(f(x)) = \frac{1}{x^3}$ iii. $f(f(x)) = x^9$ $f(x) = |x|, g(x) = x^2$ e. *i.* $f(g(x)) = |x^2| = x^2$ ii. $g(f(x)) = (|x|)^2 = x^2$ iii. f(f(x)) = |x|

Lesson 17 M3



Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.





Lesson 18: Graphs of Exponential Functions and

Logarithmic Functions

Student Outcomes

- Students compare the graph of an exponential function to the graph of its corresponding logarithmic function.
- Students note the geometric relationship between the graph of an exponential function and the graph of its corresponding logarithmic function.

Lesson Notes

In the previous lesson, students practiced graphing transformed logarithmic functions and observed the effects of the logarithmic properties in the graphs. In this lesson, students graph the logarithmic functions along with their corresponding exponential functions. Be careful to ensure that the scale is the same on both axes so that the geometric relationship between the graph of the exponential function and the graph of the logarithmic function is apparent. Part of the focus of the lesson is for students to begin seeing that these functions are the inverses of each other—but without the teacher actually saying it yet. Encourage students to draw the graphs carefully so that they can see that the two graphs are reflections of each other about the diagonal. The asymptotic nature of the two graphs should be discussed. (F-IF.B.4, F-IF.C.7e) The teacher is encouraged to consider using graphing software such as GeoGebra.

Classwork

Opening Exercise (5 minutes)

Allow students to work in pairs or small groups on the following exercise in which they graph a few points on the curve $y = 2^x$, reflect these points over the diagonal line with the equation y = x, and analyze the result.

Opening Exercise

Complete the following table of values of the function $f(x) = 2^x$. We want to sketch the graph of y = f(x) and then reflect that graph across the diagonal line with equation y = x.

x	$y = 2^x$	Point (x, y) on the Graph of $y = 2^x$
-3	$\frac{1}{8}$	$\left(-3,\frac{1}{8}\right)$
-2	$\frac{1}{4}$	$\left(-2,\frac{1}{4}\right)$
-1	$\frac{1}{2}$	$\left(-1,\frac{1}{2}\right)$
0	1	(0,1)
1	2	(1,2)
2	4	(2,4)
3	8	(3,8)

Scaffolding:

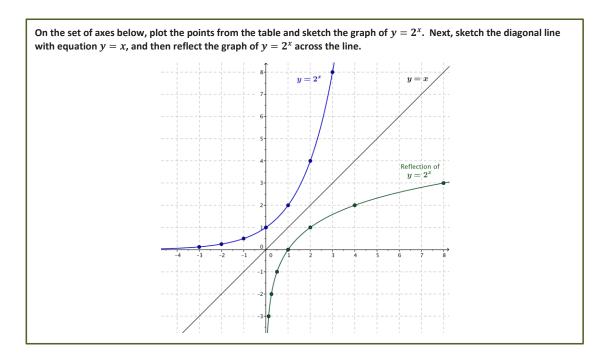
- Model the process of reflecting a set of points, such as $\triangle ABC$ with vertices A(-3, 2), B(-3, 7), and C(2, 7), over the diagonal line y = x before asking students to do the same.
- After the graph of y = 2^x and its reflection are shown, ask advanced students, "If the first graph represents the points that satisfy y = 2^x, then what equation do the points on the reflected graph satisfy?"

Lesson 18:

3: Graphs of Exponential Functions and Logarithmic Functions

M3

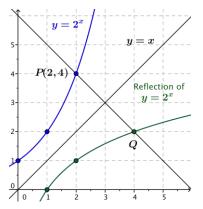
Lesson 18



Discussion (4 minutes)

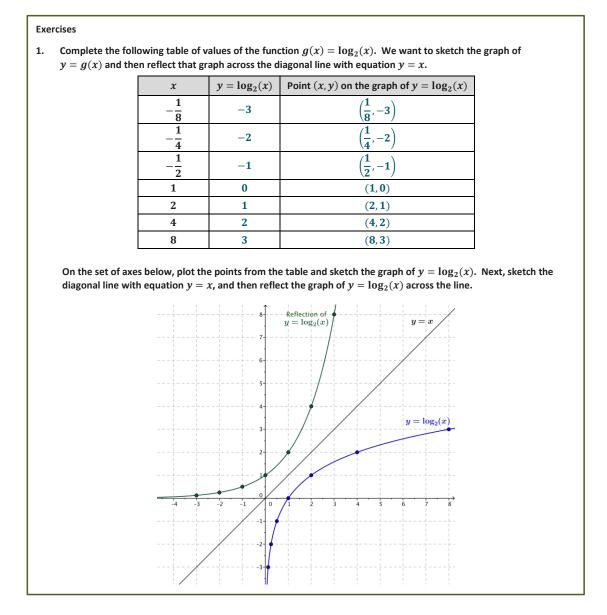
Use the following discussion to reinforce the process by which a point is reflected across the diagonal line given by y = x and the reasoning for why reflecting points on an exponential curve produces points on the corresponding logarithmic curve.

- How do we find the reflection of the point P(2, 4) across the line given by y = x?
 - Point P(2, 4) is reflected to point Q on the line through (2, 4) that is perpendicular to the line given by y = x so that points P and Qare equidistant from the diagonal line.
- What is the slope of the line through P and Q? Explain how you know.
 (Draw the figure to the right.)
 - The slope of \overrightarrow{PQ} is -1 because this line is perpendicular to the diagonal line that has slope 1.
- We know that P and Q are the same distance from the diagonal line. What are the coordinates of the point Q?
 - Point *Q* has coordinates (4, 2).
- What are the coordinates of the reflection of the point (1, 2) across the line given by y = x?
 - The reflection of the point (1, 2) is the point (2, 1).
- What are the coordinates of the reflection of the point (a, b) across the line given by y = x?
 - When we reflect about the line with equation y = x, we actually switch the axes themselves by folding the plane along this line. Therefore, the reflection of the point (a, b) is the point (b, a).



18: Graphs of Exponential Functions and Logarithmic Functions

Exercise 1 (7 minutes)

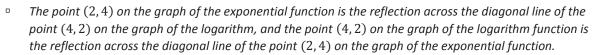


Discussion (5 minutes)

This discussion makes clear that the reflection of the graph of an exponential function is the graph of a corresponding logarithmic function, and vice-versa.

- How do we find the reflection of the point P(2, 4) across the line given by y = x?
- What similarities do you notice about this exercise and the Opening Exercise?
 - The points (0, 1), (2, 1), and (4, 2) on the logarithmic graph are the reflections of the points we plotted on this first graph of $f(x) = 2^x$ across the diagonal line.

18: Graphs of Exponential Functions and Logarithmic Functions



- ^a The point (a, b) on the graph of the exponential function is the reflection across the diagonal line of the point (b, a) on the graph of the logarithm, and the point (b, a) on the graph of the logarithm function is the reflection across the diagonal line of the point (a, b) on the graph of the exponential function.
- The graphs of the functions $f(x) = 2^x$ and $g(x) = \log_2(x)$ are reflections of each other across the diagonal line given by y = x.
- Why does this happen? How does the definition of the logarithm tell us that if (a, b) is a point on the exponential graph, then (b, a) is a point on the logarithmic graph? How does the definition of the logarithm tell us that if (b, a) is a point on the logarithmic graph, then (a, b) is a point on the sponential graph?
 - If (a, b) is a point on the graph of the exponential function $f(x) = 2^x$, then

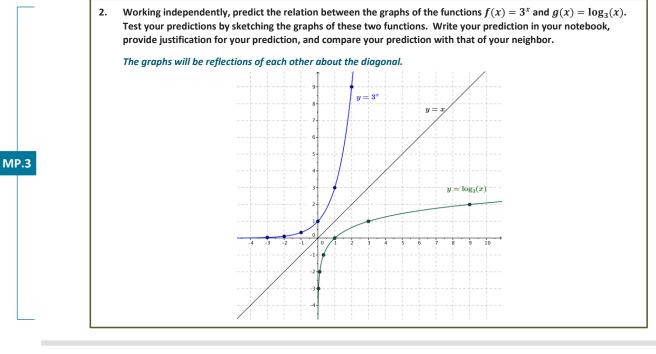
$$f(a) = 2^{a}$$
$$b = 2^{a}$$
$$\log_{2}(b) = a.$$

So, the point (b, a) is on the graph of the logarithmic function $g(x) = \log_2(x)$. Likewise, if (b, a) is a point on the graph of the logarithmic function $g(x) = \log_2(x)$, then

$$g(b) = \log_2(b)$$
$$\log_2(b) = a$$
$$2^a = b.$$

So, the point (a, b) is on the graph of the exponential function $f(x) = 2^x$.

Exercise 2 (5 minutes)



Lesson 18:

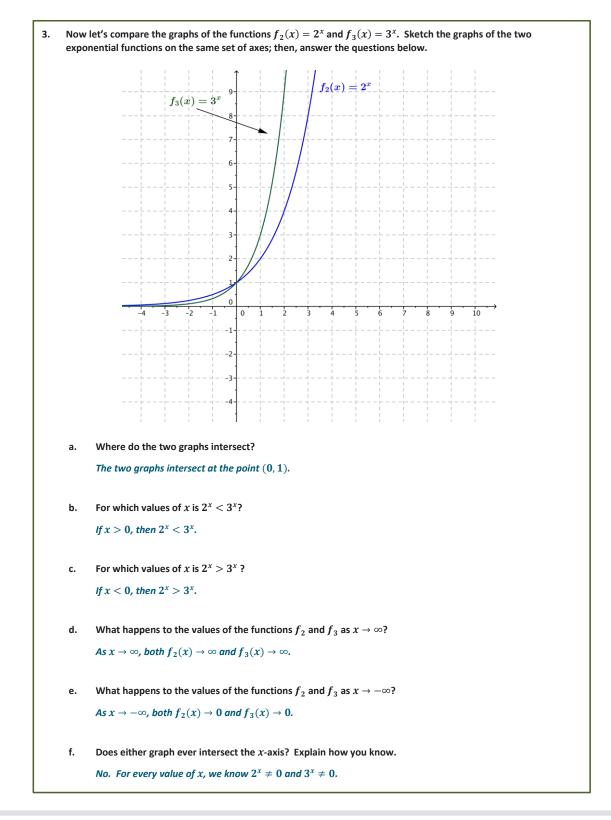
Graphs of Exponential Functions and Logarithmic Functions

M3

ALGEBRA II

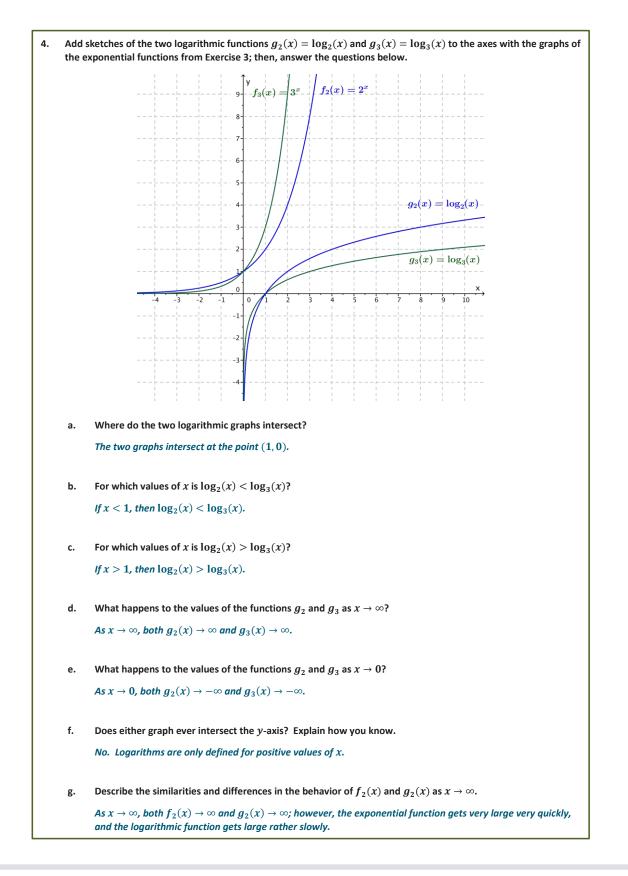
Lesson 18

Exercises 3–4 (10 minutes)



Lesson 18:

: Graphs of Exponential Functions and Logarithmic Functions



Lesson 18:

Graphs of Exponential Functions and Logarithmic Functions

CC BY-NC-SA

Closing (4 minutes)

MP.8

Ask students to summarize the key points of the lesson with a partner or in writing. Make sure that students have used the specific examples from the lesson to create some generalizations about the graphs of exponential and logarithmic functions.

- Graphical analysis was done for the functions $f_2(x) = 2^x$ and $f_3(x) = 3^x$. What generalizations can we make about functions of the form $f(x) = a^x$ for a > 1?
 - The function values increase to infinity as $x \to \infty$. The function values get closer to 0 as $x \to -\infty$.
- Graphical analysis was done for functions $g_2(x) = \log_2(x)$ and $g_3(x) = \log_3(x)$. What generalizations can we make about functions of the form $g(x) = \log_b(x)$ for b > 1?
 - The function values increase to infinity as $x \to \infty$. The function values approach $-\infty$ as $x \to 0$.
- How are the graphs of the functions $f(x) = 2^x$ and $g(x) = \log_2(x)$ related?
 - They are reflections of each other across the diagonal line given by y = x.
- What can we say, in general, about the graphs of $f(x) = b^x$ and $g(x) = \log_b(x)$ where b > 1?
 - They are reflections of each other about the diagonal line with equation y = x.

Exit Ticket (5 minutes)

18: Graphs of Exponential Functions and Logarithmic Functions

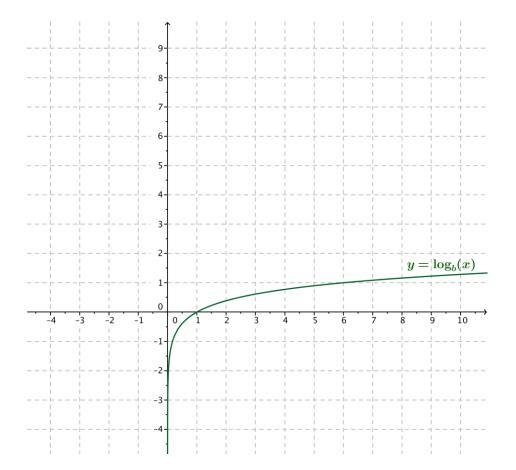
Name

Date _____

Lesson 18: Graphs of Exponential Functions and Logarithmic Functions

Exit Ticket

The graph of a logarithmic function $g(x) = \log_b(x)$ is shown below.



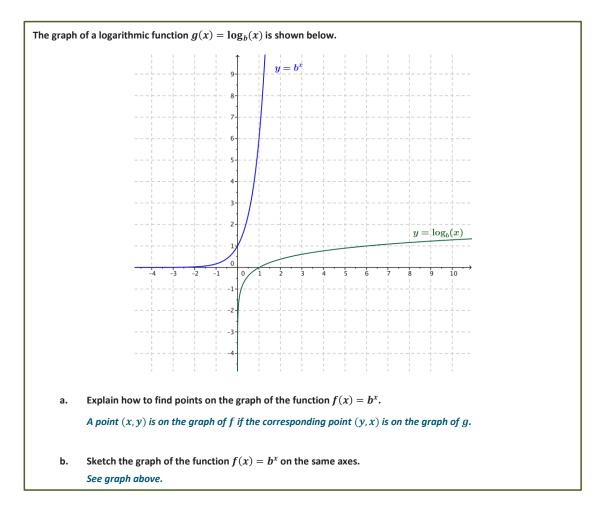
- a. Explain how to find points on the graph of the function $f(x) = b^x$.
- b. Sketch the graph of the function $f(x) = b^x$ on the same axes.

Lesson 18: Graphs of Exponential Functions and Logarithmic Functions

M3

Lesson 18

Exit Ticket Sample Solutions



18: Graphs of Exponential Functions and Logarithmic Functions

Lesson 18:

EUREKA

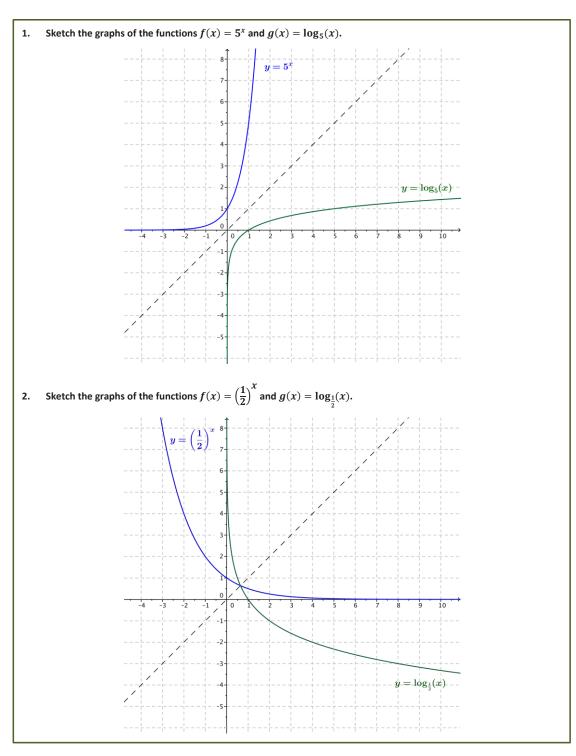
engage^{ny}

293

NYS COMMON CORE MATHEMATICS CURRICULUM

Problem Set Sample Solutions

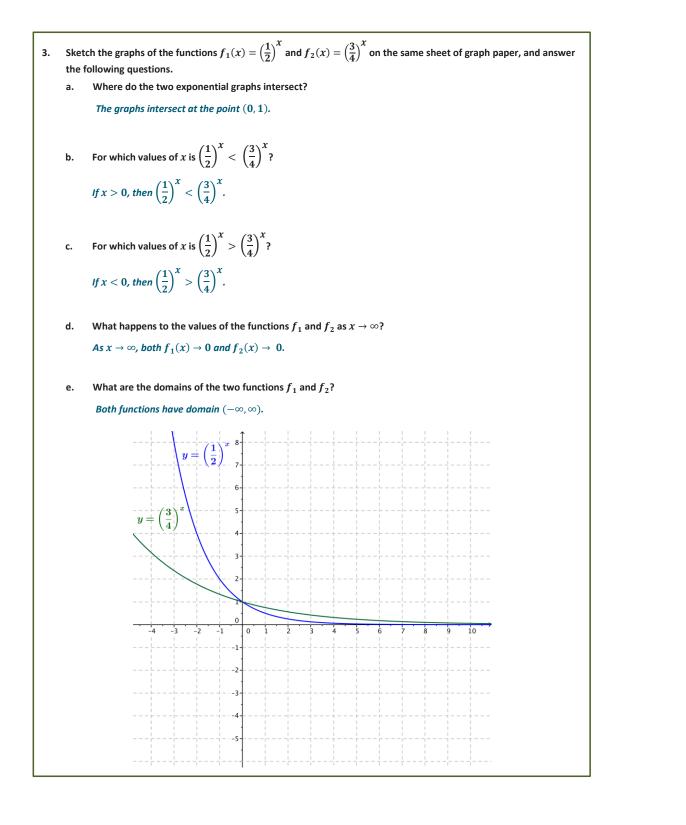
Problems 5–7 serve to review the process of computing f(g(x)) for given functions f and g in preparation for work with inverses of functions in Lesson 19.



Graphs of Exponential Functions and Logarithmic Functions

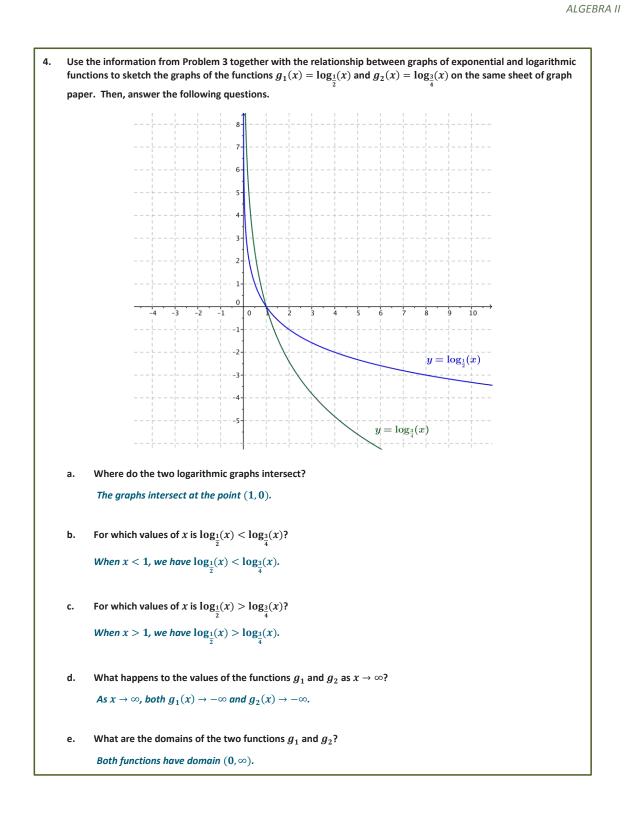
Lesson 18

ALGEBRA II



EUREKA MATH Lesson 18:

8: Graphs of Exponential Functions and Logarithmic Functions



EUREKA MATH

Lesson 18:

8: Graphs of Exponential Functions and Logarithmic Functions

For each function *f*, find a formula for the function *h* in terms of *x*.

5.

7.

ALGEBRA II

Lesson 18

If $f(x) = x^3$, find $h(x) = 128f(\frac{1}{4}x) + f(2x)$. a. $h(x) = 10x^3$ b. If $(x) = x^2 + 1$, find h(x) = f(x+2) - f(2). $h(x) = x^2 + 4x$ c. If $f(x) = x^3 + 2x^2 + 5x + 1$, find $h(x) = \frac{f(x) + f(-x)}{2}$. $h(x) = 2x^2 + 1$ d. If $f(x) = x^3 + 2x^2 + 5x + 1$, find $h(x) = \frac{f(x) - f(-x)}{2}$. $h(x) = x^3 + 5x$ 6. In Problem 5, parts (c) and (d), list at least two aspects about the formulas you found as they relate to the function $f(x) = x^3 + 2x^2 + 5x + 1.$ The formula for 1(c) is all of the even power terms of f. The formula for 1(d) is all of the odd power terms of f. The sum of the two functions gives f back again; that is, $\frac{f(x)+f(-x)}{2} + \frac{f(x)-f(-x)}{2} = f$. For each of the functions f and g below, write an expression for (i) f(g(x)), (ii) g(f(x)), and (iii) f(f(x)) in terms of x. a. $f(x) = x^{\frac{2}{3}}, g(x) = x^{12}$ i. $f(g(x)) = x^8$ $ii. \quad g(f(x)) = x^8$ *iii.* $f(f(x)) = x^{\frac{4}{9}}$ b. $f(x) = \frac{b}{x-a'}$, $g(x) = \frac{b}{x} + a$ for two numbers a and b, when x is not 0 or ai. f(g(x)) = xii. g(f(x)) = xiii. $f(f(x)) = \frac{b}{\frac{b}{x-a}}$, which is equivalent to $f(f(x)) = \frac{b(x-a)}{b+a^2-ax}$ c. $f(x) = \frac{x+1}{x-1}, g(x) = \frac{x+1}{x-1}$, when x is not 1 or -1 i. f(g(x)) = xii. g(f(x)) = xiii. f(f(x)) = x $f(x) = 2^x, g(x) = \log_2(x)$ d. $i. \quad f(g(x)) = x$ ii. g(f(x)) = xiii. f(f(x)) = x

Lesson 18: Graphs of Exponential Functions and Logarithmic Functions

296

engage^{ny}

e. $f(x) = \ln(x), g(x) = e^{x}$ i. f(g(x)) = xii. g(f(x)) = xiii. $f(f(x)) = \ln(\ln(x))$ f. $f(x) = 2 \cdot 100^{x}, g(x) = \frac{1}{2}\log(\frac{1}{2}x)$ i. f(g(x)) = xii. g(f(x)) = x

iii. $f(f(x)) = 2 \cdot 10000^{100^x}$

18: Graphs of Exponential Functions and Logarithmic Functions

Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions

Student Outcomes

 Students understand that the logarithmic function base b and the exponential function base b are inverse functions.

Lesson Notes

In the previous lesson, students learned that if they reflected the graph of a logarithmic function across the diagonal line with equation y = x, then the reflection is the graph of the corresponding exponential function, and vice-versa. In this lesson, we formalize this graphical observation with the idea of inverse functions. Students have not yet been exposed to the idea of an inverse function, but it is natural for us to have that discussion in this module. In particular, this lesson attends to these standards:

F-BF.B.4a: Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse.

F-LE.A.4: For exponential models, express as a logarithm the solution to $ab^{ct} = d$ where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.

In order to clarify the procedure for finding an inverse function, we start with algebraic functions before returning to transcendental logarithms and exponential functions.

Note: You might want to consider splitting this lesson over two days.

Classwork

Opening Exercise (8 minutes)

Before talking about inverse functions, review the idea of inverse operations. At this point, students have had a lot of practice thinking of division as undoing multiplication (in other words, multiplying by 5 and then dividing by 5 gives back the original number) and thinking of subtraction as undoing addition.

You may also want to remind your students about the composition of two transformations. For example, in geometry, the image of a *counterclockwise* rotation of a triangle $\triangle ABC$ by 30° around a point *P* is a new triangle congruent to the original. If we apply a 30° *clockwise* rotation to this new triangle around *P* (rotation by -30°), the image is the original triangle again. That is, the rotation $R_{P,-30^\circ}$ undoes the rotation $R_{P,30^\circ}$:

$$R_{P,-30^{\circ}}\left(R_{P,30^{\circ}}(\Delta ABC)\right) = \Delta ABC.$$

In this lesson, we study functions that undo other functions. That is, given a function f, sometimes there is another function g, so that if y = f(x), then g(y) = x. Then, if we apply these functions in succession, doing f and then g on x, the composition returns the original value x. Such a function g is called the inverse of the function f, just as division is the inverse operation for multiplication.

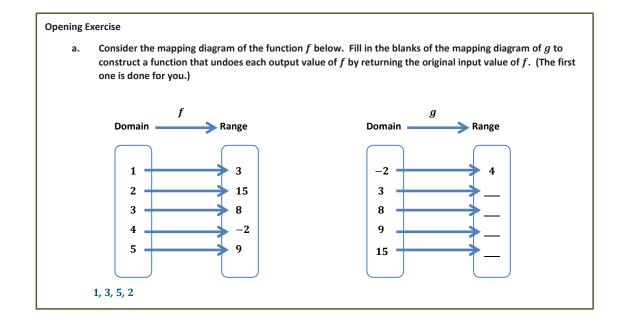
Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions

undoes

g "undoes" f

4

Similarly,



As you walk around the room, help struggling students by drawing the analogy of multiplication and division of what students are asked to do above.

> Write the set of input-output pairs for the functions f and g by filling in the blanks below. (The set F for the b. function f has been done for you.) $F = \{(1,3), (2,15), (3,8), (4,-2), (5,9)\}$ $G = \{(-2, 4),$ (3, 1), (8, 3),(9,5), (15, 2)How can the points in the set G be obtained from the points in F? c. The points in G can be obtained from the points in F by switching the first entry (first coordinate) with the second entry (second coordinate), that is, if (a, b) is a point of F, then (b, a) is a point of G. d. Peter studied the mapping diagrams of the functions f and g above and exclaimed, "I can get the mapping diagram for g by simply taking the mapping diagram for f and reversing all of the arrows!" Is he correct? He is almost correct. It is true that he can reverse the arrows, but he would also need to switch the domain and range labels to reflect that the range of f is the domain of g, and the domain of f is the range of g.

We explore questions like those asked in parts (a), (c), and (d) of the Opening Exercise in more detail in the examples that follow.

9: The Inverse Relationship Between Logarithmic and Exponential Functions

Discussion (8 minutes)

You may need to point out to students the meaning of "Let y = f(x)" in this context. Usually, the equation y = f(x) is an equation to be solved for solutions of the form (x, y). However, when we state "Let y = f(x)," we are using the equal symbol to assign the value f(x) to y.

Complete this table either on the board or on an overhead projector.

• Consider the two functions f(x) = 3x and $g(x) = \frac{x}{3}$. What happens if we compose these two functions in sequence? Let's make a table of values by letting y be the value of f when evaluated at x and then evaluating g on the result.

x	Let $y = f(x)$	g (y)
-2	-6	-2
-1	-3	-1
0	0	0
1	3	1
2	6	2
3	9	3

- What happens when we evaluate the function *f* on a value of *x* and then the function *g* on the result?
 - We get back the original value of *x*.
- Now, let's make a table of values by letting y be the value of g when evaluated at x and then evaluating f on the result.

x	Let $y = g(x)$	f (y)
-2	$-\frac{2}{3}$	-2
-1	$-\frac{1}{3}$	-1
0	0	0
1	$\frac{1}{3}$	1
2	$\frac{2}{3}$	2
3	1	3

- What happens when we evaluate the function g on a value of x and then the function f on the result?
 - We get back the original value of *x*.
- Does this happen with any two functions? What is special about the functions f and g?

The formula for the function f multiplies its input by 3, and the formula for g divides its input by 3. If we first evaluate f on an input and then evaluate g on the result, we are multiplying by 3 and then dividing by 3, which has a net effect of multiplying by $\frac{3}{3} = 1$, so the result of the composition of ffollowed by g is the original input.

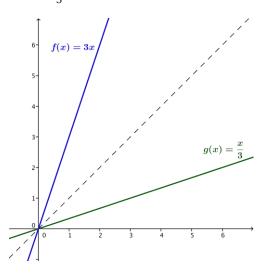
Likewise, if we first evaluate g on an input and then evaluate f on the result, we are dividing a number by 3 and then multiplying the result by 3 so that the net effect is again multiplication by $\frac{3}{3} = 1$, and the result of the composition is the original input.

This does not happen with two arbitrarily chosen functions. It is special when it does, and the functions have a special name:

• Functions f(x) = 3x and $g(x) = \frac{x}{3}$ are examples of inverse functions—functions that, if you take the output of one function for a given input and put the output into the other function, you get the original input back.

Inverse functions have a special relationship between their graphs. Let's explore that now and tie it back to what we learned earlier.

• Graph f(x) = 3x and $g(x) = \frac{x}{3}$. (Also, sketch in the graph of the diagonal line y = x.)



- What do we notice about these two graphs?
 - They are reflections of each other across the diagonal line given by y = x.
- What is the rule for the transformation that reflects the Cartesian plane across the line given by y = x?
 - $r_{y=x}(x,y) = (y,x)$
- Where have we seen this switching of first and second coordinates before in this lesson? How is that situation similar to this one?
 - In the Opening Exercise, to obtain the set *G* from the set *F*, we took each ordered pair of *F* and switched the first and second coordinates to get a point of *G*. Since plotting the points of *F* and *G* produce the graphs of those functions, we see that the graphs are reflections of each other across the diagonal given by y = x, that is, $r_{y=x}(F) = G$.

Similarly, for f(x) = 3x and $g(x) = \frac{x}{3}$, we find $r_{y=x}(Graph of f) = Graph of g$.

Finally, let's tie what we learned about graphs of inverse functions to what we learned in the previous lesson.

MP.7

19: The Inverse Relationship Between Logarithmic and Exponential Functions

- What other two functions have we seen whose graphs are reflections of each other across the diagonal line?
 - The graph of a logarithmic and an exponential function with the same base b are reflections of each other across the diagonal line.

Lesson 19

Scaffolding:

Remind students of the

logarithmic properties:

3. $\log_b(b^x) = x$,

include an example next to

 $\log_3(3^x) = x$ and $10^{\log(5)} = 5$.

4. $b^{\log_b(x)} = x$.

It may also be helpful to

each property, such as

ALGEBRA II

- Make a conjecture about logarithmic and exponential functions.
 - A logarithmic and an exponential function with the same base are inverses of each other.
- Can we verify that using the properties of logarithms and exponents? What happens if we compose the functions by evaluating them one right after another? Let $f(x) = \log(x)$ and $g(x) = 10^x$. What do we know about the result of evaluating f for a number x and then evaluating g on the resulting output? What about evaluating g and then f?
 - Let y = f(x). Then $y = \log(x)$, so $g(y) = 10^y = 10^{\log(x)}$. By logarithmic property 4, $10^{\log(x)} = x$, so evaluating f at x, and then g on the results gives us the original input x back.
 - Let y = g(x). Then $y = 10^x$, so $f(y) = \log(10^x)$. By logarithmic property 3, $\log(10^x) = x$, so evaluating g at x, and then f on the results gives us the original input x back.
- So, yes, a logarithmic function and its corresponding exponential function are inverse functions.

Discussion (8 minutes)

What if we have the formula of a function f, and we want to know the formula for its inverse function g? At this point, all we know is that if we have the graph of f and reflect it across the diagonal line we get the graph of its inverse g. We can use this fact to derive the formula for the inverse function g from the formula of f.

Above, we saw that

$$r_{x=y}(\text{Graph of } f) = \text{Graph of } g.$$

Let's write out what those sets look like. For f(x) = 3x, the graph of f is the same as the graph of the equation y = f(x), that is, y = 3x:

Graph of
$$f = \{(x, y) | y = 3x \}$$
.

For $g(x) = \frac{x}{3}$, the graph of g is the same as the graph of the equation $y = \frac{x}{3}$, which is the same as the graph of the equation x = 3y (why are they same?):

Graph of
$$g = \{(x, y) | x = 3y\}.$$

Thus, the reflection across the diagonal line of the graph of f can be written as follows:

$$\{(x,y) \mid y = 3x\} \xrightarrow{r_{x=y}} \{(x,y) \mid x = 3y\}.$$

- What relationship do you see between the set $\{(x, y) \mid y = 3x\}$ and the set $\{(x, y) \mid x = 3y\}$? How does this relate to the reflection map $r_{x=y}(x, y) = (y, x)$?
 - To get the second set, we interchange *x* and *y* in the equation that defines the first set. This is exactly what the reflection map is telling us to do.

19: The Inverse Relationship Between Logarithmic and Exponential Functions

• Let's see if the same relationship holds for $f(x) = \log(x)$ and its inverse $g(x) = 10^x$. Focusing on g, we see that the graph of g is the same as the graph of the equation $y = 10^x$. We can rewrite the equation $y = 10^x$ using logarithms as $x = \log(y)$. (Why are they the same?) Thus, the reflection across the diagonal line of the graph of f can be written as follows:

$$\{(x,y) \mid y = \log(x)\} \xrightarrow{r_{x=y}} \{(x,y) \mid x = \log(y)\}.$$

This pair of sets also has the same relationship.

- How can we use that relationship to obtain the equation for the graph of *g* from the graph of *f*?
 - Write the equation y = f(x), and then interchange the symbols to get x = f(y).
- How can we use the equation x = f(y) to find the formula for the function g?
 - Solve the equation for y to write y as an expression in x. The formula for g is the expression in x.
- In general, to find the formula for an inverse function g of a given function f:
 - i. Write y = f(x) using the formula for f.
 - ii. Interchange the symbols x and y to get x = f(y).
 - iii. Solve the equation for *y* to write *y* as an expression in *x*.
 - iv. Then, the formula for g is the expression in x found in step (iii).

Exercises 1–7 (8 minutes)

Give students a couple of minutes to work in pairs to use the above procedure in Exercise 1. Allow them time to think through the procedure on their own and generate questions that they can ask either their partner or you. After giving students a few minutes, work through Exercise 1 as a whole class, and move on to a selection of the remaining problems.

Exercises

1. f(x) = 1 - 4x

y = 1 - 4xx = 1 - 4y4y = 1 - x $y = \frac{(1 - x)}{4}$

For each function f in Exercises 1–5, find the formula for the corresponding inverse function g. Graph both functions on a calculator to check your work.

Scaffolding:

For Exercises 1–5, it may be useful to ask what axes setting is required on a calculator to check whether the graphs of the two functions are reflections of each other. (The x-axis and y-axis must have the same scale.)

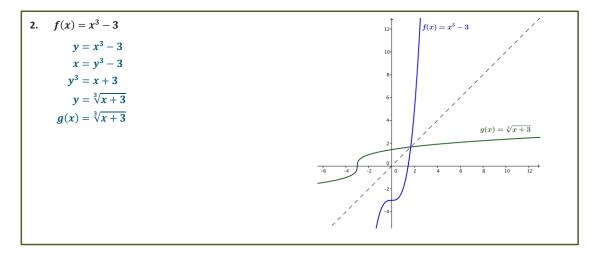
The Inverse Relationship Between Logarithmic and Exponential Functions

303

M3

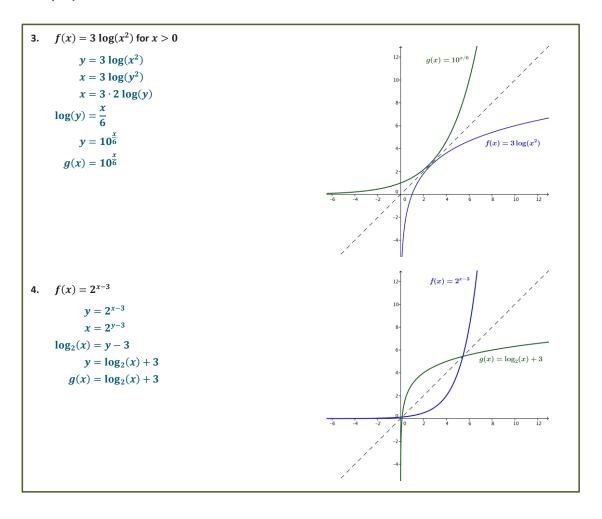
ALGEBRA II

Lesson 19



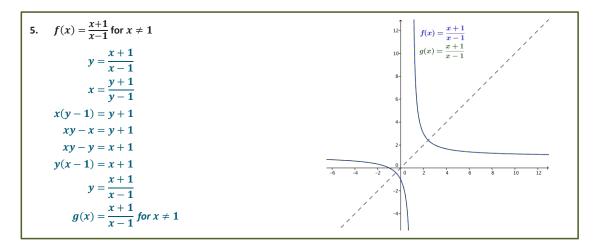
For Exercise 2, you may need to mention that, unlike principal square roots, there are real principal cube roots for negative numbers. This leads to the following identities that hold for all real numbers:

 $\sqrt[3]{x^3} = x$ and $\left(\sqrt[3]{x}\right)^3 = x$ for any real number x. Problems such as these are practiced further in the Problem Set.

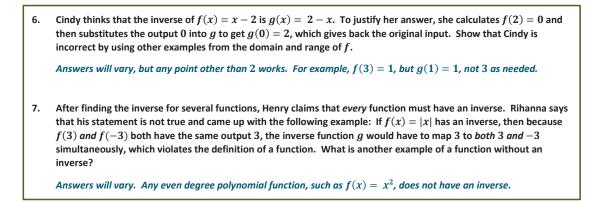


Lesson 19:

9: The Inverse Relationship Between Logarithmic and Exponential Functions



Exercise 5 is quite interesting. You might have students note that the functions f and g are the same. What do students notice about the graph of f? (This issue is further explored in the Problem Set.)



You might consider showing students graphs of functions without inverses and discuss what the graphs look like after reflecting them along the diagonal line (where it becomes obvious that the reflected figure cannot be a graph of a function).

Example (5 minutes)

Now we need to address the question of how the domain and range of the function f and its inverse function g relate. You may need to review domain and range of a function with your students first.

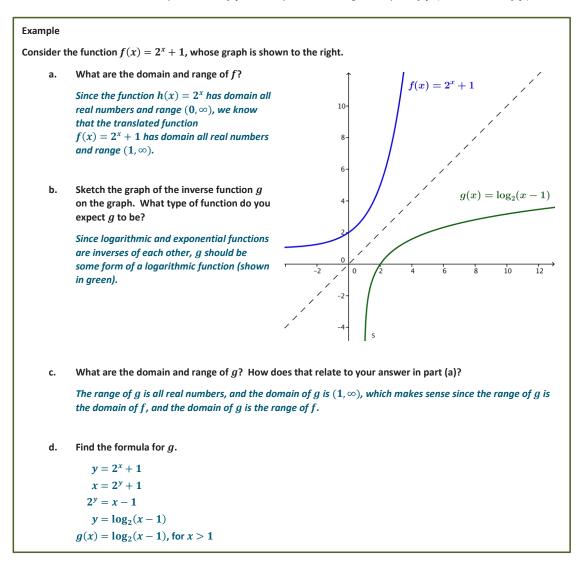
- In all exercises we did above, what numbers were in the domain of g? Why?
 - The domain of g contains the same numbers that were in the range of f.
 This is because, as the inverse of f, the function g takes the output of f (the range) as its input.

Scaffolding:

For students who are struggling, use concrete examples from the Opening Exercise or from the exercises they just did. For example, "If $f(x) = 2^{x-3}$, what is an example of a number that is in the domain? The range?"

19: The Inverse Relationship Between Logarithmic and Exponential Functions

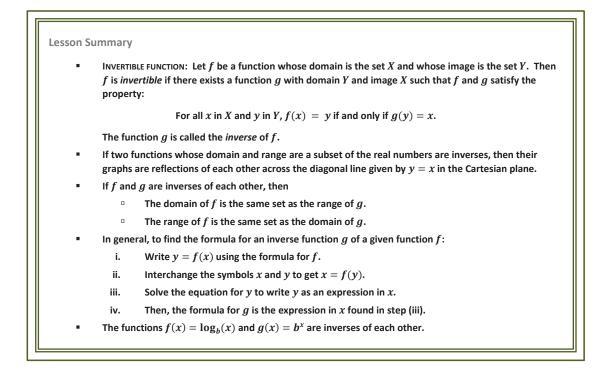
- What numbers were in the range of g? Why?
 - ^{\Box} The range of g contains the same numbers that were in the domain of f. When the function g is evaluated on an output value of f, its output is the original input of f (the domain of f).



Closing (3 minutes)

Ask students to summarize the important points of the lesson either in writing, orally with a partner, or as a class. Use this as an opportunity to informally assess understanding of the lesson. In particular, ask students to articulate the process for both graphing and finding the formula for the inverse of a given function. Some important summary elements are contained in the box below.

9: The Inverse Relationship Between Logarithmic and Exponential Functions



Exit Ticket (5 minutes)

9: The Inverse Relationship Between Logarithmic and Exponential Functions

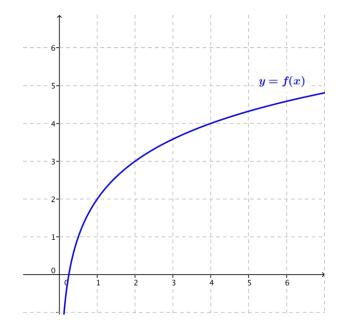
Name

Date _____

Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions

Exit Ticket

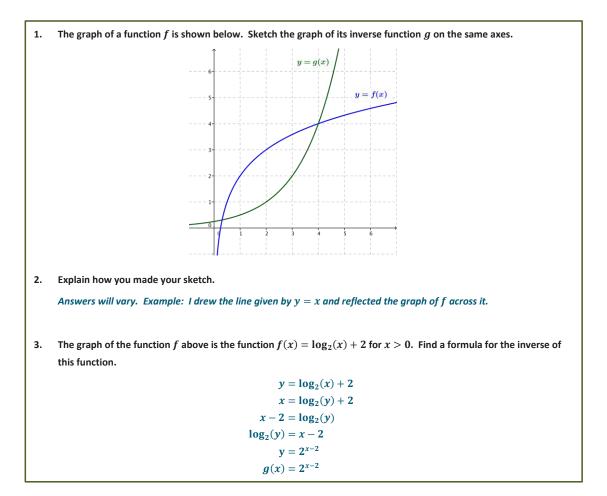
1. The graph of a function f is shown below. Sketch the graph of its inverse function g on the same axes.



- 2. Explain how you made your sketch.
- 3. The function f graphed above is the function $f(x) = \log_2(x) + 2$ for x > 0. Find a formula for the inverse of this function.

Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions

Exit Ticket Sample Solutions



Problem Set Sample Solutions

1.	For each function h below, find two functions f and g such that $h(x) = f(g(x))$. (There are many correct answers.)		
	a.	$h(x) = (3x+7)^2$	
		Possible answer: $f(x) = x^2$, $g(x) = 3x + 7$	
	b.	$h(x) = \sqrt[3]{x^2 - 8}$	
		Possible answer: $f(x) = \sqrt[3]{x}$, $g(x) = x^2 - 8$	
	c.	$h(x) = \frac{1}{2x - 3}$	
		Possible answer: $f(x) = \frac{1}{x}$, $g(x) = 2x - 3$	

Lesson 19:

9: The Inverse Relationship Between Logarithmic and Exponential Functions

309

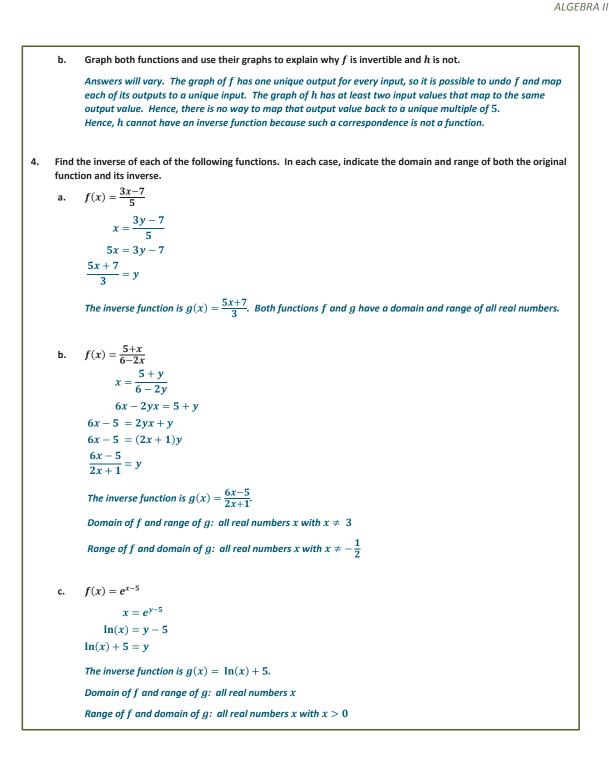
engage^{ny}

 $h(x) = \frac{4}{\left(2x - 3\right)^3}$ d. Possible answer: $f(x) = \frac{4}{x^{3}}$, g(x) = 2x - 3 $h(x) = (x + 1)^2 + 2(x + 1)$ e. *Possible answer:* $f(x) = x^2 + 2x$, g(x) = x + 1 $h(x) = (x+4)^{\frac{4}{5}}$ f. Possible answer: $f(x) = x^{\frac{4}{5}}, g(x) = x + 4$ $h(x) = \sqrt[3]{\log(x^2 + 1)}$ g. Possible answer: $f(x) = \sqrt[3]{\log(x)}, g(x) = x^2 + 1$ $h(x) = \sin(x^2 + 2)$ h. Possible answer: $f(x) = \sin(x)$, $g(x) = x^2 + 2$ i. $h(x) = \ln(\sin(x))$ Possible answer: $f(x) = \ln(x)$, $g(x) = \sin(x)$ 2. Let f be the function that assigns to each student in your class his or her biological mother. Use the definition of function to explain why f is a function. a. The function has a well-defined domain (students in the class) and range (their mothers), and each student is assigned one and only one biological mother. b. In order for f to have an inverse, what condition must be true about the students in your class? If a mother has several children in the same classroom, then there would be no way to define an inverse function that picks one and only one student for each mother. The condition that must be true is that there are no siblings in the class. If we enlarged the domain to include all students in your school, would this larger domain function have an c. inverse? Probably not. Most schools have several students who are siblings. 3. The table below shows a partially filled-out set of input-output pairs for two functions f and h that have the same finite domain of {0, 5, 10, 15, 20, 25, 30, 35, 40}. 0 5 10 15 20 25 30 35 40 x 0 2.1 6 f(x)0.3 1.4 2.7 h(x)0 0.3 1.4 2.1 2.7 6 Complete the table so that f is invertible but h is definitely not invertible. а. Answers will vary. For f, all output values should be different. For h, at least two output values for two different inputs should be the same number.

9: The Inverse Relationship Between Logarithmic and Exponential Functions

310

engage



Lesson 19:

9: The Inverse Relationship Between Logarithmic and Exponential Functions

 $f(x) = 2^{5-8x}$ d. $x = 2^{5-8y}$ $\log_2(x) = 5 - 8y$ $8y = 5 - \log_2(x)$ $y = \frac{1}{8}(5 - \log_2(x))$ The inverse function is $g(x) = \frac{1}{8} (5 - \log_2(x)).$ Domain of f and range of g: all real numbers xRange of f and domain of g: all real numbers x with x > 0 $f(x) = 7\log(1+9x)$ e. $x = 7\log(1+9y)$ $\frac{x}{7} = \log(1+9y)$ $10^{\frac{x}{7}} = 1 + 9y$ $\frac{1}{9}(10^{\frac{x}{7}}-1)=y$ The inverse function is $g(x) = \frac{1}{9} (10^{\frac{x}{7}} - 1).$ Domain of f and range of g: all real numbers x with $x > -\frac{1}{9}$ Range of f and domain of g: all real numbers x $f(x) = 8 + \ln(5 + \sqrt[3]{x})$ f. $x = 8 + \ln(5 + \sqrt[3]{y})$ $x-8 = \ln(5 + \sqrt[3]{y})$ $e^{x-8} = 5 + \sqrt[3]{y}$ $e^{x-8}-5=\sqrt[3]{y}$ $(e^{x-8}-5)^3 = y$ The inverse function is $g(x) = (e^{x-8} - 5)^3$. Domain of f and range of g: all real numbers x with x > -125Range of f and domain of g: all real numbers x

9: The Inverse Relationship Between Logarithmic and Exponential Functions

 $f(x) = \log\left(\frac{100}{3x+2}\right)$ g. $x = \log\left(\frac{100}{3y+2}\right)$ $x = \log(100) - \log(3y + 2)$ $x = 2 - \log(3y + 2)$ $2 - x = \log(3y + 2)$ $10^{2-x} = 3y + 2$ $\frac{1}{3}(10^{2-x}-2) = y$ The inverse function is $g(x) = \frac{1}{3}(10^{2-x} - 2)$. Domain of f and range of g: all real numbers x with $x > -\frac{2}{3}$ Range of f and domain of g: all real numbers x $f(x) = \ln(x) - \ln(x+1)$ h. $x = \ln(y) - \ln(y+1)$ $x = \ln\left(\frac{y}{y+1}\right)$ $e^x = \frac{y}{y+1}$ $ye^x + e^x = y$ $ye^x - y = -e^x$ $y(e^x-1)=-e^x$ $y = \frac{e^x}{1 - e^x}$ The inverse function is $g(x) = \frac{e^x}{1 - e^x}$. Domain of f and range of g: all real numbers x with x > 0Range of f and domain of g: all real numbers x < 0 $f(x) = \frac{2^x}{2^x + 1}$ i. $x = \frac{2^y}{2^y + 1}$ $x2^y + x = 2^y$ $x2^y - 2^y = -x$ $2^{y}(x-1) = -x$ $2^y = \frac{-x}{x-1} = \frac{x}{1-x}$ $y\ln(2) = \ln\left(\frac{x}{1-x}\right)$ $y = \ln \frac{\left(\frac{x}{1-x}\right)}{\ln(2)}$ The inverse function is $g(x) = \frac{\ln(\frac{x}{1-x})}{\ln(2)}$. Domain of f and range of g: all real numbers xRange of f and domain of g: all real numbers x, 0 < x < 1

Lesson 19:

The Inverse Relationship Between Logarithmic and Exponential Functions

5. Even though there are no real principal square roots for negative numbers, principal cube roots do exist for negative numbers: $\sqrt[3]{-8}$ is the real number -2 since $-2 \cdot -2 \cdot -2 = -8$. Use the identities $\sqrt[3]{x^3} = x$ and $(\sqrt[3]{x})^3 = x$ for any real number x to find the inverse of each of the functions below. In each case, indicate the domain and range of both the original function and its inverse. $f(x) = \sqrt[3]{2x}$ for any real number x. a. $y = \sqrt[3]{2x}$ $x = \sqrt[3]{2y}$ $x^3 = 2y$ $2y = x^{3}$ $y = \frac{1}{2}(x^3)$ $g(x) = \frac{1}{2}(x^3)$ Domain of f and range of g: all real numbers xRange of f and domain of g: all real numbers x $f(x) = \sqrt[3]{2x-3}$ for any real number x. b. $y = \sqrt[3]{2x-3}$ $x=\sqrt[3]{2y-3}$ $x^3 = 2y - 3$ $2y = x^3 + 3$ $y = \frac{1}{2}(x^3 + 3)$ $g(x) = \frac{1}{2}(x^3 + 3)$ Domain of f and range of g: all real numbers xRange of f and domain of g: all real numbers x $f(x) = (x - 1)^3 + 3$ for any real number x. c. $y = (x - 1)^3 + 3$ $x = (y - 1)^3 + 3$ $x - 3 = (y - 1)^3$ $\sqrt[3]{x-3} = v - 1$ $y-1=\sqrt[3]{x-3}$ $y = \sqrt[3]{x-3} + 1$ $g(x) = \sqrt[3]{x-3} + 1$ Domain of f and range of g: all real numbers xRange of f and domain of g: all real numbers x

Lesson 19:

9: The Inverse Relationship Between Logarithmic and Exponential Functions

Suppose that the inverse of a function is the function itself. For example, the inverse of the function 6. $f(x) = \frac{1}{x}$ (for $x \neq 0$) is just itself again, $g(x) = \frac{1}{x}$ (for $x \neq 0$). What symmetry must the graphs of all such functions have? (Hint: Study the graph of Exercise 5 in the lesson.) All graphs of functions that are self-inverses are symmetric with respect to the diagonal line given by the equation y = x. That is, a reflection across the line given by y = x takes the graph back to itself. 7. There are two primary scales for measuring daily temperature: degrees Celsius and degrees Fahrenheit. The United States uses the Fahrenheit scale, and many other countries use the Celsius scale. When traveling abroad you often need to convert between these two temperature scales. Let f be the function that inputs a temperature measure in degrees Celsius, denoted by $^{\circ}$ C, and outputs the corresponding temperature measure in degrees Fahrenheit, denoted by °F. Assuming that f is linear, we can use two points on the graph of f to determine a formula for f. In degrees Celsius, the freezing point of water is 0, and its boiling point is 100. In degrees Fahrenheit, the freezing point of water is 32, and its boiling point is 212. Use this information to find a formula for the function f. (Hint: Plot the points and draw the graph of f first, keeping careful track of the meaning of values on the x-axis and y-axis.) $f(t) = \frac{9}{5}t + 32$ b. If the temperature in Paris is 25°C, what is the temperature in degrees Fahrenheit? Since f(25) = 77, it is $77^{\circ}F$ in Paris. c. Find the inverse of the function f and explain its meaning in terms of degrees Fahrenheit and degrees Celsius. The inverse of f is $g(t) = \frac{5}{9}(t-32)$. Given the measure of a temperature reported in degrees Fahrenheit, the function converts that measure to degrees Celsius. d. The graphs of f and its inverse g are two lines that intersect in one point. What is that point? What is its significance in terms of degrees Celsius and degrees Fahrenheit? The point is (-40, -40). This means that -40° C is the same temperature as -40° F. Extension: Use the fact that, for b > 1, the functions $f(x) = b^x$ and $g(x) = \log_b(x)$ are increasing to solve the following problems. Recall that an increasing function f has the property that if both a and b are in the domain of f and a < b, then f(a) < f(b). For which values of x is $2^x < \frac{1}{1.000.000}$? $2^x < \frac{1}{1,000,000}$ $x < \log_2\left(\frac{1}{1,000,000}\right) = -\log_2(1,000,000)$ For which values of *x* is $\log_2(x) < -1,000,000$? 9. $\log_2(x) < -1,000,000$ $x < 2^{-1,000,000}$

9: The Inverse Relationship Between Logarithmic and Exponential Functions

and Exponential Functions

Student Outcomes

- Students study transformations of the graphs of logarithmic functions and learn the standard form of generalized logarithmic and exponential functions.
- Students use the properties of logarithms and exponents to produce equivalent forms of exponential and logarithmic expressions. In particular, they notice that different types of transformations can produce the same graph due to these properties.

Lesson Notes

Students revisit the use of transformations to produce graphs of exponential and logarithmic functions (F-BF.B.3, F-IF.B.4, F-IF.C.7e). They make and verify conjectures about why certain transformations of the graphs of functions produce the same graph by applying the properties to produce equivalent expressions (MP.3). This work leads to a general form of both logarithmic and exponential functions where the given parameters can be quickly analyzed to determine key features and to sketch graphs of logarithmic and exponential functions (MP.7, MP.8). This lesson reinforces knowledge of transformations and the properties of logarithms as students sketch graphs of transformed logarithmic and exponential functions.

Classwork

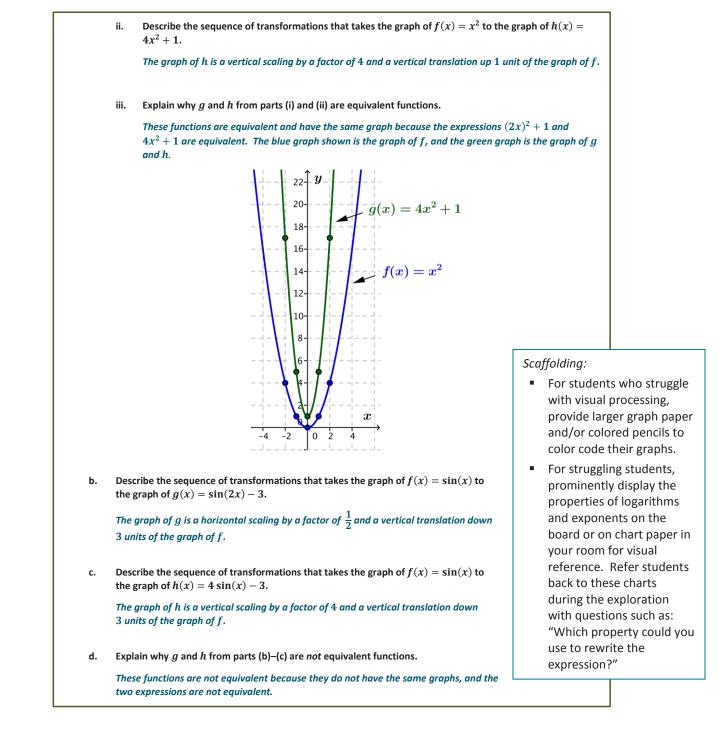
Opening Exercise (8 minutes)

Since much of the work on this lesson involves the connections between scaling and translating graphs of functions, this Opening Exercise presents students with an opportunity to reflect on what they already know about transformations of graphs of functions using a simple polynomial function and the sine function. Observe students carefully as they work on these exercises to gauge how much re-teaching or additional support may be needed in the Exploratory Challenge that follows. If students struggle to recall their knowledge of transformations, you may need to provide additional guidance and practice throughout the lesson. A grid is provided for students to use when sketching the graphs in Opening Exercise, part (a), but students could also complete this exercise using graphing technology.

Opening Exercise

a. Sketch the graphs of the three functions f(x) = x², g(x) = (2x)² + 1, and h(x) = 4x² + 1.
i. Describe the sequence of transformations that takes the graph of f(x) = x² to the graph of g(x) = (2x)² + 1.
The graph of g is a horizontal scaling by a factor of ¹/₂ and a vertical translation up 1 unit of the graph of f.

: Transformations of the Graphs of Logarithmic and Exponential Functions



Have students share responses and revise their work in small groups. Be sure to emphasize that students need to label their graphs since many of them appear on the same set of axes. Lead a brief whole-group discussion that focuses on the responses to Opening Exercise part (a-iii) and part (d). Perhaps have one or two students share their written response with the whole class, using either the board or the document camera. Check to make sure students are actually writing responses to these questions.

Transformations of the Graphs of Logarithmic and Exponential Functions

Lesson 20

Conclude this discussion by helping students to understand the following ideas that, as we demonstrate later, are also true with graphs of logarithmic and exponential functions.

- Certain transformations of the graph of a function can be identical to other transformations depending on the properties of the given function.
- For example, the function g(x) = x + 1 is either a horizontal translation of 1 unit to the left or a vertical translation of 1 unit up of the graph of f(x) = x. Similarly, g(x) = |-2x + 2| has the same graph as h(x) = 2|x 1|, but could be described using different transformations of the graph of f(x) = |x|.

Announce to students that in this lesson they explore the properties of logarithms and exponents to understand graphing transformations of those types of functions, and they explore when two different functions have the same graph in order to reinforce those properties.

Exploratory Challenge (15 minutes)

Students should work in small groups to complete this sequence of questions. Provide support to individual groups or students as you move around the classroom. As you circulate, keep questioning students as to the meaning of a logarithm with questions like those below.

- What does log₂(4) mean?
 - The exponent when the number 4 is written as a power of 2.
- Why is $\log_2\left(\frac{1}{4}\right)$ negative?
 - It is negative because $\frac{1}{4} = 2^{-2}$, and the logarithm is the exponent when the number $\frac{1}{4}$ is written as a power of 2.
- What is the domain and range of the function f? Why does this make sense given the definition of a logarithm?
 - The domain is all real numbers greater than 0. The range is all real numbers. This makes sense because the range of the exponential function $f(x) = 2^x$ is all real numbers greater than 0, the domain is

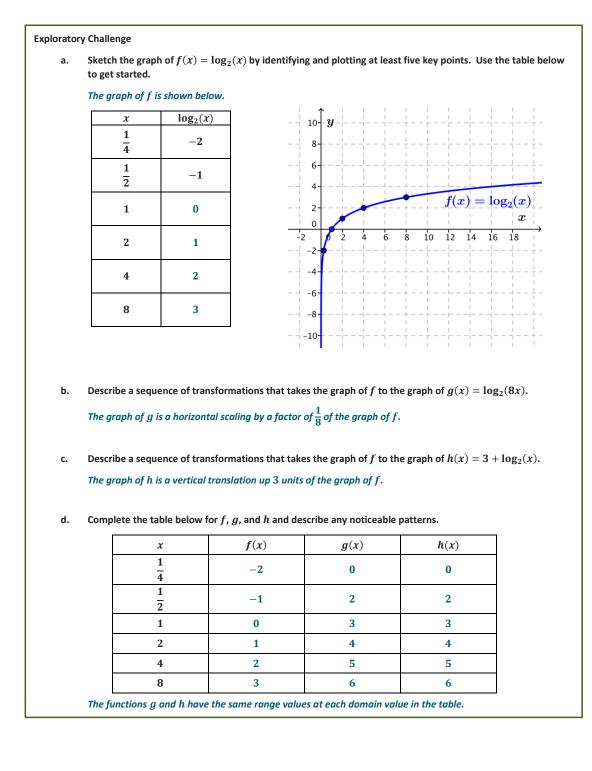
Scaffolding:

Use technology to support learners who are still struggling with arithmetic and need visual reinforcement. Students can investigate using graphing calculators or online graphing programs. Newer calculators and graphing programs have a $\log_b(x)$ function built in. On older models, you may need to coach students to use the change of base property to enter these functions (i.e., to graph $f(x) = \log_2(x)$, you need to enter the expression $\frac{\log(x)}{\log(2)}$ into the graphing calculator).

all real numbers, and the logarithmic function base 2 is the inverse of the exponential function base 2.

You can extend this lesson by using graphing software such as GeoGebra to create parameterized graphs with sliders (variables *a* and *b* that can be dynamically changed while viewing graphs). By manipulating the values of *a* and *k* in the functions $g(x) = \log_2(ax)$ and $h(x) = k + \log_2(x)$, you can verify that the graphs of $g(x) = \log_2(8x)$ and $h(x) = 3 + \log_2(x)$ are the same. This result reinforces properties of logarithms since $\log_2(8x) = \log_2(8) + \log_2(x)$. Students and teachers can similarly confirm the other examples in this lesson as well.

20: Transformations of the Graphs of Logarithmic and Exponential Functions



MP.3

&

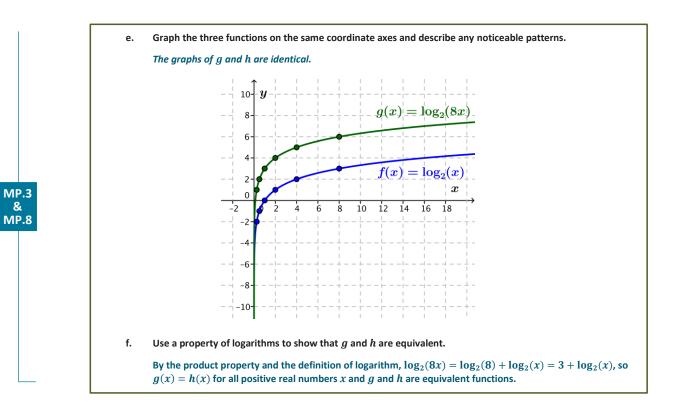
MP.8

Lesson 20:

0: Transformations of the Graphs of Logarithmic and Exponential Functions

M3

Lesson 20



Call the entire class together at this point to debrief their work so far. Make sure students understand that by applying the product or quotient property of logarithms, they can rewrite a single logarithmic expression as a sum or difference. In this way, a horizontal scaling of the graph of a logarithmic function can produce the same graph as a vertical translation. The next three parts of the Exploratory Challenge can be used to informally assess student understanding of the idea that two different transformations can produce the same graph because of the properties of logarithms.

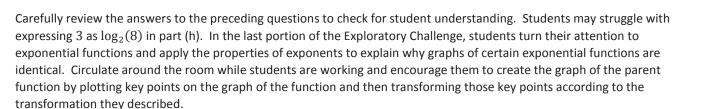
```
g. Describe the graph of p(x) = log<sub>2</sub> (x/4) as a vertical translation of the graph of f(x) = log<sub>2</sub>(x). Justify your response.
The graph of p is a vertical translation down 2 units of the graph of f because log<sub>2</sub> (x/4) = log<sub>2</sub>(x) - 2.
h. Describe the graph of h(x) = 3 + log<sub>2</sub>(x) as a horizontal scaling of the graph of f(x) = log<sub>2</sub>(x). Justify your response.
The graph of h is a horizontal scaling by a factor of 1/8 of the graph of f because 3 + log<sub>2</sub>(x) = log<sub>2</sub>(8) + log<sub>2</sub>(x) = log<sub>2</sub>(8x).
i. Do the functions h(x) = log<sub>2</sub>(8) + log<sub>2</sub>(x) and k(x) = log<sub>2</sub>(x + 8) have the same graphs? Justify your reasoning.
```

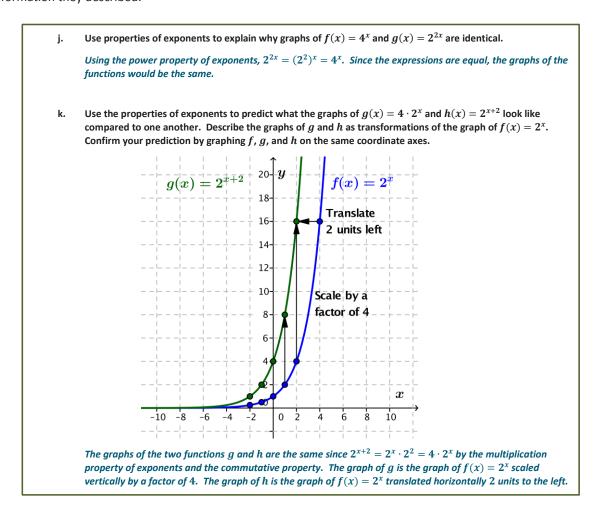
No, they do not. By substituting 1 for x in both f and g, you can see that the graphs of the two functions do not have the same y-coordinate at this point. Therefore, the graphs cannot be the same if at least one point is different.

MP.3

Lesson 20:

D: Transformations of the Graphs of Logarithmic and Exponential Functions





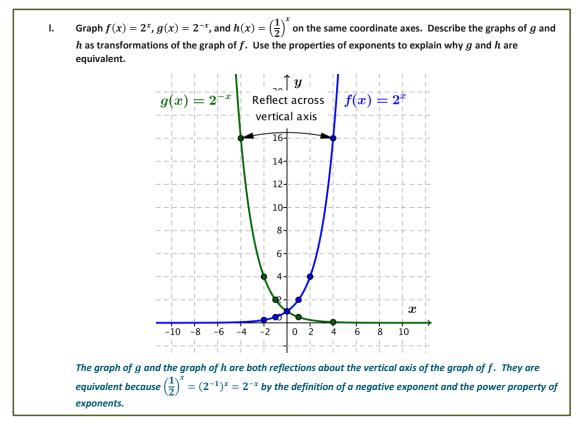
10: Transformations of the Graphs of Logarithmic and Exponential Functions

321

Lesson 20

M3

ALGEBRA II



Have groups volunteer to present their findings on the last three parts of the Exploratory Challenge. When debriefing, model both transformations for students by marking the sketch as shown in the solutions above.

Discuss these transformations.

- In part (k), how do you see the transformations that produce the graphs of f and g from the graph of $y = 2^x$?
 - I see the horizontal translation of 2 units to the left, but others might see the vertical scaling that takes each *y*-value and multiplies it by 4.
- In part (I), how do the transformations validate the definition of a negative exponent?
 - Since the graphs of g and h were identical, we have visual confirmation that $\left(\frac{1}{2}\right)^x = 2^{-x}$, which can only be true if $\frac{1}{2} = 2^{-1}$.

Then, have students respond to the reflection question below in writing or with a partner.

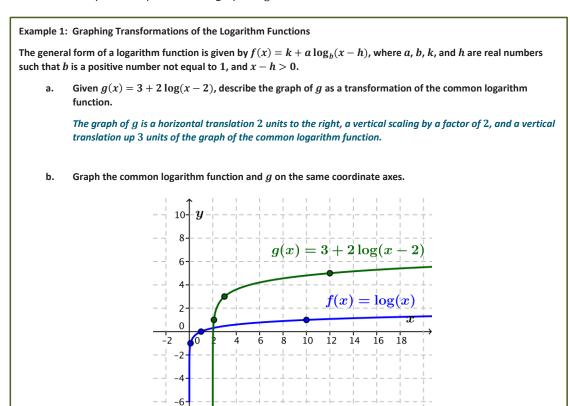
- How do the properties of logarithms and exponents justify the fact that different transformations of the graph of a function can sometimes produce the same graph?
 - We can use the properties to rewrite logarithmic and exponential expressions in equivalent forms that then represent different transformations of the same original function.

If time permits, you can also tie these transformations to a simple real-world context. For example, suppose that we can model a simple population by $P(t) = 2^{t+3}$. If we rewrite the function as $P(t) = 8 \cdot 2^t$, students can see that evaluating P at t + 3 would be like looking three years forward in time. This means the population doubled three times, which is why we are multiplying by 8.

Transformations of the Graphs of Logarithmic and Exponential Functions

Example 1 (4 minutes): Graphing Transformations of the Logarithm Functions

Introduce the general form of a logarithm function, noting that we do not need a horizontal scaling parameter since a horizontal scaling can always be rewritten as a vertical translation. Continue to reinforce learning from the previous lessons by asking students why the restrictions on b and x - h are necessary. Students should be able to work through part (a) without your assistance, but monitor their work to make sure that all students have the correct answer to refer to when they work the Problem Set. Model your expectations for sketching the graphs of logarithm functions in part (b) so students are able to produce accurate and precise graphs. Demonstrate how to plot the key points, and then transform the individual points to produce the graph of g.



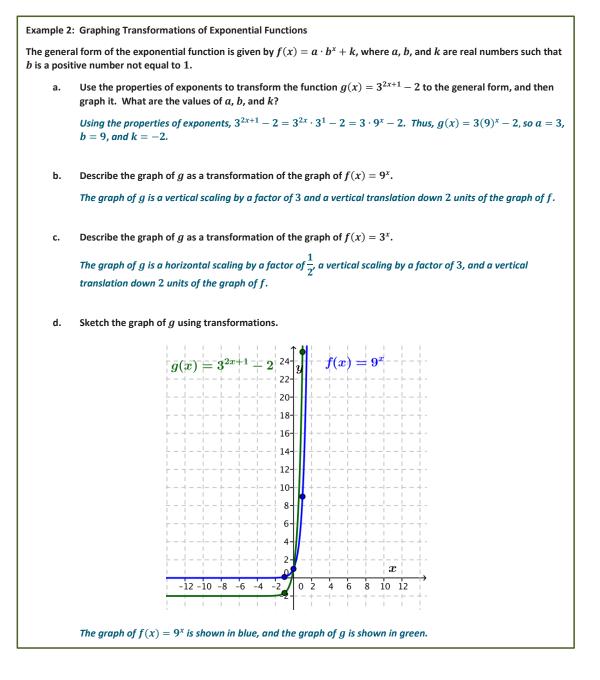
The common logarithm function is shown in blue, and the graph of g is shown in green. Notice the key points that students should include on their hand-drawn sketches.

0: Transformations of the Graphs of Logarithmic and Exponential Functions

-8 -10

Example 2 (4 minutes): Graphing Transformations of Exponential Functions

Introduce the general form of the exponential function, noting that we do not need a horizontal scaling or a horizontal translation since these can always be rewritten using the properties of exponents. Demonstrate, or let students work with a partner on part (a), and make sure students have correct work to refer to when they work on the Problem Set. Since earlier lessons applied transformations to graphing exponential functions, parts (b), (c), and (d) should move along rather quickly. Continue to reinforce your expectations for sketching graphs of functions using transformations.



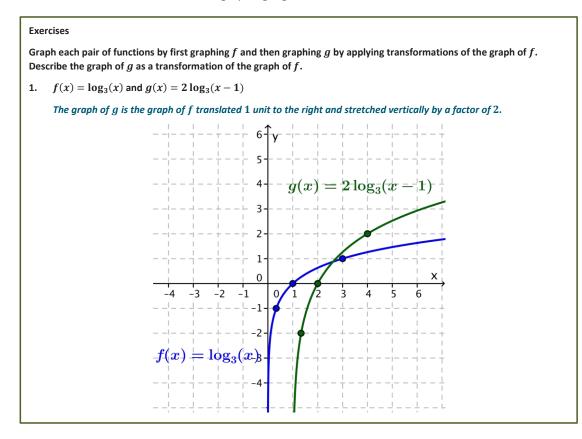
MP.7 & MP.8

Lesson 20:

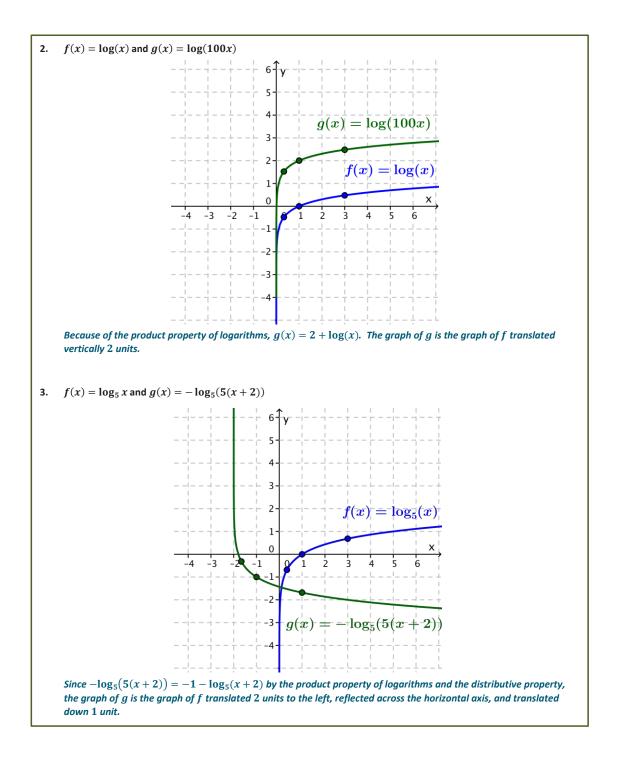
: Transformations of the Graphs of Logarithmic and Exponential Functions

Exercises (4 minutes)

Students can work on these exercises independently or with a partner. Monitor their work by circulating around the classroom and checking for accuracy. Encourage students to describe the graph of g as a transformation of the graph of f in more than one way and to justify their answer analytically. In particular, emphasize how rewriting the expression using the properties of logarithms can make sketching the graphs easier because a horizontal scaling is revealed to have the same effect as a vertical translation when graphing logarithm functions, and a vertical translation is easier to sketch.



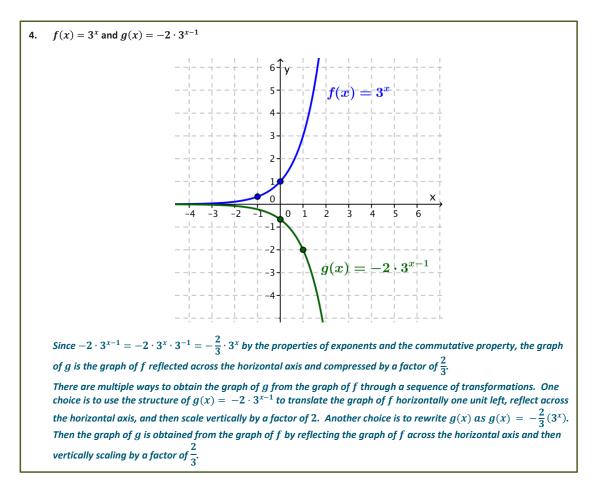
D: Transformations of the Graphs of Logarithmic and Exponential Functions



EUREKA MATH

Lesson 20:

D: Transformations of the Graphs of Logarithmic and Exponential Functions



After a few minutes, have different groups share how they saw the transformations and discuss when it is advantageous to rewrite an expression before graphing and when it is not. For example, it might be easier in Exercise 4 to simply translate the graph 1 unit to the right rather than scale it by a factor of $\frac{2}{3}$. Also, make sure students are including a sketch of the end behavior of the functions.

0: Transformations of the Graphs of Logarithmic and Exponential Functions

Closing (5 minutes)

Provide students with an opportunity to summarize their learning with a partner by responding to the questions below. Their summaries should provide you with additional evidence of their understanding of this lesson.

- How do you apply properties of logarithms or exponents to rewrite $f(x) = \log_2(5x)$ and $g(x) = 3^{x+2} + 2$ in general form?
 - Using the product properties: $\log_2(5x) = \log_2(5) + \log_2(x)$, so $f(x) = \log_2(5) + \log_2(x)$ in general form where $k = \log_2(5)$, a = 1, and h = 0 in the general form.
 - Using the product properties: $3^{x+2} = 3^x \cdot 3^2$, so $g(x) = 9 \cdot 3^x + 2$ in general form where a = 9 and k = 2.
- How do transformations help you to sketch quick and accurate graphs of functions?
 - Once you have a sketch of a basic logarithmic or exponential function, you can use transformations to quickly sketch the graph of a new logarithmic or exponential function.

A summary of the key points of this lesson is provided. Review them with the class before beginning the Exit Ticket.

Lesson Summary

GENERAL FORM OF A LOGARITHMIC FUNCTION: $f(x) = k + a \log_b(x - h)$ such that a, h, and k are real numbers, b is any positive number not equal to 1, and x - h > 0.

GENERAL FORM OF AN EXPONENTIAL FUNCTION: $f(x) = a \cdot b^x + k$ such that a and k are real numbers, and b is any positive number not equal to 1.

The properties of logarithms and exponents can be used to rewrite expressions for functions in equivalent forms that can then be graphed by applying transformations.

Exit Ticket (5 minutes)

D: Transformations of the Graphs of Logarithmic and Exponential Functions

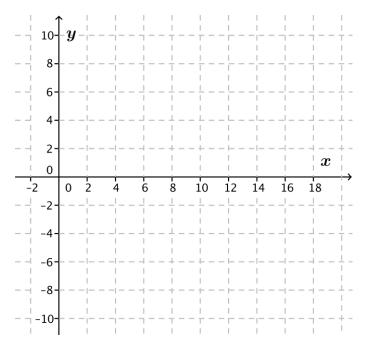
Name

Date

Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions

Exit Ticket

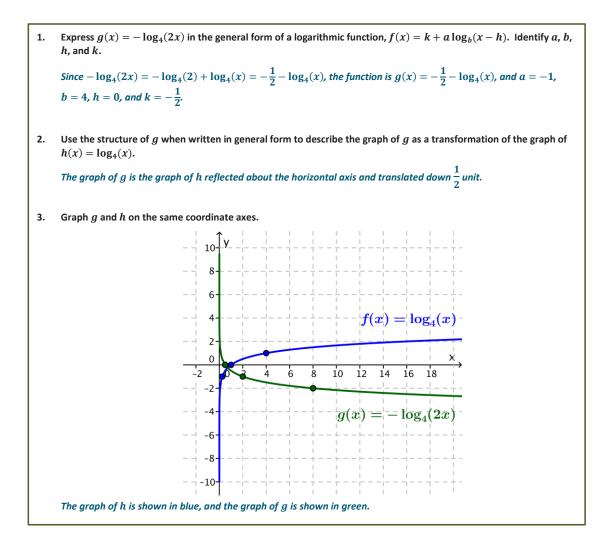
- 1. Express $g(x) = -\log_4(2x)$ in the general form of a logarithmic function, $f(x) = k + a \log_b(x h)$. Identify a, b, h, and k.
- 2. Use the structure of g when written in general form to describe the graph of g as a transformation of the graph of $h(x) = \log_4(x)$.
- 3. Graph g and h on the same coordinate axes.



Lesson 20:

10: Transformations of the Graphs of Logarithmic and Exponential Functions

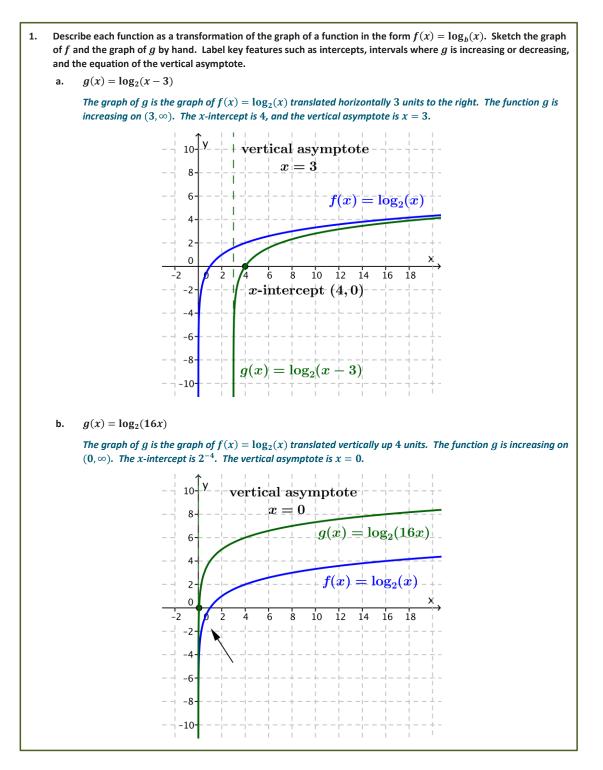
Exit Ticket Sample Solutions



D: Transformations of the Graphs of Logarithmic and Exponential Functions

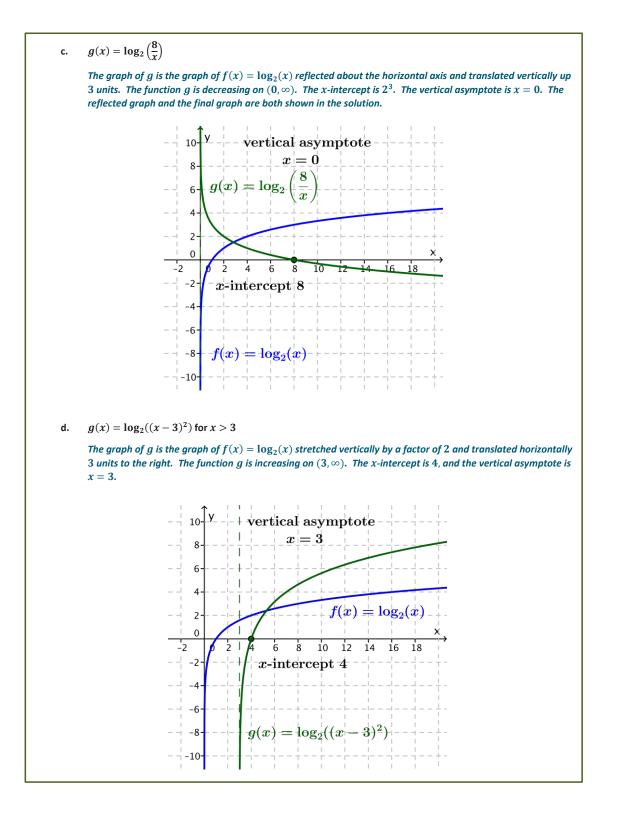
Problem Set Sample Solutions

Students should complete these problems without the use of a calculator.



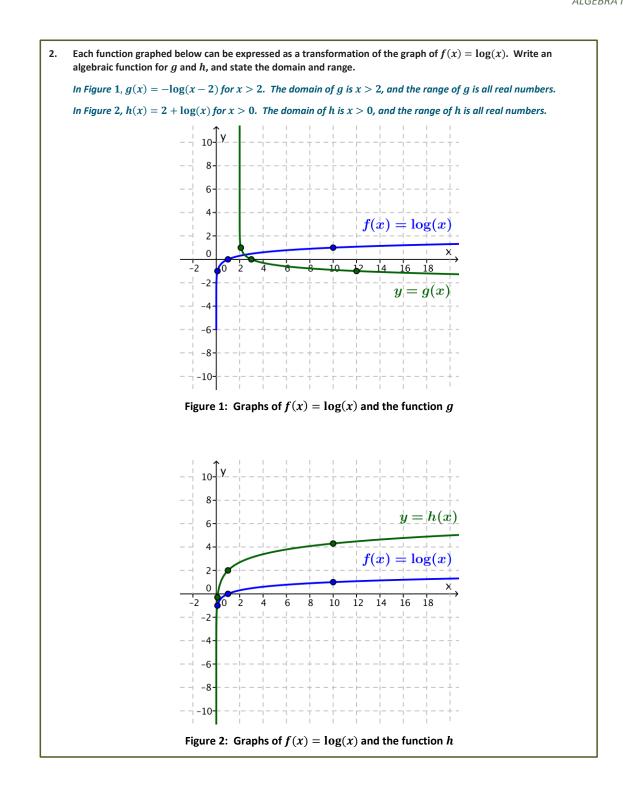
Lesson 20:

Transformations of the Graphs of Logarithmic and Exponential Functions



EUREKA MATH Lesson 20:

Transformations of the Graphs of Logarithmic and Exponential Functions

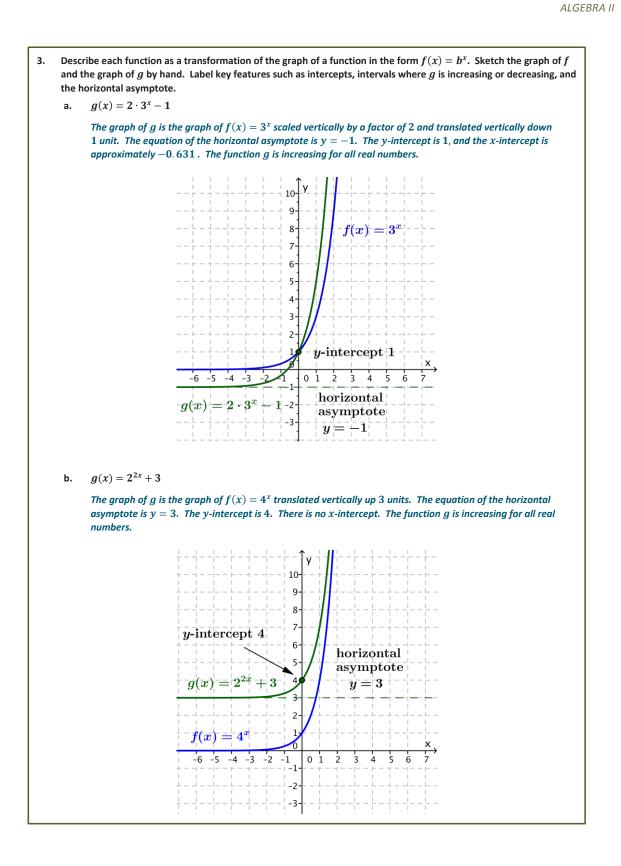


EUREKA MATH

Lesson 20:

Transformations of the Graphs of Logarithmic and Exponential Functions

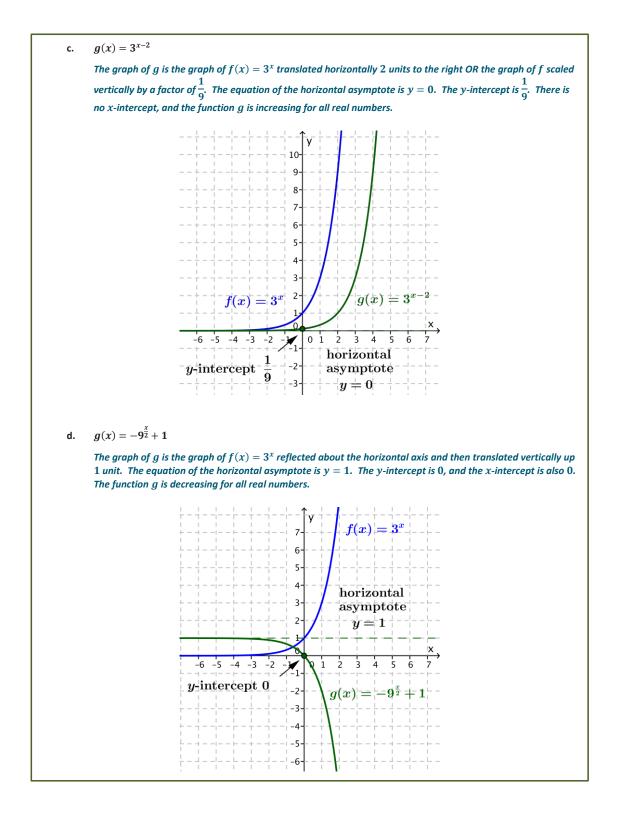
engage^{ny} 333



EUREKA MATH

Lesson 20:

Transformations of the Graphs of Logarithmic and Exponential Functions



EUREKA MATH

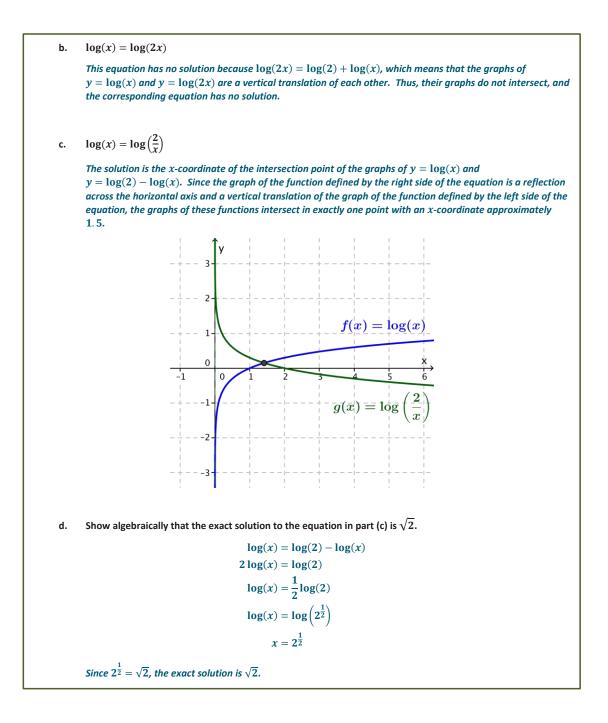
Lesson 20:

Transformations of the Graphs of Logarithmic and Exponential Functions

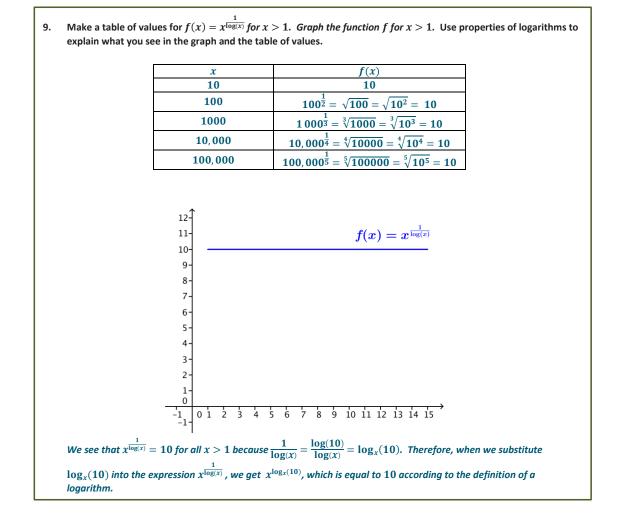
engage^{ny}

4. Using the function $f(x) = 2^x$, create a new function g whose graph is a series of transformations of the graph of f with the following characteristics: The function g is decreasing for all real numbers. The equation for the horizontal asymptote is y = 5. The y-intercept is 7. One possible solution is $g(x) = 2 \cdot 2^{-x} + 5$. 5. Using the function $f(x) = 2^x$, create a new function g whose graph is a series of transformations of the graph of f with the following characteristics: The function g is increasing for all real numbers. The equation for the horizontal asymptote is y = 5. The y-intercept is 4. One possible solution is $g(x) = -(2^{-x}) + 5$. Consider the function $g(x) = \left(\frac{1}{4}\right)^{x-3}$: 6. Write the function g as an exponential function with base 4. Describe the transformations that would take a. the graph of $f(x) = 4^x$ to the graph of g. $\left(\frac{1}{4}\right)^{x-3} = (4^{-1})^{x-3} = 4^{-x+3} = 4^3 \cdot 4^{-x}$ Thus, $g(x) = 64 \cdot 4^{-x}$. The graph of g is the graph of f reflected about the vertical axis and scaled vertically by a factor of 64. b. Write the function g as an exponential function with base 2. Describe two different series of transformations that would take the graph of $f(x) = 2^x$ to the graph of g. $\left(\frac{1}{4}\right)^{x-3} = (2^{-2})^{x-3} = 2^{-2(x-3)} = 2^{-2x+6} = 64 \cdot 2^{-2x}$ Thus, $g(x) = 64 \cdot 2^{-2x}$, or $g(x) = 2^{-2(x-3)}$. To obtain the graph of g from the graph of f, you can scale the graph horizontally by a factor of $\frac{1}{2}$, reflect the graph about the vertical axis, and scale it vertically by a factor of 64. Or, you can scale the graph horizontally by a factor of $\frac{1}{2}$, reflect the graph about the vertical axis, and translate the resulting graph horizontally 3 units to the right. 7. Explore the graphs of functions in the form $f(x) = \log(x^n)$ for n > 1. Explain how the graphs of these functions change as the values of *n* increase. Use a property of logarithms to support your reasoning. The graphs appear to be a vertical scaling of the common logarithm function by a factor of n. This is true because of the property of logarithms that states $log(x^n) = n log(x)$. 8. Use a graphical approach to solve each equation. If the equation has no solution, explain why. $\log(x) = \log(x - 2)$ This equation has no solution because the graphs of $y = \log(x)$ and $y = \log(x-2)$ are horizontal translations of each other. Thus, their graphs do not intersect, and the corresponding equation has no solution.

0: Transformations of the Graphs of Logarithmic and Exponential Functions



0: Transformations of the Graphs of Logarithmic and Exponential Functions



D: Transformations of the Graphs of Logarithmic and Exponential Functions

Lesson 21: The Graph of the Natural Logarithm Function

Student Outcomes

- Students understand that the change of base property allows us to write every logarithm function as a vertical scaling of a natural logarithm function.
- Students graph the natural logarithm function and understand its relationship to other base *b* logarithm functions. They apply transformations to sketch the graph of natural logarithm functions by hand.

Lesson Notes

The focus of this lesson is developing fluency with sketching graphs of the natural logarithm function by hand and understanding that because of the change of base property of logarithms, every logarithm function can be expressed as a vertical scaling of the natural logarithm function (or any other base logarithm we choose, for that matter). This helps to explain why calculators typically feature a common logarithm button and a natural logarithm button. Students may question why we care so much about natural logarithms in mathematics. The importance of the particular base *e* will become apparent when they study calculus and learn that $f(x) = e^x$ is the only nonzero function that is its own derivative. For this reason, the exponential functions base *e* arise naturally as solutions to many differential equations, and are thus used to model many population scenarios. Additionally, $\ln(x)$ is equal to the area under the reciprocal function $f(t) = \frac{1}{t}$ from 1 to *x*; that is, $\ln(x) = \int_{1}^{x} \frac{1}{t} dt$.

This lesson begins by challenging students to compare and contrast logarithm functions with different bases in a group exploration. Students complete a graphic organizer to help focus their learning at the end of the exploration. Encourage students to use technology during this exploration. The focus should be on observing the patterns and making generalizations (MP.7, MP.8). A quick set of exercises primes students to explain their observations using the change of base property of logarithms. Once we have established that this property guarantees that graphs of logarithmic functions of one base are a vertical scaling of a graph of a logarithmic function of any other base, we tie the lesson back to the natural logarithm function. The lesson closes with demonstrations and practice with graphing natural logarithm functions to build fluency with creating sketches by hand (**F-IF.B.4**).

Classwork

MP.1

Opening (3 minutes)

Ask students to predict how the graphs of logarithmic functions are alike and how they are different when we consider different bases. Post this question on the board, give students a minute or two to think about their responses, and then have them share with a partner. Take a few responses from the entire class, but do not provide any concrete answers at this point. Student responses and the quality of their conversations will help you gauge their understanding of graphs of logarithmic functions up to this point and help you decide how to support student learning during the rest of this lesson.

- How are the graphs of $f(x) = \log_2(x)$, $g(x) = \log_3(x)$, and $h(x) = \log(x)$ similar? How are they different?
 - They are always increasing for b > 1 and have one x-intercept at 1. As the base changes, they appear to increase more or less rapidly. They all have the same domain and range.

Exploratory Challenge (15 minutes)

Have students work in groups of 4–5. Each group will need the student materials for this lesson, chart paper or personal white boards, and markers, and each student or pair of students needs access to graphing technology such as a graphing calculator. Have each student select at least one base value from the following list:

 $b = \left\{\frac{1}{10}, \frac{1}{2}, 2, 5, 20, 100\right\}$. Using a graphing calculator or other graphing technology, students should independently explore how their selected base-*b* logarithm function's graph compares to the graph of the common logarithm function $f(x) = \log(x)$. Next, have them describe what they observed in writing and report it to their group members. As a group, students then categorize their findings based on the value of *b* and record their observations on chart paper. Have each group present their findings to the entire class. As you debrief this exploration as a whole class, focus on clarifying student language in their descriptions and encourage students to revise their written descriptions to further clarify what they wrote. Student work should be similar to the sample responses shown below.

Exploratory Challenge

C.

EUREKA

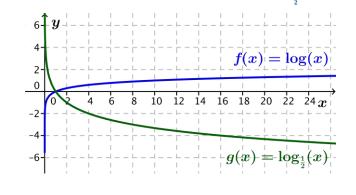
Your task is to compare graphs of base *b* logarithm functions to the graph of the common logarithm function $f(x) = \log(x)$ and summarize your results with your group. Recall that the base of the common logarithm function is 10. A graph of *f* is provided below.

a. Select at least one base value from this list: $\frac{1}{10}$, $\frac{1}{2}$, 2, 5, 20, 100. Write a function in the form $g(x) = \log_b(x)$ for your selected base value, b.

Students should use one of the numbers from the list to write their function. The sample solutions will use $g(x) = \log_{\pm}(x)$.

b. Graph the functions *f* and *g* in the same viewing window using a graphing calculator or other graphing application, and then add a sketch of the graph of *g* to the graph of *f* shown below.

The graph of $f(x) = \log(x)$ is shown in blue, and the graph of $g(x) = \log_{\frac{1}{2}}(x)$ is shown in green.



Describe how the graph of g for the base you selected compares to the graph of $f(x) = \log(x)$.

to be a vertical scaling of the common logarithm function by a factor less than 1.

The Graph of the Natural Logarithm Function

Answers will vary depending on the base selected. For example, when the base is 20, the graph of g appears

Scaffolding:

 For English language learners, the graphic organizer provides some scaffolding, but sentence frames may also help students respond to part (c) in this exploration. For example, "Compared to the graph of f,

the graph of my function was

OR

"My function's graph was a ______transformation of the graph of *f*."

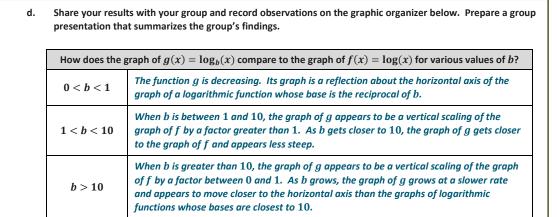
 For advanced learners, rather than provide the explicit steps listed in the Exploratory Challenge, present the problem on the board, give them technology and chart paper, and start them on the group presentation.

MP.8

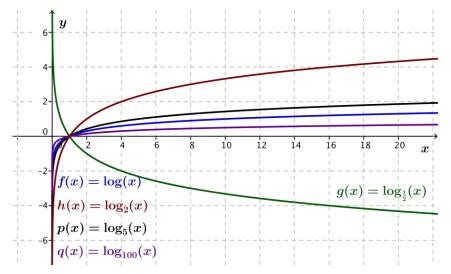
Lesson 21:

340

engage



The graphs of logarithmic functions with several of the bases listed is shown below.



As the groups work through this exploration, be sure to guide them to appropriate conclusions without explicitly telling them answers. After or during the group presentations, ask questions such as the ones listed below to clarify student understanding.

• Why are the functions decreasing when *b* is between 0 and 1?

MP.3 & MP.7

MP.8

- Consider $b = \frac{1}{2}$. Then, $y = \log_b(x) = \log_{\frac{1}{2}}(x)$, and $\left(\frac{1}{2}\right)^y = x$. If x > 1, then y < 0. As x increases, y becomes larger in magnitude while staying negative, so y decreases. Thus, the function is decreasing.
- The exponential function for bases between 0 and 1 is a decreasing function, so when we have a logarithmic function with these bases, the range values will also decrease as the domain values increase.

1: The Graph of the Natural Logarithm Function

341

engage

The graphs appear to be reflections of one another about the horizontal axis. The graphs of $y = b^x$ and $y = \left(\frac{1}{b}\right)^x$ are reflections about the vertical axis because $\left(\frac{1}{b}\right)^x = b^{-x}$. Thus, when we exchange the domain and range values to form the related logarithmic functions, they will also be reflections of one another but about the horizontal axis.

Lesson 21

ALGEBRA II

- Why do smaller bases b > 1 produce steeper graphs and larger bases produce flatter graphs?
 - Logarithmic functions with a smaller base grow at a faster rate, making the graph steeper. For example, $\log_2(64) = 6$, $\log_4(64) = 3$, and $\log_8(64) = 2$. The same input of 64 produces a smaller output as the size of the base increases.
- Where would the graph of $y = \ln(x)$ sit in relation to these graphs? How do you know?
 - The graph of $y = \ln(x)$ would be in between the two graphs of $y = \log_2(x)$ and $y = \log_5(x)$ because e is a number between 2 and 5.
- The graphs of these functions appear to be vertical scalings of each other. How could we prove that this is true?
 - We would have to show that we can rewrite each function as a constant multiple of another logarithmic function.

Check to make sure each student has recorded appropriate information in the graphic organizer in part (d) before moving on. Post the group presentations on the board for reference during the rest of this lesson.

Exercise 1 (5 minutes)

MP.3

MP.7

Announce that now we will explore how all these graphs are related using a property of logarithms. Students should be able to complete this exercise quickly. Some students may already start to understand why the graphs appeared the way they did in the Exploratory Challenge as they work through these exercises.

Exercise 1				
Use the change of base property to rewrite each logarithmic function in terms of the common logarithm function.				
Base b	Base 10 (Common logarithm)			
$g_1(x) = \log_{\frac{1}{4}}(x)$	$g_1(x) = \frac{\log(x)}{\log(\frac{1}{4})}$			
$g_2(x) = \log_{\frac{1}{2}}(x)$	$g_2(x) = \frac{\log(x)}{\log(\frac{1}{2})}$			
$g_3(x) = \log_2(x)$	$g_3(x) = \frac{\log(x)}{\log(2)}$			
$g_4(x) = \log_5(x)$	$g_4(x) = \frac{\log(x)}{\log(5)}$			
$g_5(x) = \log_{20}(x)$	$g_5(x) = \frac{\log(x)}{\log(20)}$			
$g_6(x) = \log_{100}(x)$	$g_6(x) = \frac{\log(x)}{\log(100)}$			

The Graph of the Natural Logarithm Function

Discussion (5 minutes)

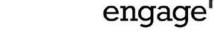
Lead a discussion to help students observe that each function in base 10 is divided by a constant (which is the same as multiplying by the reciprocal of that number). Have students explore the values of the constants using their calculators, and have them make sense of why the graphs appear the way they do compared to the graph of the common logarithm function. For example, $log(2) \approx 0.69$. When dividing by a number between 0 and 1, you get the same result as multiplying by its reciprocal, which is a number greater than 1. The values of $\log\left(\frac{1}{2}\right)$ and $\log\left(\frac{1}{4}\right)$ are negative, which explains why the graphs of functions g_1 and g_2 are vertical scalings and reflections of the graph of the common logarithm function. When the base is greater than 10, as is the case with functions g_5 and g_6 , we are dividing by a number greater than 1, which is the same as multiplying by a number between 0 and 1, which compresses the graph vertically.

- How do the functions from Exercise 1 that you wrote in base 10 compare to the function $f(x) = \log(x)$?
 - They are a constant multiple of the function f. For example, log(100) = 2, so the function $g_6(x) = \frac{\log(x)}{\log(100)}$ could also be written as $g(x) = \frac{1}{2}\log(x)$.
- Approximate the values of the constants in the functions from Exercise 1. How do those values help to explain why the graphs are a vertical stretch of the common logarithm function when the base is between 1 and 10, and a vertical compression when the base is greater than 10? Why are the functions decreasing when the base is between 0 and 1?
 - When the base is between 1 and 10, the common logarithms are between 0 and 1. Dividing by a number between 0 and 1 is the same as multiplying by a number larger than 1, which will scale the graph vertically by a factor greater than 1. For bases greater than 10, the common logarithm function is multiplied by a number between 0 and 1. The functions decrease when the base is between 0 and 1because the common logarithms of those numbers are less than 0.

Next, revisit the question posed earlier regarding the graph of $y = \ln(x)$, the natural logarithm function, as a way to transition into the last portion of this lesson.

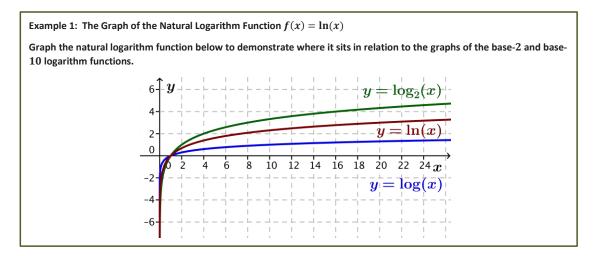
- Where would the graph of $y = \ln(x)$ sit in relation to these graphs? How do you know?
 - The graph of $y = \ln(x)$ would lie in between the graphs of $y = \log_2(x)$ and $y = \log_5(x)$ because e is a number between 2 and 5.

The Graph of the Natural Logarithm Function



Example 1 (5 minutes): The Graph of the Natural Logarithm Function $f(x) = \ln(x)$

The example that follows demonstrates how to sketch the graph of the natural logarithm function by hand and shows more precisely where it sits in relation to base-2 and base-10 logarithm functions.



The graphs are not labeled in the student file. You can question students about this to informally assess their understanding at this point.

- Which graph is $y = \log_2(x)$, and which one is $y = \log(x)$? How can you tell?
 - Since the base 2 is smaller, the logarithm function base 2 grows more quickly than the base-10 logarithm function, so the green graph is the graph of $y = \log_2(x)$. You can also verify which graph is which by identifying a few points and substituting them into the equations to see which is true. For example, the blue graph appears to contain the point (1, 10). Since $1 = \log(10)$, the blue graph represents the common logarithm function.

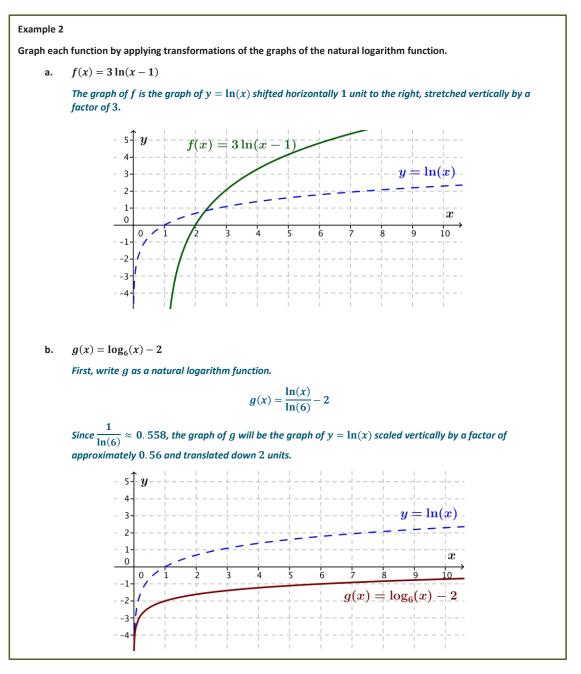
Remind students that $e \approx 2.718$. Create a table of values like the one shown below and then plot these points. Connect the points with a smooth curve. When students are sketching by hand in the next example, have them plot fewer points, perhaps where the *y*-values are integers only.

x	$f(x) = \ln(x)$	
$\frac{1}{e} \approx 0.369$	-1	
1	0	
$e^{0.5} \approx 1.649$	0.5	
$e^1 \approx 2.718$	1	
$e^{1.5} \approx 4.482$	1.5	
$e^2 \approx 7.389$	2	

: The Graph of the Natural Logarithm Function

Example 2 (5 minutes)

In this example, part (a) models how to sketch graphs by applying transformations. Then, show students in part (b) how to rewrite the function as a natural logarithm function, and sketch the graph by applying transformations of the graph of $f(x) = \ln(x)$. Model the transformations in stages. First, sketch the graph of $y = \ln(x)$; next, sketch a second graph applying the first transformation; finally, sketch a graph applying the last transformation to the second graph you made.



EUREKA MATH

Lesson 21: The Graph of the Natural Logarithm Function

Closing (2 minutes)

Have students summarize what they have learned in this lesson by revisiting the question from the Opening. Students should revise their initial responses and either discuss their answers with a partner or write a brief individual reflection. The responses should be similar to what is listed in the Lesson Summary.

- How are the graphs of logarithmic functions with different bases alike? How are they different?
 - They have the same x-intercept 1, and when the base is greater than 1, the functions are increasing. They all have the same domain and range. They are different because as the base changes, the steepness of the graph of the function changes. Logarithmic functions with larger bases grow at slower rates.
- How does the change of base property guarantee that every logarithmic function could be expressed in the form $f(x) = k + a \ln(x h)$?
 - The change of base property guarantees that we can convert any logarithmic expression in base b to a natural logarithmic expression where the denominator of the expression is constant.

Exit Ticket (5 minutes)

1: The Graph of the Natural Logarithm Function

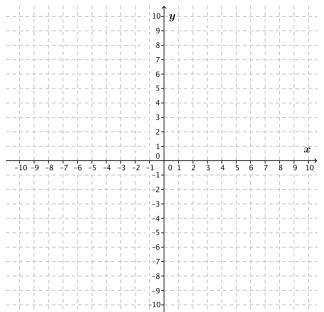
Name

Date _____

Lesson 21: The Graph of the Natural Logarithm Function

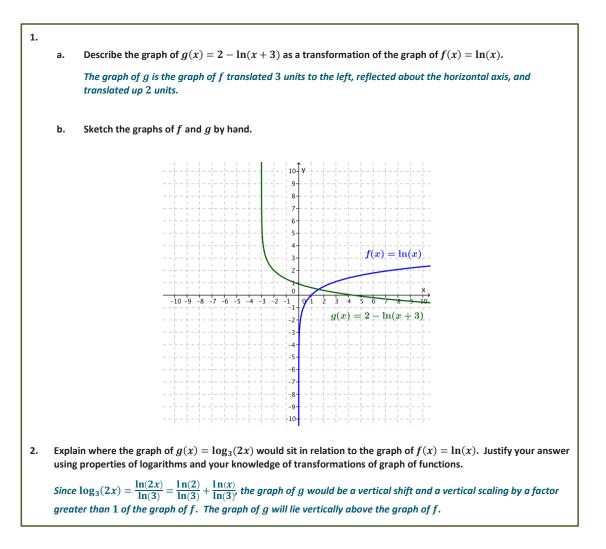
Exit Ticket

- 1.
- a. Describe the graph of $g(x) = 2 \ln(x + 3)$ as a transformation of the graph of $f(x) = \ln(x)$.
- b. Sketch the graphs of f and g by hand.



2. Explain where the graph of $g(x) = \log_3(2x)$ would sit in relation to the graph of $f(x) = \ln(x)$. Justify your answer using properties of logarithms and your knowledge of transformations of graph of functions.

Exit Ticket Sample Solutions



Problem Set Sample Solutions

1. Rewrite each logarithmic function as a natural logarithm function.
a.
$$f(x) = \log_5(x)$$

 $f(x) = \frac{\ln(x)}{\ln(5)}$
b. $f(x) = \log_2(x - 3)$
 $f(x) = \frac{\ln(x - 3)}{\ln(2)}$

EUREKA MATH

Lesson 21: The Graph of the Natural Logarithm Function

348

engage^{ny}

c.
$$f(x) = \log_2\left(\frac{x}{3}\right)$$
$$f(x) = \frac{\ln(x)}{\ln(2)} - \frac{\ln(3)}{\ln(2)}$$

d.
$$f(x) = 3 - \log(x)$$

 $f(x) = 3 - \frac{\ln(x)}{\ln(10)}$

e.
$$f(x) = 2\log(x+3)$$

 $f(x) = \frac{2}{\ln(10)}\ln(x+3)$

f.
$$f(x) = \log_5(25x)$$

 $f(x) = 2 + \frac{\ln(x)}{\ln(5)}$

2. Describe each function as a transformation of the natural logarithm function $f(x) = \ln(x)$.

a. $g(x) = 3\ln(x+2)$ The graph of g is the graph of f translated 2 units to the left and scaled vertically by a factor of 3.

b. $g(x) = -\ln(1-x)$

The graph of g is the graph of f translated 1 unit to the right, reflected about x = 1, and then reflected about the horizontal axis.

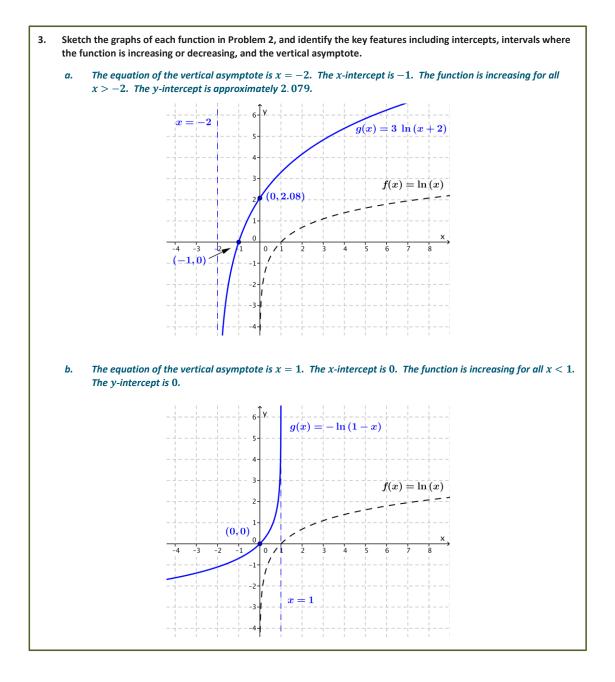
c. $g(x) = 2 + \ln(e^2 x)$

The graph of g is the graph of f translated up 4 units.

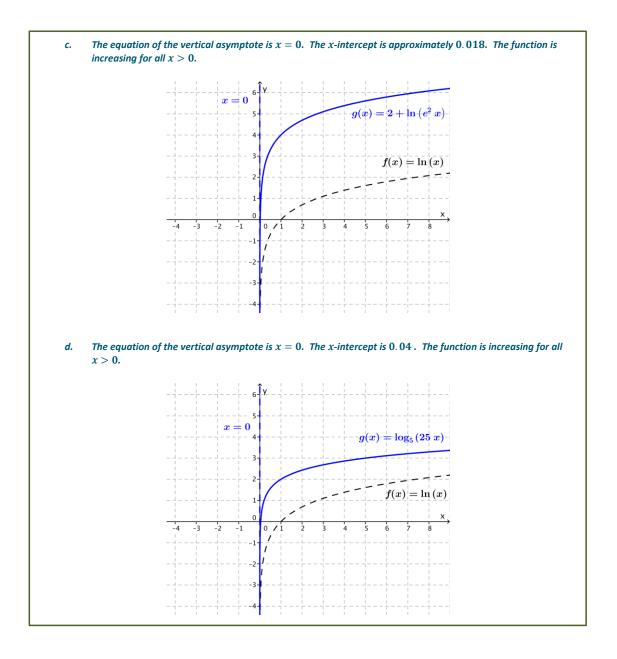
d. $g(x) = \log_5(25x)$

The graph of g is the graph of f translated up 2 units and scaled vertically by a factor of $\frac{1}{\ln(5)}$.

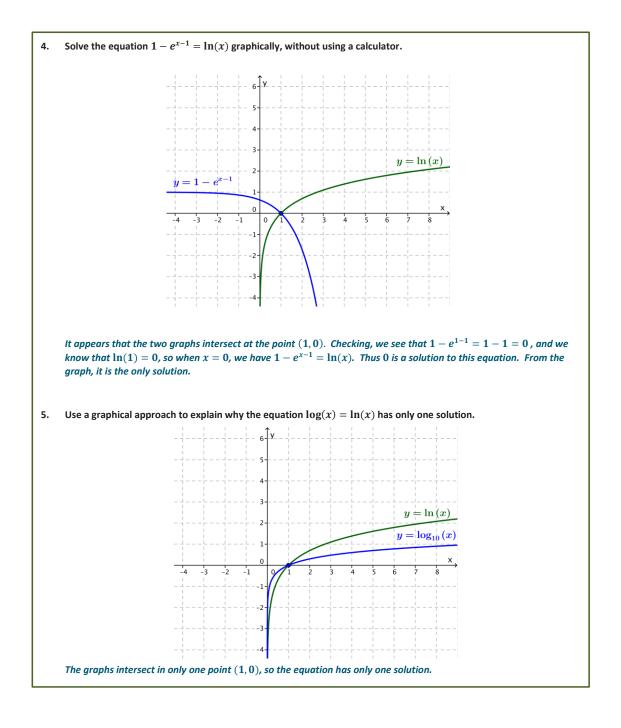
1: The Graph of the Natural Logarithm Function



The Graph of the Natural Logarithm Function



1: The Graph of the Natural Logarithm Function



The Graph of the Natural Logarithm Function

6.

MP.3

ALGEBRA II

M3

Lesson 21

 $\frac{\ln(x)}{\ln(10)} = \ln(x)$ $\left(\frac{\ln(x)}{\ln(10)}\right)\frac{1}{\ln(x)} = (\ln(x))\frac{1}{\ln(x)}$ $\frac{1}{\ln(10)} = 1$ Juliet's approach works as long as $\ln(x) \neq 0$, which occurs when x = 1. The solution to this equation is 1. When you divide both sides of an equation by an algebraic expression, you need to impose restrictions so that you are not dividing by 0. In this case, Juliet divided by $\ln(x)$, which is not valid if x = 1. This division caused the equation in the third and final lines of her solution to have no solution; however, the original equation is true when x is 1. Consider the function f given by $f(x) = \log_x(100)$ for x > 0 and $x \neq 1$. 7. What are the values of f(100), f(10), and $f(\sqrt{10})$? a. $f(100) = 1, f(10) = 2, f(\sqrt{10}) = 4$ Why is the value 1 excluded from the domain of this function? b. The value 1 is excluded from the domain because 1 is not a base of an exponential function since it would produce the graph of a constant function. Since logarithmic functions by definition are related to exponential functions, we cannot have a logarithm with base 1. Find a value x so that f(x) = 0.5. c. $\log_x(100) = 0.5$ $x^{0.5} = 100$ x = 10,000The value of x that satisfies this equation is 10,000. d. Find a value w so that f(w) = -1. The value of w that satisfies this equation is $\frac{1}{100}$ Sketch a graph of $y = \log_x(100)$ for e. x > 0 and $x \neq 1$. $f(x) \models \log_x(100)$ -2 -1 0 x = 1EUREKA Lesson 21: The Graph of the Natural Logarithm Function матн This work is licensed under a

Juliet tried to solve this equation as shown below using the change of base property and concluded there is no

 $\log(x) = \ln(x)$

solution because $ln(10) \neq 1$. Construct an argument to support or refute her reasoning.

engage^{ny}

Student Outcomes

- Students analyze data and real-world situations and find a function to use as a model.
- Students study properties of linear, quadratic, sinusoidal, and exponential functions.

Lesson Notes

When modeling authentic data, a mathematician or scientist must apply knowledge of conditions under which the data were gathered before fitting a function to the data. This lesson addresses focus standards **F-BF.A.1a** and **F-LE.A.2**, which ask students to determine an explicit expression for a function from a real-world context. Additionally, the entire lesson focuses on MP.4, as students use and analyze mathematical models for a variety of real-world situations. Students have already studied linear, quadratic, sinusoidal, and exponential functions, so the principal question being asked in this lesson is how to use what we know about the context to choose an appropriate function to model the data. We begin by fitting a curve to existing data points for which the data taken out of context do not clearly suggest the model. We then begin choosing a function type to model various scenarios. This is primarily a summative lesson that begins with a review of properties of linear, polynomial, exponential, and sinusoidal functions.

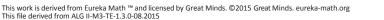
Classwork

Opening Exercise (8 minutes)

In this example, students are given points to plot and a real-world context. The point of this exercise is that either a quadratic model or a sinusoidal model can fit the data, but the real-world context is necessary to determine how to appropriately model the data. Encourage students to use calculators or another graphing utility to produce graphs of the functions in this exercise and to then copy the graph to the axes provided on the student pages.

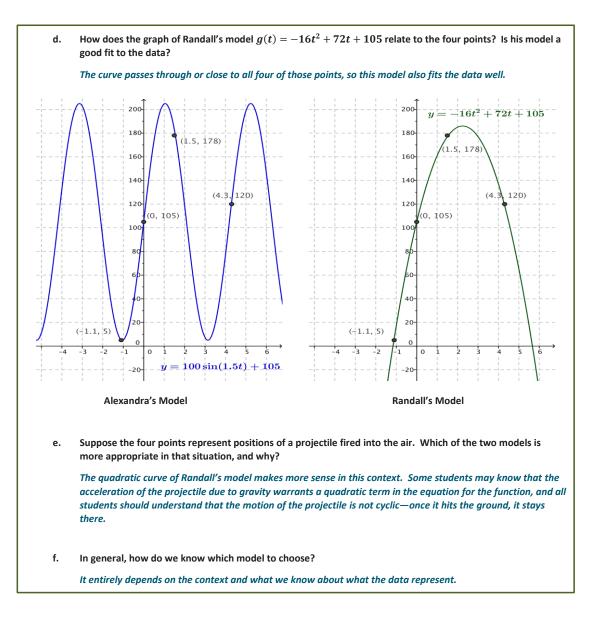
Opening E	xercise	Scaffolding:
a. b.	You are working on a team analyzing the following data gathered by your colleagues: (-1.1,5), (0,105), (1.5,178), (4.3,120). Your coworker Alexandra says that the model you should use to fit the data is $k(t) = 100 \cdot \sin(1.5t) + 105.$ Sketch Alexandra's model on the axes at left on the next page. How does the graph of Alexandra's model $k(t) = 100 \cdot \sin(1.5t) + 105$ relate to the four points? Is her model a good fit to this data? The curve passes through or close to all four of those points, so this model fits the data well.	Students who struggle with sketching the sinusoidal curve may need to be reminded that its zeros are at $\frac{2\pi n}{3}$ for real n . Those who struggle with sketching the parabola may need the hint that it has vertex (2.25,186) and passes through (0, 105).
c.	Another teammate Randall says that the model you should use to fit the data is $g(t)=-16t^2+72t+105.$ Sketch Randall's model on the axes at right on the next page.	

Lesson 22: Choosing a Model



354

engage^{ny}



Discussion (8 minutes)

- As the previous exercise showed, just knowing the coordinates of the data points does not tell us which type of function to use to model them. We need to know something about the context in which the data is gathered before we can decide what type of function to use as a model.
- We focus on linear, quadratic, sinusoidal, and exponential models in this lesson.
- Some things we need to think about: What is the end behavior of this type of function? How does the function change? If the input value (x or t) increases by 1 unit, what happens to the output value (y)? Is the function increasing or decreasing, or does it do both? Are there any relative maximum or minimum values? What is the range of the function?

Lesson 22: Choosing a Model

- What are the characteristics of a nonconstant linear function? (Allow students to suggest characteristics, but be sure that the traits listed below have been mentioned before moving on to quadratic models.)
 - If x increases by 1, then y changes by a fixed amount.
 - The function is always increasing or always decreasing at the same rate. This rate is the slope of the line when the function is graphed.
 - There is no maximum and no minimum value of the function.
 - The range is all real numbers.
 - ^a The end behavior is that the function increases to ∞ in one direction and decreases to $-\infty$ in the other direction.
- What are the characteristics of a quadratic function?
 - The second differences of the function are constant, meaning that if *x* increases by 1, then *y* increases linearly with *x*.
 - The function increases and decreases, changing direction one time.
 - Denote the setting of the setting of
 - The range is either $(-\infty, a)$ or (a, ∞) for some real number a.
 - The end behavior is that either the function increases to ∞ in both directions or the function decreases to $-\infty$ in both directions.
- What are the characteristics of a sinusoidal function?
 - ^D The function is periodic; the function values repeat over fixed intervals.
 - There is one relative maximum value of the function and one relative minimum value of the function. The function attains these values periodically, alternating between the maximum and minimum value.
 - The range of the function is [a, b], for some real numbers a < b.
 - ^a The end behavior of a sinusoidal function is that it bounces between the relative maximum and relative minimum values as $x \to \infty$ and as $x \to -\infty$.
- What are the characteristics of an exponential function?
 - The function increases (or decreases) at a rate proportional to the current value of the function.
 - ^a The function is either always increasing or always decreasing.
 - Either the function values approach a constant as x → -∞, and the function values approach ±∞ as x → ∞, or the function values approach ±∞ as x → -∞, and the function values approach a constant as x → -∞. (The function flattens off in one direction and approaches either ∞ or -∞ in the other direction.)
- What are the clues in the context of a particular situation that suggest the use of a particular type of function as a model?
 - If we expect from the context that each new term in the sequence of data is a constant added to the previous term, then we try a linear model.
 - If we expect from the context that each new term in the sequence of data is a constant multiple of the previous term, then we try an exponential model.
- Scaffolding:

Have students record this information about when to use each type of function in a chart or graphic organizer.

- ^a If we expect from the context that the second differences of the sequence are constant (meaning that the rate of change between terms either grows or shrinks linearly), then we try a quadratic model.
- ^a If we expect from the context that the sequence of terms is periodic, then we try a sinusoidal model.

Lesson 22: Choosing a Model

Exercise 1 (6 minutes)

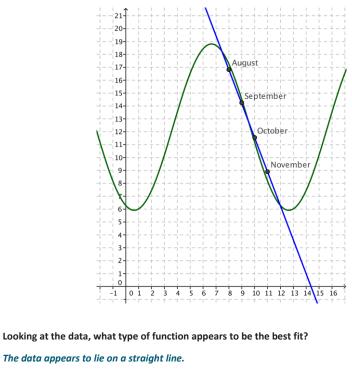
This exercise, like the Opening Exercise, provides students with an ambiguous set of data for which it is necessary to understand the context before we can select a model. After students have completed this exercise, go through students' responses as a class to be sure that all students are aware of the ambiguity before setting them to work on the rest of the exercises. Students should work on this exercise in pairs or small groups.

Exercises

1. The table below contains the number of daylight hours in Oslo, Norway, on the specified dates.

Date	Hours and Minutes	Hours
August 1	16:56	16.93
September 1	14:15	14.25
October 1	11:33	11.55
November 1	8:50	8.83

a. Plot the data on the grid provided and decide how to best represent it.



c. Looking at the context in which the data was gathered, what type of function should be used to model the data?

Since daylight hours increase and decrease with the season, being shortest in winter and longest in summer and repeating every 12 months, a linear model is not appropriate. We should model this data with a periodic function.

b.

Lesson 22: Choosing a Model

Tell advanced students that the maximum amount of daylight in Oslo is 18.83 hours on June 15, and challenge them to find an appropriate sinusoidal function to model the data.

d. Do you have enough information to find a model that is appropriate for this data? Either find a model or explain what other information you would need to do so.

We cannot find a complete model for this scenario because we do not know the maximum and minimum number of daylight hours in Oslo. We do know that the maximum is less than 24 hours and the minimum is more than 0 hours. We could find a very rough model using a sinusoidal function, but we do not know the necessary amplitude. (The maximum number of daylight hours in Oslo is 18.83 hours and occurs in mid-June. With this information, the points can be modeled by the function $d(t) = -6.45 \cos\left(\frac{\pi}{6}(t-0.65)\right) + 12.36$, as shown in green.)

Exercises 2-6 (12 minutes)

In these exercises, students are asked to determine which type of function should be used to model the given scenario. In some cases, students are given enough information to actually produce a model, and they are expected to do so, and in other cases the students can only specify the type of function that should be used. It is up to them to determine whether or not they have all of the needed information. Students should work on these exercises in pairs or small groups.

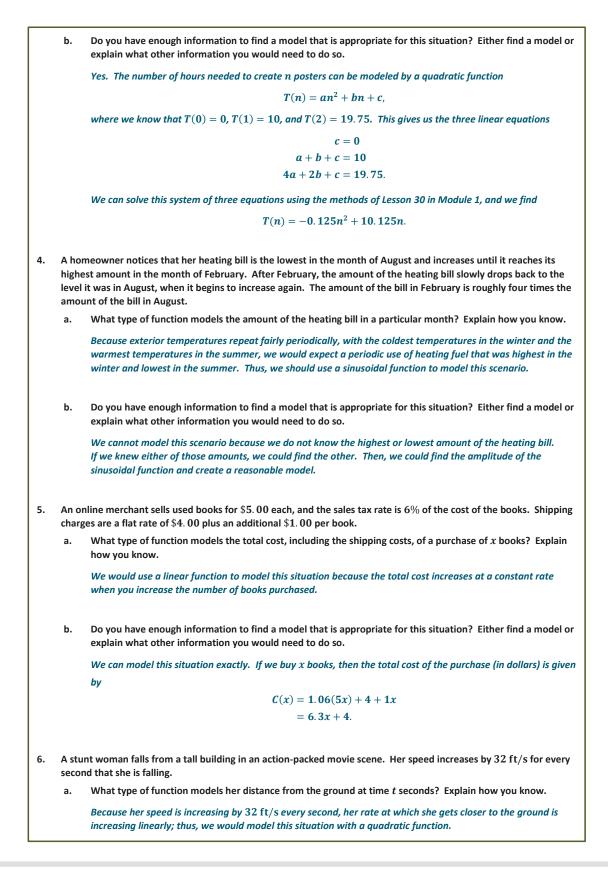
2.	The goal of the U.S. Centers for Disease Control and Prevention (CDC) is to protect public health and safety through the control and prevention of disease, injury, and disability. Suppose that 45 people have been diagnosed with a new strain of the flu virus and that scientists estimate that each person with the virus will infect 5 people every day						
	with a.	 with the flu. a. What type of function should the scientists at the CDC use to model the initial spread of this strain of flu to try to prevent an epidemic? Explain how you know. 					
		Because each person infects 5 people every day, the number of infected people is multipl each day. This would be best modeled by an exponential function, at least at the beginni					
	b. Do you have enough information to find a model that is appropriate for this situation? Either find a model explain what other information you would need to do so.						
		Yes. We know the initial number of infected people is 45 , and we know that the number multiplied by 5 each day. A model for the number of infected people on day t would be l					
3.	10 h	rtist is designing posters for a new advertising campaign. The first poster takes ours to design, but each subsequent poster takes roughly 15 minutes less time than the ious one as he gets more practice.	Scaffolding: Students may need t				
	а.	What type of function models the amount of time needed to create n posters, for $n \leq 20$? Explain how you know.	reminded of the me finding the coefficier				
		Since the time difference between posters is decreasing linearly, we should model this	quadratic polynomia				

Students may need to be reminded of the methods for finding the coefficients of a quadratic polynomial by solving a linear system as done in Module 1 Lesson 30.

scenario using a quadratic function.

Lesson 22 M3

ALGEBRA II



Lesson 22: Choosing a Model

b. Do you have enough information to find a model that is appropriate for this situation? Either find a model or explain what other information you would need to do so.
 We cannot create a model for this situation because we do not know the height of the building, so we do not know how far she will fall.

Discussion (4 minutes)

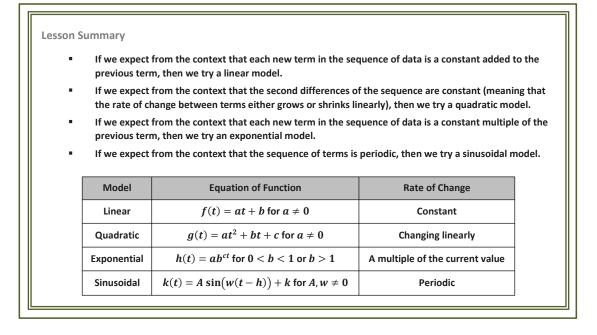
Either call on students or ask for volunteers to present their models for the scenarios in Exercises 2–6.

Closing (6 minutes)

Hold a discussion with the entire class in which students provide responses to the following questions.

- In this lesson, we have looked at four kinds of mathematical models: linear, quadratic, exponential, and sinusoidal. How is a linear model different from a quadratic model?
 - Responses will vary. Sample responses include: A linear model has a constant rate of change. It has no maximum or minimum. The equation for a quadratic model has one or more squared terms. Its graph is a parabola, and it has a maximum or minimum.
- How is a quadratic model different from an exponential model?
 - A quadratic model has a maximum or minimum, whereas an exponential model is unbounded.
 A quantity increasing exponentially eventually exceeds a quantity increasing quadratically.
- How is an exponential model different from a linear model?
 - As x changes by 1 in a linear model, the y-value changes by a fixed amount, but as x changes by 1 in an exponential model, the y-value changes by a multiple of x. The range of a linear function (that is not constant) is all real numbers, and the range of an exponential function is either $(-\infty, a)$ or (a, ∞) for some real number a.
- How is a quadratic model different from a sinusoidal model?
 - A quadratic model has one relative maximum or minimum point and does not repeat, whereas a sinusoidal model has an infinite number of relative maximum and minimum points that repeat periodically.
- How is a sinusoidal model different from an exponential model?
 - □ A sinusoidal model is bounded and cyclic, whereas an exponential model either goes to $\pm \infty$ or to a constant value as $x \to \infty$. A sinusoidal model changes in a periodic fashion, but an exponential model changes at a rate proportional to the current value of the function.

The four models are summarized in the table below, which can be reproduced and posted in the classroom.



Exit Ticket (5 minutes)

engage^{ny}

Name

Date _____

Lesson 22: Choosing a Model

Exit Ticket

The amount of caffeine in a patient's bloodstream decreases by half every 3.5 hours. A latte contains 150 mg of caffeine, which is absorbed into the bloodstream almost immediately.

a. What type of function models the caffeine level in the patient's bloodstream at time *t* hours after drinking the latte? Explain how you know.

b. Do you have enough information to find a model that is appropriate for this situation? Either find a model or explain what other information you would need to do so.

engage^{ny}

Exit Ticket Sample Solutions

The amount of caffeine in a patient's bloodstream decreases by half every 3.5 hours. A latte contains 150 mg of caffeine, which is absorbed into the bloodstream almost immediately.

a. What type of function models the caffeine level in the patient's bloodstream at time *t* hours after drinking the latte? Explain how you know.

Because the amount of caffeine decreases by half of the current amount in the bloodstream over a fixed time period, we would model this scenario by a decreasing exponential function.

b. Do you have enough information to find a model that is appropriate for this situation? Either find a model or explain what other information you would need to do so.

Assuming that the latte was the only source of caffeine for this patient, we can model the amount of caffeine in the bloodstream (in mg) at time t (in hours) by

 $\mathcal{C}(t)=150\left(\frac{1}{2}\right)^{\frac{t}{3.5}}.$

Problem Set Sample Solutions

1.

A new car depreciates at a rate of about 20% per year, meaning that its resale value decreases by roughly 20% each year. After hearing this, Brett said that if you buy a new car this year, then after 5 years the car has a resale value of 0.00. Is his reasoning correct? Explain how you know.

Brett is not correct. If the car loses 20% of its value each year, then it retains 80% of its resale value each year. In that case, the proper model to use is an exponential function,

 $V(t) = P(0.80)^t,$

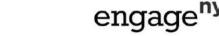
where P is the original price paid for the car when it was new, t is the number of years the car has been owned, and V(t) is the resale value of the car in year t. Then, when t = 5, the value of the car is $V(5) = P(0.80)^5 \approx 0.33P$; so, after 5 years, the car is worth roughly 33% of its original price.

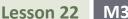
2. Alexei just moved to Seattle, and he keeps track of the average rainfall for a few months to see if the city deserves its reputation as the rainiest city in the United States.

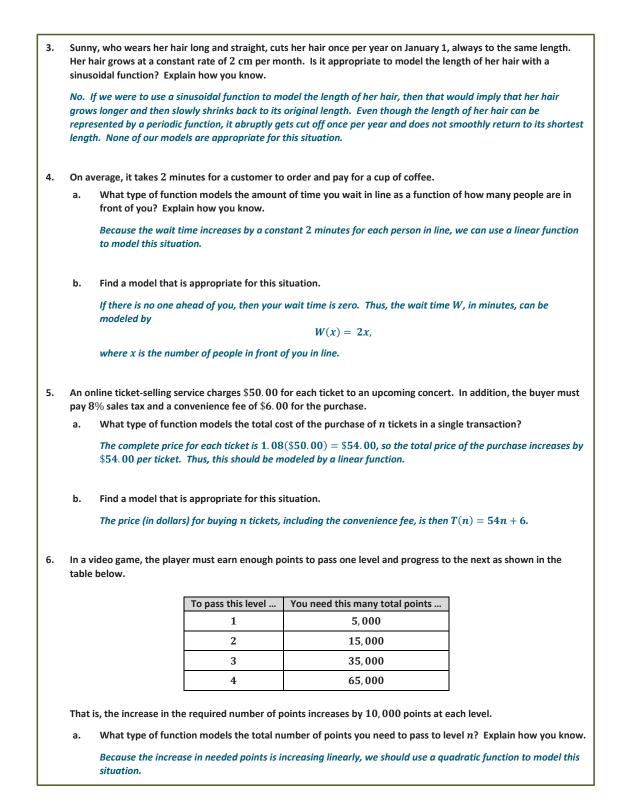
Month	Average Rainfall		
July	0.93 in.		
September	1.61 in.		
October	3.24 in.		
December	6.06 in.		

What type of function should Alexei use to model the average rainfall in month t?

Although the data appears to be exponential when plotted, an exponential model does not make sense for a seasonal phenomenon like rainfall. Alexei should use a sinusoidal function to model this data.







engage^{ny}

b. Find a model that is appropriate for this situation. The amount of points needed to pass level n can be modeled by a quadratic function $P(n) = an^2 + bn + c,$ where we know that P(1) = 5000, P(2) = 15000, and P(3) = 35000. This gives us the three linear equations a + b + c = 50004a + 2b + c = 150009a + 3b + c = 35000. We can solve this system of three equations using the methods of Lesson 30 in Module 1, and we find $P(n) = 5000n^2 - 5000n + 5000.$ The southern white rhinoceros reproduces roughly once every 3 years, giving birth to one calf each time. Suppose 7. that a nature preserve houses 100 white rhinoceroses, 50 of which are female. Assume that half of the calves born are female and that females can reproduce as soon as they are 1 year old. What type of function should be used to model the population of female white rhinoceroses in the preserve? a. Because all female rhinoceroses give birth every 3 years, and half of those calves are assumed to be female, the population of female rhinoceroses increases by $\frac{1}{6}$ every year. Thus, we should use an exponential function to model the population of female southern white rhinoceroses. Assuming that there is no death in the rhinoceros population, find a function to model the population of b. female white rhinoceroses in the preserve. Since $1 + \frac{1}{4} \approx 1.17$ and the initial population is 50 female southern white rhinoceroses, we can model this by $R_1(t) = 50(1.17)^t$. Realistically, not all of the rhinoceroses survive each year, so we assume a 5% death rate of all rhinoceroses. c. Now what type of function should be used to model the population of female white rhinoceroses in the preserve? We should still use an exponential function, but the growth rate needs to be altered to take the death rate into account. Find a function to model the population of female white rhinoceroses in the preserve, taking into account the d. births of new calves and the 5% death rate. Since 5% of the rhinoceroses die each year, that means that 95% of them survive. The new growth rate is then $0.95(1.17) \approx 1.11$. The new model would be $R_2(t) = 50(1.11)^t$.

365

engage^{ny}

Student Outcomes

- Students gather experimental data and determine which type of function is best to model the data.
- Students use properties of exponents to interpret expressions for exponential functions.

Lesson Notes

In the main activity in this lesson, students work in pairs to gather their own data, plot it (MP.6), and apply the methods of Lesson 22 to decide which type of data to use in modeling the data (MP.4, MP.7). Students should use calculators (or other technological tools) to fit the data with an exponential function (MP.5). Since each group of students generates its own set of data, each group finds different functions to model the data, but all of those functions should be in the form $f(t) = a(b^t)$, where $a \approx 1$ and $b \approx 1.5$. Take time to discuss why the functions differ between groups and yet are closely related due to probability. If time permits, at the end of the activity average each group's values of the constants a and b; the averages should be very close to 1 and 1.5, respectively (**F-LE.B.5**).

In the Problem Set, students investigate the amount of time for quantities to double, triple, or increase by a factor of 10 using these functions and others like them. For example, students rewrite functions $f(t) = a(b^t)$ in an equivalent form $f(t) = a(2^{\log_2(b)t})$ and interpret the exponent (**F-IF.C.8b**).

Materials

Each team of two students gather data using the following materials:

- At least 50 small, flippable objects marked differently on the two sides. One inexpensive source for these objects would be dried beans, spray painted on one side and left unpainted on the other. Buttons or coins would also work. Throughout this lesson, these objects are referred to as beans.
- Two paper cups: one to hold the beans and the other to shake up and dump out the beans onto the paper plate.
- A paper plate (to keep the beans from ending up all over the floor).
- A calculator capable of plotting data and performing exponential regression.

Classwork

Opening (3 minutes)

Divide the class into groups of 2–3 students. Smaller groups are better for this exercise, so have students work in pairs if possible. Before distributing the needed materials, model the process for gathering data for two trials. Then, provide each team with a cup containing at least 50 beans, an empty cup, a paper plate, and a calculator.

Scaffolding:

If students are collectively struggling with the concepts of exponential growth and modeling, consider extending this to a 2-day lesson. Devote the entire first day to Exercise 1 on exponential growth, and the second day to Exercise 2 on exponential decay.

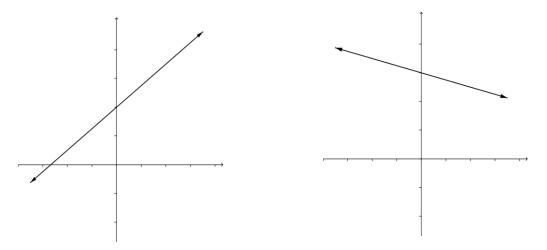
Lesson 23: Bean Counting

.

- In this lesson, we gather some data and then decide which type of function to use to model them. In the previous lesson, we studied different types of functions we could use to model data in different situations. What were those types of functions?
 - Linear, quadratic, sinusoidal, and exponential functions
 - Suppose you are gathering data from an experiment, measuring a quantity on evenly spaced time intervals. How can you recognize from the context that data should be modeled by a linear function?

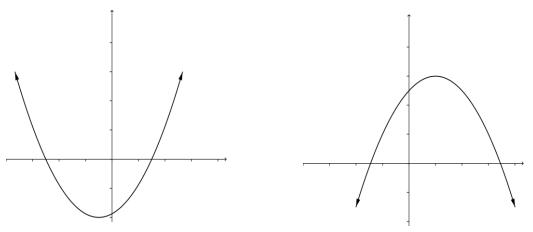
Accompany the discussion of different model types with visuals showing graphs of each type.

• If we expect the data values to increase (or decrease) at an even rate, then the data points should roughly lie on a line.



- How do you recognize that data should be modeled by a quadratic function?
 - If we expect the distance between data values to increase or decrease at a constant rate, then the data points should roughly lie on a parabola.

(cc) BY-NC-SA



Lesson 23: Bean Counting

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

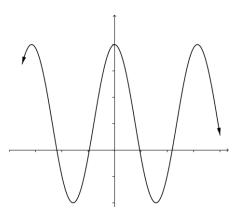
370

M3

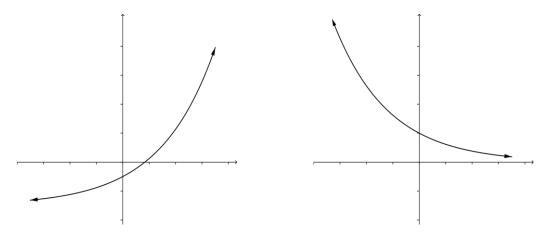
ALGEBRA II

Lesson 23

- How do you recognize that data should be modeled by a sinusoidal function?
 - If we expect the data values to repeat periodically due to a repeating phenomenon, then the data points should roughly lie on a sinusoidal curve.



- How do you recognize that data should be modeled by an exponential function?
 - If we expect the data values to increase (or decrease) proportionally to the current quantity, then the data points should roughly lie on an exponential curve.



- To gather data, we do the following: Start with one bean in one cup, and keep the other beans in the spare cup. Dump the single bean onto the paper plate, and record in the table if it lands marked-side up. If it lands marked-side up, then add another bean to the cup. This is the first trial.
- You now have either one or two beans in your cup. Shake the cup gently, then dump the beans onto the plate and record how many land marked-side up. Either 0, 1, or 2 beans should land marked-side up. Add that number of beans to your cup. This is the second trial.
- Repeat this process until you either have done 10 trials or have run out of beans in the spare cup.
- After you have gathered your data, plot the data on the coordinate grid provided. Plot the trial number on the horizontal axis and the number of beans in the cup at the start of the trial on the vertical axis.

engage

Mathematical Modeling Exercise 1 (15 minutes)

Circulate around the room while students gather data for this exercise to ensure that they all understand the process for flipping the beans, adding new beans to the cup, and recording data.

Mathematical Modeling Exercises

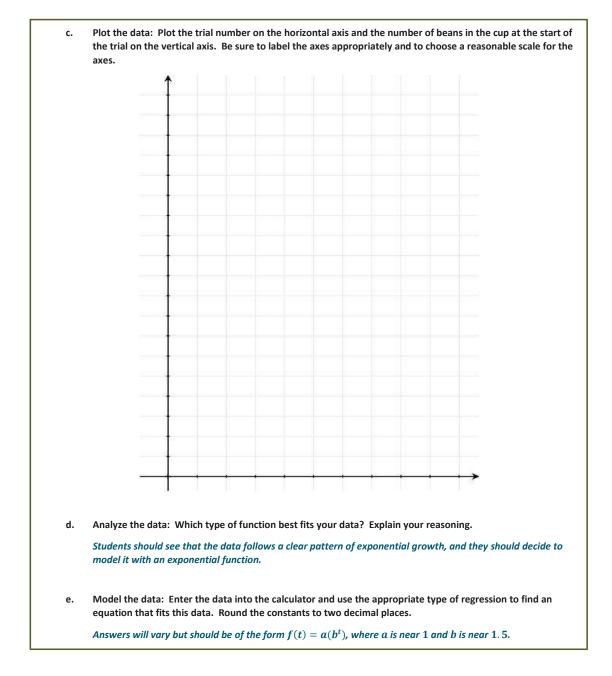
- 1. Working with a partner, you are going to gather some data, analyze the data, and find a function to use to model the data. Be prepared to justify your choice of function to the class.
 - Gather your data: For each trial, roll the beans from the cup to the paper plate. Count the number of beans a. that land marked-side up, and add that many beans to the cup. Record the data in the table below. Continue until you have either completed 10 trials or the number of beans at the start of the trial exceeds the number that you have.

Trial Number, t	Number of Beans at Start of Trial	Number of Beans That Landed Marked-Side Up
1	1	
2		
3		
4		
5		
6		
7		
8		
9		
10		

b. Based on the context in which you gathered this data, which type of function would best model your data points?

Since the number of beans we add at each toss is roughly half of the beans we had at the start of that turn, the data should be modeled by an exponential function.

engage^{ny}



Discussion (5 minutes)

After students complete Exercise 1, have them write the equations that they found to model their data on the board, displayed by the document camera, or on poster board visible to all students. After all groups have reported their equations, debrief the class with questions like the following:

- What type of equation did you use to model your data?
 - We used an exponential function.

- Why did you choose this type of equation?
 - ^D The number of beans always increases, and the amount it increases depends on the current number of beans that we have.
- Why did all of the teams get different equations?
 - We all had different data because each roll of the beans is different. Each bean has a 50% chance of landing marked-side up, but that does not mean that half of the beans always land marked-side up.
- Look at the function $f(t) = a(b^t)$ that models your data and interpret the value of the constant a.
 - The number a is the number of beans we started with (according to the model).
- Look at the function $f(t) = a(b^t)$ that models your data and interpret the value of the base b.
 - ^a The base *b* is the growth factor. This means that the number of beans is multiplied by *b* with each toss.
- If the beans landed perfectly with 50% of them marked-side up every time, what would we expect the value of b to be?
 - If half of the beans always landed marked-side up, then the number of beans would increase by 50% with each trial, so that the new amount would be 150% of the old amount. That is, the number of beans would be multiplied by 1.5 at each trial. Then, the value of b would be 1.5.
- From the situation we are modeling, what would we expect the value of the coefficient *a* to be?
 - For an exponential function of the form $f(t) = a(b^t)$, we have f(0) = a, so a represents our initial number of beans. Thus, we should have a value of a near 1.
- Why didn't your values of a and b turn out to be a = 1 and b = 1.5?
 - Even though the probability says that we have a 50% chance of the beans landing marked-side up, this does not mean that half of the beans will always land marked-side up. Our experimental data is not going to lie perfectly on the curve $f(t) = (1.5)^t$.
- Let's look at the constants in the equations $f(t) = a(b^t)$ that the groups found to fit their data.
- Have the students calculate the average values of the coefficients a and the base b from each group's equation.
 - Answers will vary. The average value of a should be near 1, and the average value of b should be near 1.5.

Create an exponential function $f(t) = a_{avg} (b_{avg})^t$, where a_{avg} and b_{avg} represent the average values of the coefficient a and base b from each group's equation.

- What would happen to the values of a_{avg} and b_{avg} if we had data from 1,000 groups?
 - The value of a_{avg} should get very close to 1 and the value of b_{avg} should get very close to 1.5.

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

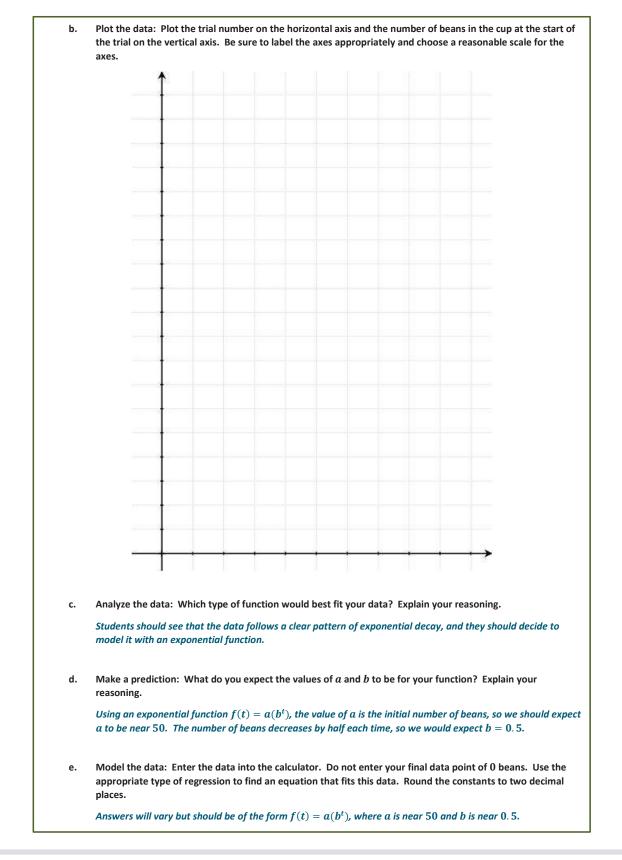
engage

Mathematical Modeling Exercise 2 (10 minutes)

- 2. This time, we are going to start with 50 beans in your cup. Roll the beans onto the plate and remove any beans that land marked-side up. Repeat until you have no beans remaining.
 - a. Gather your data: For each trial, roll the beans from the cup to the paper plate. Count the number of beans that land marked-side up, and remove that many beans from the plate. Record the data in the table below. Repeat until you have no beans remaining.

Trial Number, t	Number of Beans at Start of Trial	Number of Beans That Landed Marked-Side Up
1	50	
2		
3		
4		
5		
6		
7		
8		
9		
10		

engage^{ny}



Lesson 23: Bean Counting

Discussion (5 minutes)

After students complete Exercise 2, have them write the equations that they found to model their data in a shared location visible to all students. Prompt students to look for patterns in the equations produced by different groups and to revisit their answers from part (d) if necessary.

- What type of equation did you use to model your data?
 - We used an exponential function.
- Why did you choose this type of equation?
 - The number of beans should always decrease, and the amount it decreases depends on the current number of beans that we have.
- Let's look at the different constants in the equations $f(t) = a(b^t)$ that the groups found to fit the data. Have students calculate the average values of the coefficients a and the base b from each group's equation.
 - Answers will vary. The average value of a should be near 50, and the average value of b should be near 0.5.
- From the situation we are modeling, what would we expect the values of the coefficient a and the base b to be?
 - For an exponential function of the form $f(t) = a(b^t)$, we have f(0) = a. Thus, a represents our initial number of beans, and we should have a value of a near 50. The number of beans should be cut in half at each trial, so we should have a value of b near 0.5.
- How many trials did it take before you had no beans left?
 - Answers will vary but should be somewhere around seven trials.
- What is the range of your exponential function? Does it include zero?
 - The range of the exponential function is $(0, \infty)$, so it does not include zero.
- How can we explain the discrepancy between the fact that the function that you are using to model the number of beans can never be zero, but the number of beans left at the end of the activity is clearly zero?
 - The exponential function only approximates the number of beans. The number of beans is always an integer, while the values taken on by the exponential function are real numbers. That is, our function takes on values that are closer and closer to zero, without ever actually being zero, but if we were to round it to integers, then it rounds to zero.

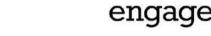
Closing (3 minutes)

MP.2

ΜР

Have students respond to the following questions individually in writing or orally with a partner.

- What sort of function worked best to model the data we gathered from Mathematical Modeling Exercise 1 where we added beans?
 - We used an increasing exponential function.
- Why was this the best type of function?
 - The number of beans added was roughly a multiple of the current number of beans; if the beans had behaved perfectly and half of them always landed with the marked-side up, we would have added half the number of beans each time.



- Why could we expect to model this data with a function $f(t) = (1.5)^t$?
 - When we add half of the beans, that means that the current number of beans is being multiplied by 1 + 0.5 = 1.5. With an exponential function, we get from one data point to the next by multiplying by a constant. For this function, the constant is 1.5.
- Why did an exponential function work best to model the data from Mathematical Modeling Exercise 2, in which the number of beans was reduced at each trial?
 - The number of beans removed at each trial was roughly half the current number of beans. The function that models this is $f(t) = 50 \left(\frac{1}{2}\right)^t$, which is a decreasing exponential function.

Exit Ticket (4 minutes)

Name

Date

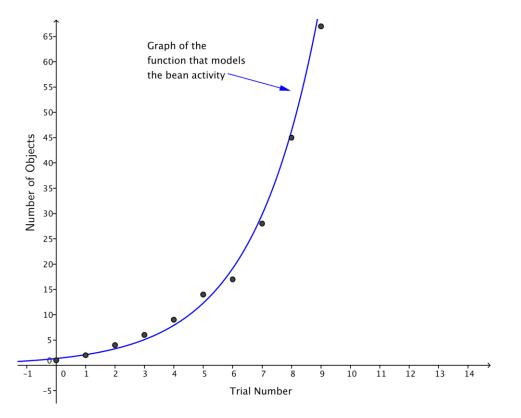
Lesson 23: Bean Counting

Exit Ticket

Suppose that you were to repeat the bean activity, but in place of beans, you were to use six-sided dice. Starting with one die, each time a die is rolled with a 6 showing, you add a new die to your cup.

a. Would the number of dice in your cup grow more quickly or more slowly than the number of beans did? Explain how you know.

b. A sketch of one sample of data from the bean activity is shown below. On the same axes, draw a rough sketch of how you would expect the curve through the data points from the dice activity to look.



Lesson 23: Bean Counting

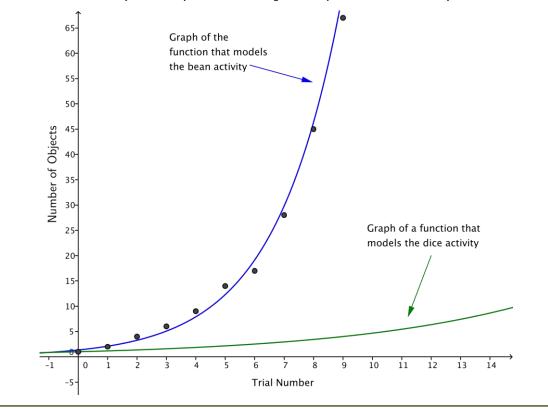
Exit Ticket Sample Solutions

Suppose that you were to repeat the bean activity, but in place of beans, you were to use six-sided dice. Starting with one die, each time a die is rolled with a 6 showing, you add a new die to your cup.

a. Would the number of dice in your cup grow more quickly or more slowly than the number of beans did? Explain how you know.

The number of dice in the cup should grow much more slowly because the probability of rolling a 6 is $\frac{1}{6'}$ while the probability of flipping a bean marked-side up is roughly $\frac{1}{2}$. Thus, the beans should land marked-side up, and thus, increase the number of beans in our cup about half of the time, while the dice would show a 6 only $\frac{1}{6}$ of the time. As an example, it could be expected to take one or two flips of the first bean to get a bean to show the marked side, causing us to add one, but it could be expected to take six rolls of the first die to get a 6, causing us to add another die.

b. A sketch of one sample of data from the bean activity is shown below. On the same axes, draw a rough sketch of how you would expect the curve through the data points from the dice activity to look.



Lesson 23: Bean Counting

380

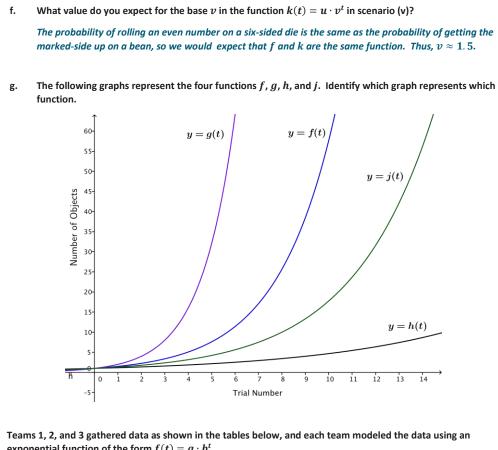
engage

Problem Set Sample Solutions

1							
1.	. For this problem, we consider three scenarios for which data have been collected and functions have been found to model the data, where <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>p</i> , <i>q</i> , <i>r</i> , <i>s</i> , <i>t</i> , and <i>u</i> are positive real number constants.						
		The function $f(t) = a \cdot b^t$ models the original bean activity (Mathematical Modeling Exercise 1). Each bean is painted or marked on one side, and we start with one bean in the cup. A trial consists of throwing the beans in the cup and adding one more bean for each bean that lands marked-side up.					
		The function $g(t) = c \cdot d^t$ models a modified bean activity. Each bean is painted or marked on one side, and we start with one bean in the cup. A trial consists of throwing the beans in the cup and adding two more beans for each bean that lands marked-side up.					
		The function $h(t) = p \cdot q^t$ models the dice activity from the Exit Ticket. Start with one six-sided die in the cup. A trial consists of rolling the dice in the cup and adding one more die to the cup for each die that lands with a 6 showing.					
		The function $j(t) = r \cdot s^t$ models a modified dice activity. Start with one six-sided die in the cup. A trial consists of rolling the dice in the cup and adding one more die to the cup for each die that lands with a 5 or a 6 showing.					
		The function $k(t) = u \cdot v^t$ models a modified dice activity. Start with one six-sided die in the cup. A trial consists of rolling the dice in the cup and adding one more die to the cup for each die that lands with an even number showing.					
	a. What values do you expect for <i>a</i> , <i>c</i> , <i>p</i> , <i>r</i> , and <i>u</i> ?						
	The values of these four constants should each be around 1 because the first data point in all four cases is $(1, 0)$.						
	b.	hat value do you expect for the base b in the function $f(t) = a \cdot b^t$ in scenario (i)?					
		ie know from the class activity that $bpprox 1.5$ because the number of beans grows by roughly half of the rrent amount at each trial.					
	c.	hat value do you expect for the base d in the function $g(t) = c \cdot d^t$ in scenario (ii)?					
	Suppose we have 4 beans in the cup. We should expect half of them to land marked-side up. The add $2 \cdot 2 = 4$ beans to the cup, doubling the amount that we had. This is true for any number of had n beans, then $\frac{n}{2}$ should land marked-side up, so we would add n beans, doubling the amount values of the function g should double, so $d \approx 2$.						
	d.	hat value do you expect for the base q in the function $h(t) = p \cdot q^t$ in scenario (iii)?					
	For this function h, we expect that the quantity increases by $rac{1}{6}$ of the current quantity at each trial. T						
		$\approx 1+rac{1}{6'}$ so $q \approx rac{7}{6}$.					
	e.	hat value do you expect for the base s in the function $j(t) = r \cdot s^t$ in scenario (iv)?					
		e probability of rolling a 5 or 6 is $\frac{1}{3}$, so we would expect that the number of dice increases by $\frac{1}{3}$ of the					
		current quantity at each trial. Thus, we expect $s \approx 1 + \frac{1}{3}$, which means that $s \approx \frac{4}{3}$.					

Lesson 23:

engage^{ny}



- 2. exponential function of the form $f(t) = a \cdot b^t$.
 - a. Which team should have the highest value of b? Which team should have the lowest value of b? Explain how you know.

Team 1		Team 2			Team 3	
Trial	Number of	Trial	Number of	- [Trial	Number of
Number, t	Beans	Number, t	Beans		Number, t	Beans
0	1	0	1		0	1
1	1	1	1		1	2
2	2	2	1	Ī	2	3
3	2	3	2	Ī	3	5
4	4	4	2	Ī	4	8
5	6	5	3	Ī	5	14
6	8	6	5		6	26
7	14	7	7	Ī	7	46
8	22	8	12	Ī	8	76
9	41	9	18		9	
10	59	10	27	Γ	10	

The larger the value of the base b, the larger the function will be at t = 10. Since team 3 had the most beans at the end (they used their 50 beans first), their equation should have the highest value of the base b. Team 2 has the smallest number of beans after 10 trials, so team 2 should have the smallest value of the base b.

b.

ALGEBRA II

M3

Lesson 23

Ū

functions provide evidence that your answer in part (a) is correct? Team 1's equation: $f_1(t) = 0.7378(1.5334)^t$ Team 2's equation: $f_2(t) = 0.6495(1.4245)^t$ Team 3's equation: $f_3(t) = 1.0328(1.7068)^t$ As predicted, team 2 has the smallest value of b, and team 3 has the largest value of b. 3. Omar has devised an activity in which he starts with 15 dice in his cup. A trial consists of rolling the dice in the cup and adding one more die to the cup for each die that lands with a 1, 2, or 3 showing. a. Find a function $f(t) = a(b^t)$ that Omar would expect to model his data. $f(t) = 15\left(\frac{3}{2}\right)^t$

b. Solve the equation f(t) = 30. What does the solution mean?

$$5\left(\frac{3}{2}\right)^{t} = 30$$
$$\left(\frac{3}{2}\right)^{t} = 2$$
$$t = \frac{\log(2)}{\log\left(\frac{3}{2}\right)}$$
$$t \approx 1.71$$

So, Omar should have more than 30 dice by the second trial, after rolling and adding dice twice.

1

Use a graphing calculator to find the equation that best fits each set of data. Do the equations of the

c. Omar wants to know in advance how many trials it should take for his initial quantity of 15 dice to double. He uses properties of exponents and logarithms to rewrite the function from part (a) as the exponential function $f(t) = 15 \left(2^{t \cdot \log_2(\frac{3}{2})}\right)$. Has Omar correctly applied the properties of exponents and logarithms to obtain an equivalent expression for his original equation in part (a)? Explain how you know.

Yes. The expressions are equal by the property of exponents.

Thus.

 $15\left(2^{t\cdot\log_2\left(\frac{3}{2}\right)}\right) = 15\left(\frac{3}{2}\right)^t.$

 $\left(2^{t \cdot \log_2\left(\frac{3}{2}\right)}\right) = \left(2^{\log_2\left(\frac{3}{2}\right)}\right)^t = \left(\frac{3}{2}\right)^t$

d. Explain how the modified formula from part (c) allows Omar to easily find the expected amount of time, *t*, for the initial quantity of dice to double.

The quantity is doubled at a time t for which $t \cdot \log_2\left(\frac{3}{2}\right) = 1$. Thus, we solve the equation $t \cdot \log_2\left(\frac{3}{2}\right) = 1$ to find $t = \frac{1}{\log_2\left(\frac{3}{2}\right)} \approx 1.71$. This agrees with our answer to part (b).

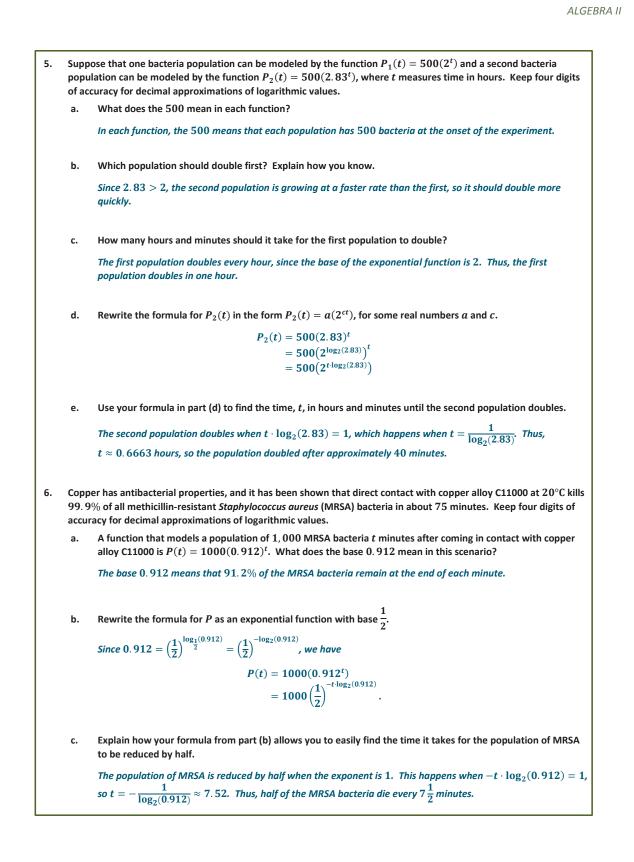
Lesson 23: Bean Counting

M3

Lesson 23

Brenna has devised an activity in which she starts with 10 dice in her cup. A trial consists of rolling the dice in the 4. cup and adding one more die to the cup for each die that lands with a 6 showing. Find a function $f(t) = a(b^t)$ that you would expect to model her data. a. $f(t) = 10 \left(\frac{7}{4}\right)^t$ Solve the equation f(t) = 30. What does your solution mean? b. $10\left(\frac{7}{6}\right)^{t}=30$ $\left(\frac{7}{\epsilon}\right)^t = 3$ $t = \frac{\log(3)}{\log\left(\frac{7}{6}\right)}$ $t \approx 7.13$ Brenna's quantity of dice should reach 30 by the eighth trial. c. Brenna wants to know in advance how many trials it should take for her initial quantity of 10 dice to triple. Use properties of exponents and logarithms to rewrite your function from part (a) as an exponential function of the form $f(t) = a(3^{ct})$. Since $\frac{7}{6} = 3^{\log_3\left(\frac{7}{6}\right)}$, we have $\left(\frac{7}{6}\right)^t = \left(3^{\log_3\left(\frac{7}{6}\right)}\right)^t = 3^{t \cdot \log_3\left(\frac{7}{6}\right)}$. Then, $f(t) = 10\left(3^{t \cdot \log_3\left(\frac{7}{6}\right)}\right)$. Explain how your formula from part (c) allows you to easily find the expected amount of time, t, for the initial d. quantity of dice to triple. The quantity triples when $3^{t \cdot \log_3(\frac{7}{6})} = 3$, so that $t \cdot \log_3(\frac{7}{6}) = 1$. Then, we solve that equation to find the value of t: $t = \frac{1}{\log_3(\frac{7}{6})} \approx 7.13.$ Rewrite the formula for the function f using a base-10 exponential function. e. Since $\frac{7}{6} = 10^{\log(\frac{7}{6})}$, we have $\left(\frac{7}{6}\right)^t = \left(10^{\log(\frac{7}{6})}\right)^t = 10^{t \cdot \log(\frac{7}{6})}$. Then, $f(t) = 10\left(10^{t \cdot \log(\frac{7}{6})}\right)$. f. Use your formula from part (e) to find out how many trials it should take for the quantity of dice to grow to 100 dice. The quantity will be 100 when $10^{t \cdot \log\left(\frac{7}{6}\right)} = 10$, so that $t \cdot \log\left(\frac{7}{6}\right) = 1$. Then, $t = \frac{1}{\log\left(\frac{7}{6}\right)} \approx 14.94$ so that the quantity should exceed 100 by the 15th trial.

Lesson 23: Bean Counting



Lesson 23:

Student Outcomes

- Students apply properties of logarithms to solve exponential equations.
- Students relate solutions to f(x) = g(x) to the intersection point(s) on the graphs of y = f(x) and y = g(x) in the case where f and g are constant or exponential functions.

Lesson Notes

Much of our previous work with logarithms in Topic B provided students with the particular skills needed to manipulate logarithmic expressions and solve exponential equations. Although students have solved exponential equations in earlier lessons in Topic B, this is the first time that they solve such equations in the context of exponential functions. In this lesson, students solve exponential equations of the form $ab^{ct} = d$ using properties of logarithms developed in Lessons 12 and 13 (F-LE.A.4). For an exponential function f, students solve equations of the form f(x) = c and write a logarithmic expression for the inverse (F-BF.B.4a). Additionally, students solve equations of the form f(x) = g(x) where f and g are either constant or exponential functions (A-REI.D.11). Examples of exponential functions in this lesson draw from Lesson 7, in which the growth of a bacteria population was modeled by the function $P(t) = 2^t$, and Lesson 23, in which students modeled the growth of an increasing number of beans with a function $f(t) = a(b^t)$, where $a \approx 1$ and $b \approx 1.5$.

Students use technology to calculate logarithmic values and to graph linear and exponential functions.

Classwork

Opening Exercise (4 minutes)

The Opening Exercise is a simple example of solving an exponential equation of the form $ab^{ct} = d$. Allow students to work independently or in pairs to solve this problem. Circulate around the room to check that all students know how to apply a logarithm to solve this problem. Students may choose to use either a base-2 or base-10 logarithm.

Opening Exercise

In Lesson 7, we modeled a population of bacteria that doubled every day by the function $P(t) = 2^t$, where t was the time in days. We wanted to know the value of t when there were 10 bacteria. Since we did not know about logarithms at the time, we approximated the value of t numerically, and we found that P(t) = 10 when $t \approx 3.32$.

Use your knowledge of logarithms to find an exact value for t when P(t) = 10, and then use your calculator to approximate that value to 4 decimal places.

Since $P(t) = 2^t$, we need to solve $2^t = 10$.

 $2^{t} = 10$ $t \log(2) = \log(10)$ $t = \frac{1}{\log(2)}$ $t \approx 3.3219$

Thus, the population will reach 10 bacteria in approximately 3.3219 days.

Lesson 24: Solving Exponential Equations

386

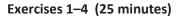
engage

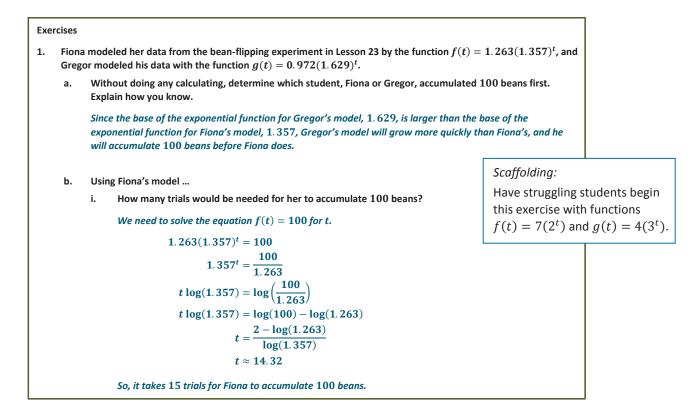
Discussion (2 minutes)

Ask students to describe their solution method for the Opening Exercise. Make sure that solutions are discussed using both base-10 and base-2 logarithms. If all students used the common logarithm to solve this problem, then present the following solution using the base-2 logarithm:

$$2^{t} = 10$$
$$\log_{2}(2^{t}) = \log_{2}(10)$$
$$t = \log_{2}(10)$$
$$t = \frac{\log(10)}{\log(2)}$$
$$t = \frac{1}{\log(2)}$$
$$t \approx 3.3219$$

The remaining exercises ask students to solve equations of the form f(x) = c or f(x) = g(x), where f and g are exponential functions (F-LE.A.4, F-BF.B.4a, A-REI.D.11). For the remainder of the lesson, allow students to work either independently or in pairs or small groups on the exercises. Circulate to ensure students are on task and solving the equations correctly. After completing Exercises 1–4, debrief students to check for understanding, and ensure they are using appropriate strategies to complete problems accurately before moving on to Exercises 5–10.



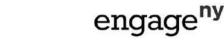


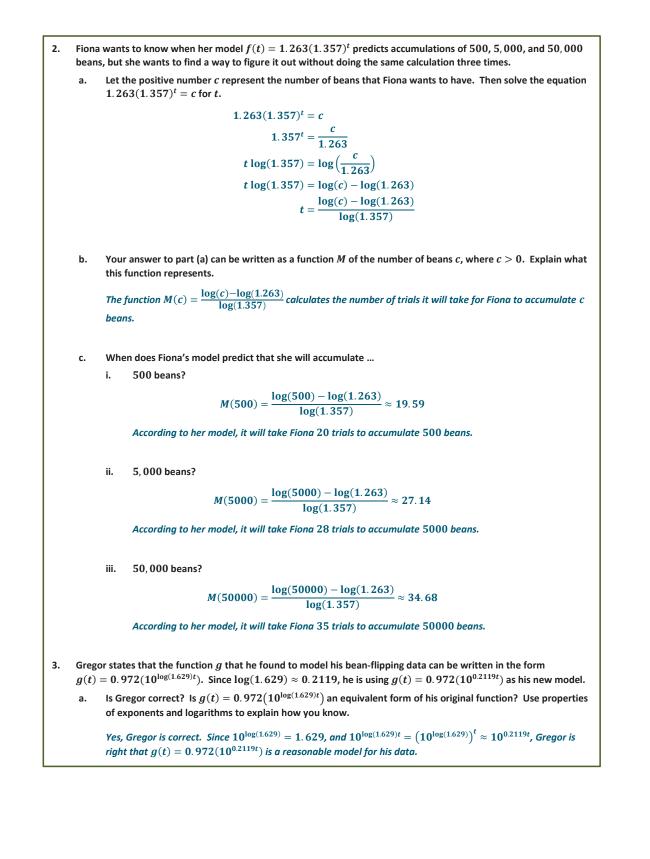
Lesson 24: Solving Exponential Equations

(cc) BY-NC-SA

ii. How many trials would be needed for her to accumulate 1,000 beans? We need to solve the equation f(t) = 1000 for t. $1.263(1.357)^t = 1000$ $1.357^t = \frac{1000}{1.263}$ $t\log(1.357) = \log\left(\frac{1000}{1.263}\right)$ $t \log(1.357) = \log(1000) - \log(1.263)$ $t = \frac{3 - \log(1.263)}{\log(1.357)}$ $t \approx 21.86$ So, it takes 22 trials for Fiona to accumulate 1000 beans. Using Gregor's model ... c. How many trials would be needed for him to accumulate 100 beans? i. We need to solve the equation g(t) = 100 for t. $0.972(1.629)^t = 100$ $1.629^t = \frac{100}{0.972}$ $t \log(1.629) = \log\left(\frac{100}{0.972}\right)$ $t \log(1.629) = \log(100) - \log(0.972)$ $t = \frac{2 - \log(0.972)}{\log(1.629)}$ $t \approx 9.50$ So, it takes 10 trials for Gregor to accumulate 100 beans. ii. How many trials would be needed for him to accumulate 1,000 beans? We need to solve the equation g(t) = 1000 for t. $(0.972(1.629)^t = 1000)$ $1.629^t = \frac{1000}{0.972}$ $t\log(1.629) = \log\left(\frac{1000}{0.972}\right)$ $t \log(1.629) = \log(1000) - \log(0.972)$ $t = \frac{3 - \log(0.972)}{\log(1.629)}$ $t \approx 14.21$ So, it takes 15 trials for Gregor to accumulate 1000 beans. Was your prediction in part (a) correct? If not, what was the error in your reasoning? d. Responses will vary. Either students made the correct prediction, or they did not recognize that the base b determines the growth rate of the exponential function so the larger base 1.629 causes Gregor's function to grow much more guickly than Fiona's.

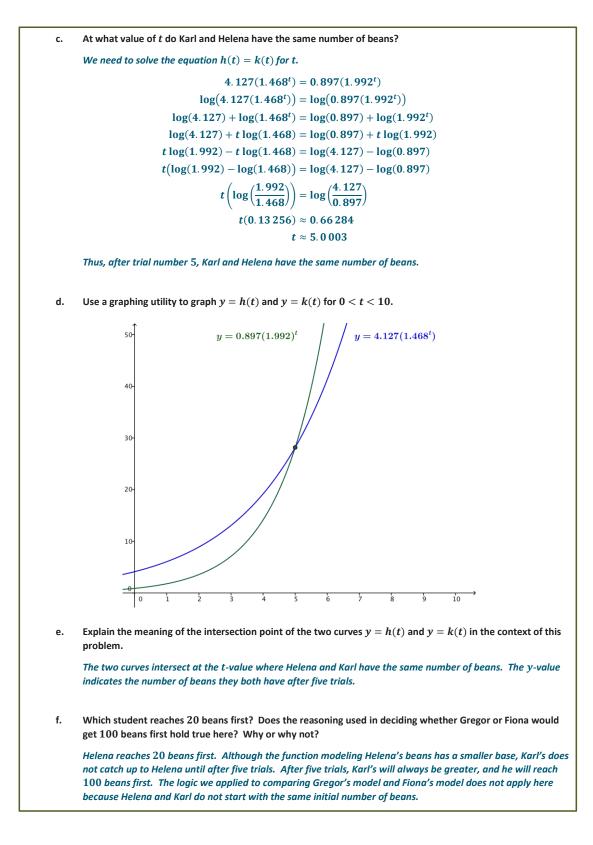
Lesson 24: Solving Exponential Equations





Gregor also wants to find a function to help him to calculate the number of trials his function g predicts it b. should take to accumulate 500, 5,000, and 50,000 beans. Let the positive number c represent the number of beans that Gregor wants to have. Solve the equation $0.972(10^{0.2119t}) = c$ for t. $0.972(10^{0.2119t}) = c$ $10^{0.2119t} = \frac{c}{0.972}$ $0.2119t = \log\left(\frac{c}{0.972}\right)$ $t = \frac{\log(c) - \log(0.972)}{0.2119}$ Your answer to part (b) can be written as a function N of the number of beans c_i , where c > 0. Explain what c. this function represents. The function $N(c) = \frac{\log(c) - \log(0.972)}{0.2119}$ calculates the number of trials it will take for Gregor to accumulate c beans. When does Gregor's model predict that he will accumulate ... d. 500 beans? i. $N(500) = \frac{\log(500) - \log(0.972)}{0.2119} \approx 12.80$ According to his model, it will take Gregor 13 trials to accumulate 500 beans. ii. 5,000 beans? $N(500) = \frac{\log(5000) - \log(0.972)}{0.2119} \approx 17.51$ According to his model, it will take Gregor 18 trials to accumulate 5,000 beans. iii. 50,000 beans? $N(50000) = \frac{\log(50000) - \log(0.972)}{0.2119} \approx 22.23$ According to his model, it will take Gregor 23 trials to accumulate 50,000 beans. Helena and Karl each change the rules for the bean experiment. Helena started with four beans in her cup and 4. added one bean for each that landed marked-side up for each trial. Karl started with one bean in his cup but added two beans for each that landed marked-side up for each trial. Helena modeled her data by the function $h(t) = 4.127(1.468^t)$. Explain why her values of a = 4.127 and a. b = 1.468 are reasonable. Since Helena starts with four beans, we should expect that a pprox 4, so a value a = 4.127 is reasonable. Because she is using the same rule for adding beans to the cup as we did in Lesson 23, we should expect that $b \approx 1.5$. Thus, her value of b = 1.468 is reasonable. b. Karl modeled his data by the function $k(t) = 0.897(1.992^t)$. Explain why his values of a = 0.897 and b = 1.992 are reasonable. Since Karl starts with one bean, we should expect that approx 1, so a value a=0.897 is reasonable. Because Karl adds two beans to the cup for each that lands marked-side up, we should expect that the number of beans roughly doubles with each trial. That is, we should expect $b \approx 2$. Thus, his value of b = 1.992 is reasonable.

Lesson 24: Solving Exponential Equations



Solving Exponential Equations

engage^{ny}

Debrief students after they complete Exercises 1–4 to ensure understanding of the exercises and strategies used to solve the exercises before continuing. In Exercises 5–10, students solve exponential functions using what they know about logarithms. After completing Exercises 5–10, debrief students about when it is necessary to use logarithms to solve exponential equations and when it is not. Exercises 7, 8, and 9 are examples of exercises that do not require logarithms to solve but may be appropriate to solve with logarithms depending on the approach used by students.

Exercise 5–10 (7 minutes)

For the following functions f and g , solve the equation $f(x) = g(x)$. Express your solutions in term	ns of logarithms.				
5. $f(x) = 10(3.7)^{x+1}, g(x) = 5(7.4)^x$					
$10(3.7)^{x+1} = 5(7.4)^x$ $2(3.7)^{x+1} = 7.4^x$					
$log(2) + log(3, 7^{x+1}) = log(7, 4^{x})$					
$\log(2) + \log(3.7) = \log(7.4)$ $\log(2) + (x + 1) \log(3.7) = x \log(7.4)$					
$\log(2) + x \log(3.7) + \log(3.7) = x \log(7.4)$					
$\log(2) + \log(3.7) = x(\log(7.4) - \log(3.7))$					
$\log(7.4) = x \log\left(\frac{7.4}{3.7}\right)$	Scaffolding: Challenge advanced				
$\log(7.4) = x \log(2)$ $x = \frac{\log(7.4)}{\log(2)}$	students to solve Exercise 6 in more than one way,				
6. $f(x) = 135(5)^{3x+1}, g(x) = 75(3)^{4-3x}$	for example, by using first the logarithm base 5 and then the logarithm base 3,				
	and comparing the results.				
$135(5)^{3x+1} = 75(3)^{4-3x}$ $9(5)^{3x+1} = 5(3)^{4-3x}$	 Advanced students should 				
$9(5)^{4x+2} = 5(3)^{4x+4}$ $\log(9) + (3x+1)\log(5) = \log(5) + (4-3x)\log(3)$	 Advanced students should be able to solve Exercises 				
$2\log(3) + 3x\log(5) + \log(5) = \log(5) + 4\log(3) - 3x\log(3)$	7–9 without logarithms by				
$3x(\log(5) + \log(3)) = 4\log(3) - 2\log(3)$	expressing each function				
$3x\log(15) = 2\log(3)$	with a common base, but				
$x = \frac{2\log(3)}{3\log(15)}$	using logarithms may be a				
$x = \frac{1}{3\log(15)}$	more reliable approach for				
	students struggling with				
7. $f(x) = 100^{x^3 + x^2 - 4x}, g(x) = 10^{2x^2 - 6x}$	the exponential				
	properties.				
$100^{x^3+x^2-4x} = 10^{2x^2-6x}$					
$(10^2)^{x^3+x^2-4x} = 10^{2x^2-6x}$					
$2(x^3 + x^2 - 4x) = 2x^2 - 6x$					
$x^{3} + x^{2} - 4x = x^{2} - 3x$ $x^{3} - x = 0$					
$x^3 - x = 0$ $x(x^2 - 1) = 0$					
x(x - 1) = 0 x(x + 1)(x - 1) = 0					
x = 0, x = -1, or x = 1					

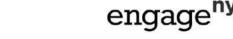
engage^{ny}

 $f(x) = 48(4^{x^2+3x}), g(x) = 3(8^{x^2+4x+4})$ 8. $48(4^{x^2+3x}) = 3(8^{x^2+4x+4})$ $16(4^{x^2+3x}) = 8^{x^2+4x+4}$ $2^4((2^2)^{x^2+3x}) = (2^3)^{x^2+4x+4}$ $2^{2x^2+6x+4} = 2^{3x^2+12x+12}$ $2x^2 + 6x + 4 = 3x^2 + 12x + 12$ $x^2 + 6x + 8 = 0$ (x+4)(x+2) = 0x = -4 or x = -2 $f(x) = e^{\sin^2(x)}, g(x) = e^{\cos^2(x)}$ 9. $e^{\sin^2(x)} = e^{\cos^2(x)}$ $\sin^2(x) = \cos^2(x)$ sin(x) = cos(x) or sin(x) = -cos(x) $x = \frac{\pi}{4} + k\pi$ or $x = \frac{3\pi}{4} + k\pi$ for all integers k10. $f(x) = (0.49)^{\cos(x) + \sin(x)}, \ g(x) = (0.7)^{2\sin(x)}$ $(0.49)^{\cos(x)+\sin(x)} = (0.7)^{2\sin(x)}$ $\log((0.49)^{\cos(x)+\sin(x)}) = \log(0.7)^{2\sin(x)})$ $(\cos(x) + \sin(x))\log(0.49) = 2\sin(x)\log(0.7)$ $(\cos(x) + \sin(x))\log(0.7^2) = 2\sin(x)\log(0.7)$ $2(\cos(x) + \sin(x))\log(0.7) = 2\sin(x)\log(0.7)$ $2\cos(x) + 2\sin(x) = 2\sin(x)$ $\cos(x) = 0$ $x = \frac{\pi}{2} + k\pi$ for all integers k

Closing (3 minutes)

Ask students to respond to the following prompts either in writing or orally to a partner.

- Describe two different approaches to solving the equation $2^{x+1} = 3^{2x}$. Do not actually solve the equation.
 - You could begin by taking the logarithm base 10 of both sides, or the logarithm base 2 of both sides.
 You could even take the logarithm base 3 of both sides.
- Could the graphs of two exponential functions $f(x) = 2^{x+1}$ and $g(x) = 3^{2x}$ ever intersect at more than one point? Explain how you know.
 - No. The graphs of these functions are always increasing. They intersect at one point, but once they cross once they cannot cross again. For large values of x, the quantity 3^{2x} is always greater than 2^{x+1} , so the graph of g ends up above the graph of f after they cross.



Discuss how the starting value and base affect the graph of an exponential function and how this can help you compare exponential functions.

Lesson 24

M3

ALGEBRA II

- ^a The starting value determines the *y*-intercept of an exponential function, so it determines how large or small the function is when x = 0. The base is ultimately more important and determines how quickly the function increases (or decreases). When comparing exponential functions, the function with the larger base always overtakes the function with the smaller base no matter how large the value when x = 0.
- If $f(x) = 2^{x+1}$ and $g(x) = 3^{2x}$, is it possible for the equation f(x) = g(x) to have more than one solution?
 - No. Solutions to the equation f(x) = g(x) correspond to x-values of intersection points of the graphs of y = f(x) and y = g(x). Since these graphs can intersect no more than once, the equation can have no more than one solution.

Exit Ticket (4 minutes)

Name

Date _____

Lesson 24: Solving Exponential Equations

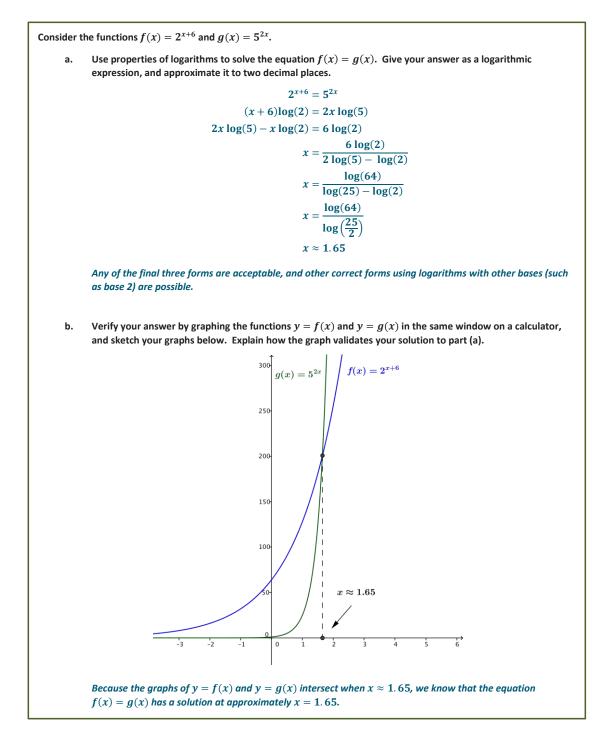
Exit Ticket

Consider the functions $f(x) = 2^{x+6}$ and $g(x) = 5^{2x}$.

a. Use properties of logarithms to solve the equation f(x) = g(x). Give your answer as a logarithmic expression, and approximate it to two decimal places.

b. Verify your answer by graphing the functions y = f(x) and y = g(x) in the same window on a calculator, and sketch your graphs below. Explain how the graph validates your solution to part (a).

Exit Ticket Sample Solutions



EUREKA MATH

Problem Set Sample Solutions

1. Solve the following equations. $2 \cdot 5^{x+3} = 6250$ a. $5^{x+3} = 3125$ $5^{x+3} = 5^5$ x + 3 = 5x = 2 $\mathbf{3}\cdot\mathbf{6}^{2x}=\mathbf{648}$ b. $6^{2x} = 216$ $6^{2x} = 6^3$ 2x = 3 $x=\frac{3}{2}$ $5 \cdot 2^{3x+5} = 10240$ c. $2^{3x+5} = 2048$ $2^{3x+5} = 2^{11}$ 3x + 5 = 113x = 6x = 2d. $4^{3x-1} = 32$ $4^{3x-1} = 2^5$ $2^{2 \cdot (3x-1)} = 2^5$ 6x - 2 = 56x = 7 $x=\frac{7}{6}$ $3 \cdot 2^{5x} = 216$ e. $2^{5x} = 72$ $5x \cdot \ln(2) = \ln(72)$ $x = \frac{\ln(72)}{5 \cdot \ln(2)}$ $x \approx 1.234$ Note: Students can also use the common logarithm to find the solution.

engage^{ny}

Lesson 24 M3

ALGEBRA II

f. $5 \cdot 11^{3x} = 120$ $11^{3x} = 24$ $3x \cdot \ln(11) = \ln(24)$ $x = \frac{\ln(24)}{3 \cdot \ln(11)}$ $x \approx 0.442$ Note: Students can also use the common logarithm to find the solution. $7 \cdot 9^x = 5405$ g. $9^{x} = \frac{5\,405}{7}$ $x \cdot \ln(9) = \ln\left(\frac{5\,405}{7}\right)$ $x = \frac{\ln\left(\frac{5405}{7}\right)}{\ln(9)}$ $x \approx 2^{-1}$ Note: Students can also use the common logarithm to find the solution. $\sqrt{3} \cdot 3^{3x} = 9$ h. Solution using properties of exponents: $3^{\frac{1}{2}} \cdot 3^{3x} = 3^2$ $3^{\frac{1}{2}+3x} = 3^{2}$ $\frac{1}{2}+3x = 2$ $x=\frac{1}{2}$ $\log(400) \cdot 8^{5x} = \log(160000)$ i. $8^{5x} = \frac{\log(160000)}{\log(400)}$ $8^{5x} = 2$ $8^{5x} = 8^{\frac{1}{3}}$ $5x = \frac{1}{3}$ $x = \frac{1}{15}$ Lucy came up with the model $f(t) = 0.701(1.382)^t$ for the first bean activity. When does her model predict that 2. she would have 1,000 beans? $1000 = 0.701(1.382)^t$ $\log(1000) = \log(0.701) + t \log(1.382)$ $t = \frac{\log(1000) - \log(0.701)}{\log(1.382)}$ $t \approx 22.45$ Lucy's model predicts that it will take 23 trials to have over 1000 beans.

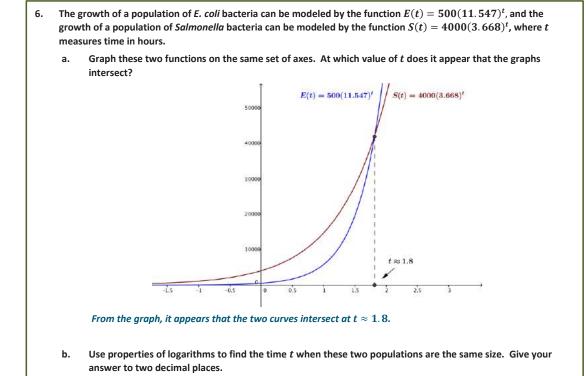
Lesson 24: Solving Exponential Equations

M3

Lesson 24

3. Jack came up with the model $g(t) = 1.033(1.707)^t$ for the first bean activity. When does his model predict that he would have 50,000 beans? $50000 = 1.033(1.707)^t$ $\log(50000) = \log(1.033) + t\log(1.707)$ $t = \frac{\log(50000) - \log(1.033)}{\log(4.725)}$ log(1.707) $t \approx 20.17$ Jack's model predicts that it will take 21 trials to have over 50,000 beans. 4. If instead of beans in the first bean activity you were using fair pennies, when would you expect to have \$1,000,000? One million dollars is 10^8 pennies. Using fair pennies, we can model the situation by $f(t) = 1.5^t$. $10^8 = 1.5^t$ $8 = t \log(1.5)$ $t = \frac{8}{\log(1.5)}$ $t \approx 45.43$ We should expect it to take 46 trials to reach more than \$1 million using fair pennies. 5. Let $f(x) = 2 \cdot 3^x$ and $g(x) = 3 \cdot 2^x$. a. Which function is growing faster as x increases? Why? The function f is growing faster due to its larger base, even though g(0) > f(0). When will f(x) = g(x)? b. $\boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{g}(\boldsymbol{x})$ $2 \cdot 3^x = 3 \cdot 2^x$ $\ln(2\cdot 3^x) = \ln(3\cdot 2^x)$ $\ln(2) + x \ln(3) = \ln(3) + x \ln(2)$ $x\ln(3) - x\ln(2) = \ln(3) - \ln(2)$ $x\ln\left(\frac{3}{2}\right) = \ln\left(\frac{3}{2}\right)$ Note: Students can also use the common logarithm to find the solution.

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.



E(t) = S(t) $500(11.547)^{t} = 4000(3.668)^{t}$ $11.547^{t} = 8(3.668)^{t}$ $t \log(11.547) = \log(8) + t \log(3.668)$ $t(\log(11.547) - \log(3.668)) = \log(8)$ $t = \frac{\log(8)}{\log(11.547) - \log(3.668)}$ $t \approx 1.81329$

It takes approximately 1.81 hours for the populations to be the same size.

- 7. Chain emails contain a message suggesting you will have bad luck if you do not forward the email to others. Suppose a student started a chain email by sending the message to 10 friends and asking those friends to each send the same email to 3 more friends exactly one day after receiving the message. Assuming that everyone that gets the email participates in the chain, we can model the number of people who receive the email on the n^{th} day by the formula $E(n) = 10(3^n)$, where n = 0 indicates the day the original email was sent.
 - a. If we assume the population of the United States is 318 million people and everyone who receives the email sends it to 3 people who have not received it previously, how many days until there are as many emails being sent out as there are people in the United States?

 $318(10^{6}) = 10 \cdot 3^{n}$ $318(10^{5}) = 3^{n}$ $\log(318) + \log(10^{5}) = n \cdot \log(3)$ $\log(318) + 5 = n \cdot \log(3)$ $n = \frac{5 + \log(318)}{\log(3)}$ $n \approx 15.72$

So by the 16th day, more than 318 million emails are being sent out.

Lesson 24: Solving Exponential Equations

400

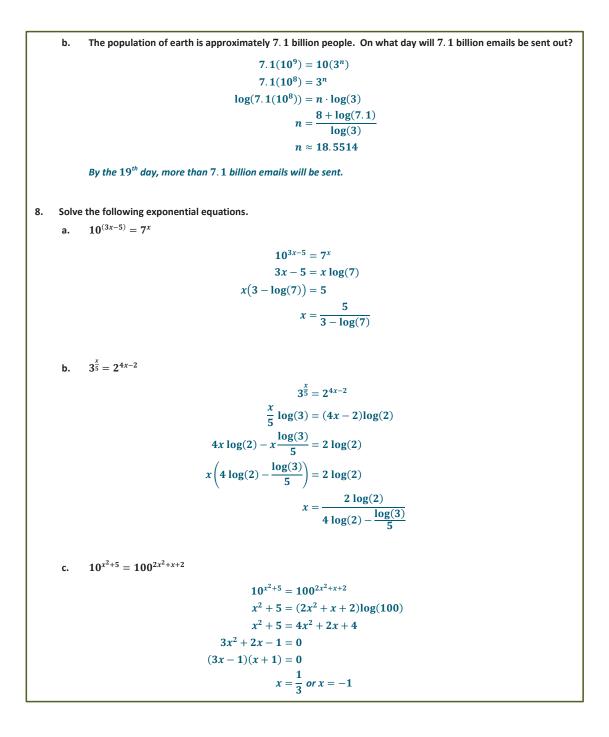
Lesson 24

M3

ALGEBRA II

Lesson 24 **M3**

ALGEBRA II

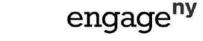


Lesson 24 M3

ALGEBRA II

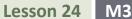
 $4^{x^2 - 3x + 4} = 2^{5x - 4}$ d. $4^{x^2 - 3x + 4} = 2^{5x - 4}$ $(x^2 - 3x + 4) \log_2(4) = (5x - 4) \log_2(2)$ $2(x^2 - 3x + 4) = 5x - 4$ $2x^2 - 6x + 8 = 5x - 4$ $2x^2 - 11x + 12 = 0$ (2x-3)(x-4) = 0 $x=\frac{3}{2} or x=4$ 9. Solve the following exponential equations. $(2^{x})^{x} = 8^{x}$ a. $2^{x^2} = 8^x$ $x^2 \log_2(2) = x \log_2(8)$ $x^2 = 3x$ $x^2 - 3x = 0$ x(x-3) = 0x = 0 or x = 3 $(3^x)^x = 12$ b. $3^{x^2} = 12$ $x^2 \log(3) = \log(12)$ $x^2 = \frac{\log(12)}{\log(3)}$ $x = \sqrt{\frac{\log(12)}{\log(3)}}$ or $x = -\sqrt{\frac{\log(12)}{\log(3)}}$ 10. Solve the following exponential equations. $10^{x+1} - 10^{x-1} = 1287$ a. $10^{x+1} - 10^{x-1} = 1287$ $100(10^{x-1}) - 10^{x-1} = 1287$ $10^{x-1}(100-1) = 1287$ $99(10^{x-1}) = 1287$ $10^{x-1} = 13$ $x - 1 = \log(13)$ $x = \log(13) + 1$ $2(4^x) + 4^{x+1} = 342$ b. $2(4^x) + 4^{x+1} = 342$ $2(4^x) + 4(4^x) = 342$ $6(4^x) = 342$ $4^{x} = 57$ $x = \log_4(57) = \frac{\log(57)}{\log(4)} = \frac{1}{2}\log_2(57)$

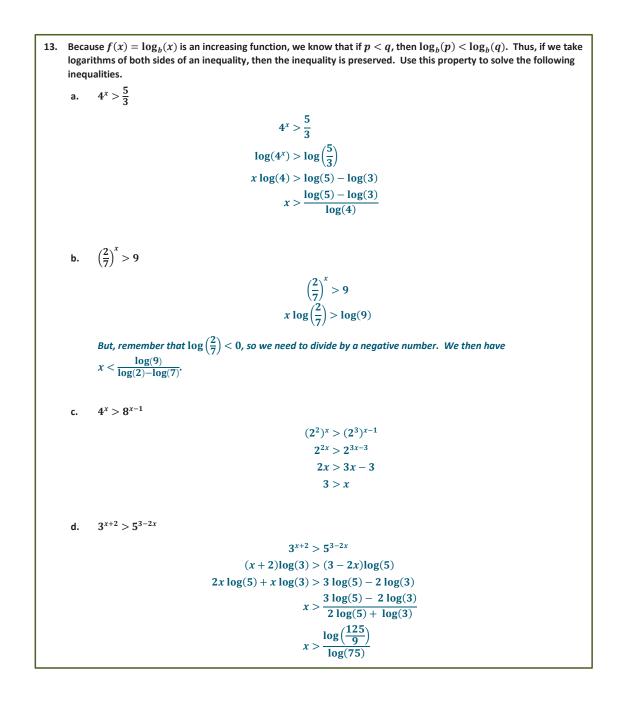
11. Solve the following exponential equations. $(10^x)^2 - 3(10^x) + 2 = 0$ Hint: Let $u = 10^x$, and solve for u before solving for x. a. Let $u = 10^x$. Then $u^2-3u+2=0$ (u-2)(u-1)=0u=2 or u=1*If* u = 2, we have $2 = 10^x$, and then $x = \log(2)$. *If* u = 1*, we have* $1 = 10^x$ *, and then* x = 0*.* Thus, the two solutions to this equation are 0 and log(2). b. $(2^x)^2 - 3(2^x) - 4 = 0$ *Let* $u = 2^{x}$. $u^2-3u-4=0$ (u-4)(u+1)=0u = 4 or u = -1If u = 4, we have $2^x = 4$, and then x = 2. If u = -1, we have $2^x = -1$, which has no solution. Thus, the only solution to this equation is 2. $3(e^{x})^{2} - 8(e^{x}) - 3 = 0$ c. Let $u = e^x$. $3u^2 - 8u - 3 = 0$ (u-3)(3u+1) = 0 $u = 3 \text{ or } u = -\frac{1}{3}$ If u = 3, we have $e^x = 3$, and then $x = \ln(3)$. If $u = -\frac{1}{3}$, we have $e^x = -\frac{1}{3}$, which has no solution because $e^x > 0$ for every value of x. Thus, the only solution to this equation is ln(3). d. $4^x + 7(2^x) + 12 = 0$ Let $u = 2^x$. $(2^x)^2 + 7(2^x) + 12 = 0$ $u^2 + 7u + 12 = 0$ (u+3)(u+4) = 0u = -3 or u = -4But $2^x > 0$ for every value of x, thus there are no solutions to this equation.

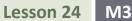


 $(10^x)^2 - 2(10^x) - 1 = 0$ e. *Let* $u = 10^{x}$. $u^2-2u-1=0$ $u = 1 + \sqrt{2}$ or $u = 1 - \sqrt{2}$ If $u = 1 + \sqrt{2}$, we have $10^x = 1 + \sqrt{2}$, and then $x = \log(1 + \sqrt{2})$. If $u = 1 - \sqrt{2}$, we have $10^x = 1 - \sqrt{2}$, which has no solution because $1 - \sqrt{2} < 0$. Thus, the only solution to this equation is $\log(1+\sqrt{2})$. 12. Solve the following systems of equations. $2^{x+2y} = 2^3$ $2^{x+2y} = 8$ a. $4^{2x+y} = 1$ $4^{2x+y} = 4^0$ x + 2y = 32x + y = 0x + 2y = 34x + 2y = 0y = 2x = -1 $2^{2x+y-1} = 2^5$ $2^{2x+y-1} = 32$ b. $4^{x-2y} = 2$ $(2^2)^{x-2y} = 2^1$ 2x + y - 1 = 52(x-2y)=12x + y = 62x - 4y = 1y = 1 $x = \frac{5}{2}$ $2^{3x} = 8^{2y+1}$ $2^{3x} = (2^3)^{2y+1}$ c. $9^{2y} = 3^{3x-9}$ $(3^2)^{2y} = 3^{3x-9}$ 3x = 3(2y + 1)2(2y) = (3x - 9)3x - 6y = 33x - 4y = 9y = 3x = 7

EUREKA MATH







e. $\begin{pmatrix}\frac{3}{4}\end{pmatrix}^{x} > \left(\frac{4}{3}\right)^{x+1}$ $\begin{pmatrix}\frac{3}{4}\end{pmatrix}^{x} > \left(\frac{4}{3}\right)^{x+1}$ $x \log\left(\frac{3}{4}\right) > \left(x+1\right)\log\left(\frac{4}{3}\right)$ $x \left(\log\left(\frac{3}{4}\right) - \log\left(\frac{4}{3}\right)\right) > \log\left(\frac{4}{3}\right)$ But, $\log\left(\frac{3}{4}\right) = -\log\left(\frac{4}{3}\right)$, so we have $x \left(-\log\left(\frac{4}{3}\right) - \log\left(\frac{4}{3}\right)\right) > \log\left(\frac{4}{3}\right)$ $x \left(-2\log\left(\frac{4}{3}\right)\right) > \log\left(\frac{4}{3}\right)$ But, $-2\log\left(\frac{4}{3}\right) < 0$, so we need to divide by a negative number, so we have $x < \frac{\log\left(\frac{4}{3}\right)}{-2\log\left(\frac{4}{3}\right)}$ $x < -\frac{1}{2}.$

Lesson 25: Geometric Sequences and Exponential Growth and Decay

Student Outcomes

- Students use geometric sequences to model situations of exponential growth and decay.
- Students write geometric sequences explicitly and recursively and translate between the two forms.

Lesson Notes

In Algebra I, students learned to interpret arithmetic sequences as linear functions and geometric sequences as exponential functions but both in simple contexts only. In this lesson, which focuses on exponential growth and decay, students construct exponential functions to solve multi-step problems. In the homework, they do the same with linear functions. The lesson addresses focus standard **F-BF.A.2**, which asks students to write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. These skills are also needed to develop the financial formulas in Topic E.

In general, a *sequence* is defined by a function f from a domain of positive integers to a range of numbers that can be either integers or real numbers depending on the context, or other nonmathematical objects that satisfy the equation $f(n) = a_n$. When that function is expressed as an algebraic function of the index variable n, then that expression of the function is called an *explicit form of the sequence (or explicit formula)*. For example, the function f with domain the positive integers and which satisfies $f(n) = 3^n$ for all $n \ge 1$ is an explicit form for the sequence 3, 9, 27, 81, ... If the function is called the *recursive form of the sequence (or recursive formula)*. A recursive formula for the sequence 3, 9, 27, 81, ... If $a_n = 3a_{n-1}$, with $a_0 = 3$.

It is important to note that sequences can be indexed by starting with any integer. The convention in Algebra I was that the indices of a sequence usually started at 1. In Algebra II, we often—but not always—start our indices at 0. In this way, we start counting at the zero term, and count 0, 1, 2,... instead of 1, 2, 3,

Classwork

Opening Exercise (8 minutes)

The Opening Exercise is essentially a reprise of the use in Algebra I of an exponential decay model with a geometric sequence.

125: Geometric Sequences and Exponential Growth and Decay

Scaffolding:

ALGEBRA II

Students who struggle in

calculating the heights,

even with a calculator,

should have a much easier

time getting the terms and

seeing the pattern if the rebound is changed to

50% instead of 60%.

presented here.

Ask advanced students to develop a model without the scaffolded questions

Opening Exercise

Suppose a ball is dropped from an initial height h_0 and that each time it rebounds, its new height is 60% of its previous height.

a. What are the first four rebound heights h_1 , h_2 , h_3 , and h_4 after being dropped from a height of $h_0 = 10$ ft.?

The rebound heights are $h_1 = 6$ ft., $h_2 = 3.6$ ft., $h_3 = 2.16$ ft., and $h_4 = 1.296$ ft.

b. Suppose the initial height is *A* ft. What are the first four rebound heights? Fill in the following table:

Rebound	Height (ft.)
1	0 . 6A
2	0.36A
3	0.216A
4	0.1296A

c. How is each term in the sequence related to the one that came before it?

Each term is 0.6 times the previous term.

d. Suppose the initial height is A ft. and that each rebound, rather than being 60% of the previous height, is r times the previous height, where 0 < r < 1. What are the first four rebound heights? What is the n^{th} rebound height?

The rebound heights are $h_1 = Ar$ ft, $h_2 = Ar^2$ ft, $h_3 = Ar^3$ ft, and $h_4 = Ar^4$ ft. The n^{th} rebound height is $h_n = ar^n$ ft.

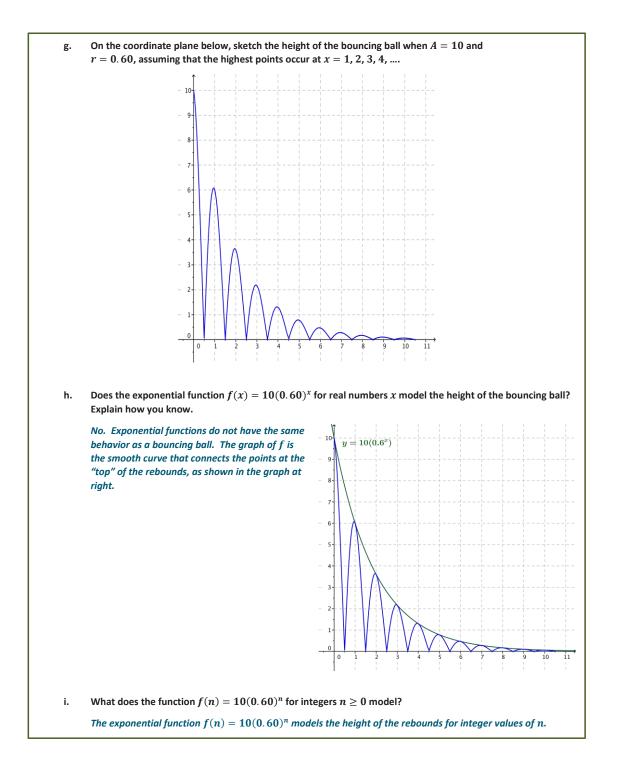
e. What kind of sequence is the sequence of rebound heights?

The sequence of rebounds is geometric (geometrically decreasing).

f. Suppose that we define a function f with domain the positive integers so that f(1) is the first rebound height, f(2) is the second rebound height, and continuing so that f(k) is the kth rebound height for positive integers k. What type of function would you expect f to be?

Since each bounce has a rebound height of r times the previous height, the function f should be exponentially decreasing.

25: Geometric Sequences and Exponential Growth and Decay



EUREKA MATH

Lesson 25:

5: Geometric Sequences and Exponential Growth and Decay

Exercise 1 (4 minutes)

While students are working on Exercise 1, circulate around the classroom to ensure student comprehension. After students complete the exercise, debrief to make sure that everyone understands that the salary model is linear and not exponential.

Exe	 per day, and each day she works she earns \$100 more than the day before. a. How much does she earn on day 5? On day 5, she earns \$500. 		Scaffolding: If students struggle with calculating the earnings or visualizing the graph, have them calculate the salary for the first five days and plot the points corresponding to those	
	b.	If you were to graph the growth of her salary for the first 10 days she worked, what would the graph look like? The graph would be a set of points lying on a straight line.	earnings.	
	c.	What kind of sequence is the sequence of Jane's earnings each day? The sequence of her earnings is arithmetic (that is, the sequence is arithmetically increas	ing).	

Discussion (2 minutes)

Pause here to ask students the following questions:

- What have we learned so far? What is the point of the previous two exercises?
 - There are two different types of sequences, arithmetic and geometric, that model different ways that quantities can increase or decrease.
- What do you recall about geometric and arithmetic sequences from Algebra I?
 - To get from one term of an arithmetic sequence to the next, you add a number d, called the common difference. To get from one term of a geometric sequence to the next you multiply by a number r, called the common quotient (or common ratio).

For historical reasons, the number *r* that we call the *common quotient* is often referred to as the *common ratio*, which is not fully in agreement with our definition of *ratio*. Using the term is acceptable because its use is so standardized in mathematics.

Exercise 2 (9 minutes)

Students use a geometric sequence to model the following situation and develop closed and recursive formulas for the sequence. Then they find an exponential model first using base 2 and then using base e and solving for the doubling time. Students should work in pairs on these exercises, using a calculator as needed. They should be introduced to P_0 as the notation for the original number of bacteria (at time t = 0) and also the first term of the sequence, which we refer to as the *zero term*. Counting terms starting with 0 means that if we represent our sequence by a function f, then $P_n = f(n)$ for integers $n \ge 0$.

25: Geometric Sequences and Exponential Growth and Decay

2. A laboratory culture begins with 1,000 bacteria at the beginning of the experiment, which we denote by time 0 hours. By time 2 hours, there are 2,890 bacteria.

a. If the number of bacteria is increasing by a common factor each hour, how many bacteria are there at time 1 hour? At time 3 hours?

If P_0 is the original population, the first three terms of the geometric sequence are P_0 , P_0r , and P_0r^2 . In this case, $P_0 = 1000$ and $P_2 = P_0r^2 = 2890$, so $r^2 = 2.89$ and r = 1.7. Therefore, $P_1 = P_0r = 1700$ and $P_3 = P_0r^3 = 2890 \cdot 1.7 = 4913$.

b. Find the explicit formula for term P_n of the sequence in this case.

 $P_n = P_0 r^n = 1000(1.7)^n$

- c. How would you find term P_{n+1} if you know term P_n ? Write a recursive formula for P_{n+1} in terms of P_n . You would multiply the n^{th} term by r, which in this case is 1.7. We have $P_{n+1} = 1.7 P_n$.
- d. If P_0 is the initial population, the growth of the population P_n at time *n* hours can be modeled by the sequence $P_n = P(n)$, where *P* is an exponential function with the following form:

$$P(n) = P_0 2^{kn}$$
, where $k > 0$.

Find the value of k and write the function P in this form. Approximate k to four decimal places.

We know that $P(n) = 1000(1.7)^n$ and $1.7 = 2^{\log_2(1.7)}$, with $k = \log_2(1.7) = \frac{\log(1.7)}{\log(2)} \approx 0.7655$. Thus, we can express P in the form:

$$P(n) = 1000(2^{0.7655n}).$$

e. Use the function in part (d) to determine the value of t when the population of bacteria has doubled. We need to solve $2000 = 1000(2^{0.7655t})$, which happens when the exponent is 1.

$$0.7655t = 1$$

 $t = \frac{1}{0.7655}$
 $t \approx 1.306$

This population doubles in roughly $1.306\ \text{hours},$ which is about $1\ \text{hour}\ \text{and}\ 18\ \text{minutes}.$

f. If *P*₀ is the initial population, the growth of the population *P* at time *t* can be expressed in the following form:

$$P(n) = P_0 e^{kn}$$
, where $k > 0$.

Find the value of k, and write the function P in this form. Approximate k to four decimal places.

Substituting in the formula for t = 2, we get $2890 = 1000e^{2k}$. Solving for k, we get $k = \ln(1.7) \approx 0.5306$. Thus, we can express P in the form: $P(t) = 1000(e^{0.5306t})$.

Lesson 25:

Geometric Sequences and Exponential Growth and Decay

411

Scaffolding: Students may need the hint that, in the Opening Exercise, they wrote the terms of a geometric sequence so they can begin with the first three terms of such a sequence and use it to find *r*.

g. Use the formula in part (d) to determine the value of t when the population of bacteria has doubled. Substituting in the formula with k = 0.5306, we get $2000 = 1000e^{0.5306t}$. Solving for t, we get $t = \frac{\ln(2)}{0.5306} \approx 1.306$, which is the same value we found in part (e).

Discussion (4 minutes)

MP.3

Students should share their solutions to Exercise 2 with the rest of the class, giving particular attention to parts (b) and (c).

Part (b) of Exercise 2 presents what is called the *explicit formula* (or *closed form*) for a geometric sequence, whereas part (c) introduces the idea of a *recursive formula*. Students need to understand that given any two terms in a geometric (or arithmetic) sequence, they can derive the explicit formula. Recursion provides a way of defining a sequence given one or more initial terms by using one term of the sequence to find the next term.

Discuss with students the distinction between the two functions:

 $P(n) = 1000(2^{0.7655n})$ for integers $n \ge 0$, and

 $P(t) = 1000(2^{0.7655t})$ for real numbers $t \ge 0$.

In the first case, the function P as a function of an integer n represents the population at discrete times n = 0, 1, 2, ..., while P as a function of a real number t represents the population at any time $t \ge 0$, regardless of whether that time is an integer. If we graphed these two functions, the first graph would be the points (0, P(0)), (1, P(1)), (2, P(2)), etc., and the second graph would be the smooth curve drawn through the points of the first graph. We can use either statement of the function to define a sequence $P_n = P(n)$ for integers n. This was discussed in Opening Exercise part (h), as the distinction between the graph of the points at the top of the rebounds of the bouncing ball and the graph of the smooth curve through those points.

Our work earlier in the module that extended the laws of exponents to the set of all real numbers applies here to extend a discretely defined function such as $P(n) = 1000(2^{0.7655n})$ for integers $n \ge 0$ to the continuously defined function $P(t) = 1000(2^{0.7655t})$ for real numbers $t \ge 0$. Then, we can solve exponential equations involving sequences using our logarithmic tools.

Students may question why we could find two different exponential representations of the function P in parts (d) and (f) of Exercise 2. We can use the properties of exponents to express an exponential function in terms of any base. In Lesson 6 earlier in the module, we saw that the functions $H(t) = ae^t$ for real numbers a have rate of change equal to 1. For this reason, which is important in Calculus and beyond, we usually prefer to use base e for exponential functions.

Exercises 3-4 (5 minutes)

Students should work on these exercises in pairs. They can take turns calculating terms in the sequences. Circulate the room and observe students to call on to share their work with the class before proceeding to the next and final set of exercises.

125: Geometric Sequences and Exponential Growth and Decay

Scaffolding: 3. The first term a_0 of a geometric sequence is -5, and the common ratio r is -2. Students may need the hint What are the terms a_0 , a_1 , and a_2 ? a. that in the Opening Exercise, $a_0 = -5$ they wrote the terms of a $a_1 = 10$ geometric sequence so they $a_2 = -20$ can begin with the first three terms of such a sequence and Find a recursive formula for this sequence. b. use it to find r. The recursive formula is $a_{n+1} = -2a_n$, with $a_0 = -5$. Find an explicit formula for this sequence. c. The explicit formula is $a_n = -5(-2)^n$, for $n \ge 0$. d. What is term a_9 ? Using the explicit formula, we find: $a_9 = (-5) \cdot (-2)^9 = 2560$. What is term a_{10} ? e. One solution is to use the explicit formula: $a_{10} = (-5) \cdot (-2)^{10} = -5120$. Another solution is to use the recursive formula: $a_{10} = a_9 \cdot (-2) = -5120$. Term a_4 of a geometric sequence is 5.8564, and term a_5 is -6.44204. 4. What is the common ratio r? a. We have $r = \frac{-6.44204}{5.8564} = -1.1$. The common ratio is -1.1. What is term a_0 ? b. From the definition of a geometric sequence, $a_4 = a_0 r^4 = 5.8564$, so $a_0 = \frac{5.8564}{(-1.1)^4} = \frac{5.8564}{1.4641} = 4$. Find a recursive formula for this sequence. c. The recursive formula is $a_{n+1} = -1$. $1(a_n)$ with $a_0 = 4$. Find an explicit formula for this sequence. d. The explicit formula is $a_n = 4(-1, 1)^n$, for $n \ge 0$.

Exercises 5–6 (4 minutes)

This final set of exercises in the lesson attends to F-BF.A.2, and asks students to translate between explicit and recursive formulas for geometric sequences. Students should continue to work in pairs on these exercises.

5. The recursive formula for a geometric sequence is $a_{n+1} = 3.92(a_n)$ with $a_0 = 4.05$. Find an explicit formula for this sequence. The common ratio is 3.92, and the initial value is 4.05, so the explicit formula is $a_n = 4.05(3.92)^n$ for $n \ge 0$.

Lesson 25:

Geometric Sequences and Exponential Growth and Decay

6. The explicit formula for a geometric sequence is $a_n = 147(2.1)^{3n}$. Find a recursive formula for this sequence. First, we rewrite the sequence as $a_n = 147(2.1^3)^n = 147(9.261)^n$. We then see that the common ratio is 9.261, and the initial value is 147, so the recursive formula is

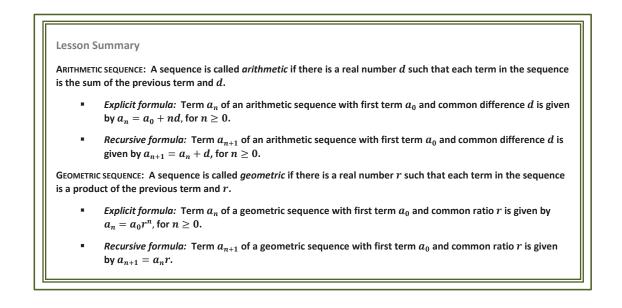
 $a_{n+1} = (9.261)a_n$ with $a_0 = 147$.

Closing (4 minutes)

Debrief students by asking the following questions and taking answers as a class:

- If we know that a situation can be described using a geometric sequence, how can we create the geometric sequence for that model? How is the geometric sequence related to an exponential function with base e?
 - The terms of the geometric sequence are determined by letting $P_n = P(n)$ for an exponential function $P(n) = P_0 e^{kn}$, where P_0 is the initial amount, n indicates the term of the sequence, and e^k is the growth rate of the function. Depending on the data given in the situation, we can use either the explicit formula or the recursive formula to find the common ratio $r = e^k$ of the geometric sequence and its initial term P_0 .
- Do we need to use an exponential function base *e*?
 - No. We can choose any base that we want for an exponential function, but mathematicians often choose base e for exponential and logarithm functions.

Although arithmetic sequences are not emphasized in this lesson, they do make an appearance in the Problem Set. For completeness, the lesson summary includes both kinds of sequences. Explicit and recursive formulas for each type of sequence are summarized in the box below, which can be reproduced and posted in the classroom:



Exit Ticket (5 minutes)

Lesson 25:

25: Geometric Sequences and Exponential Growth and Decay

Name

Date

Lesson 25: Geometric Sequences and Exponential Growth and

Decay

Exit Ticket

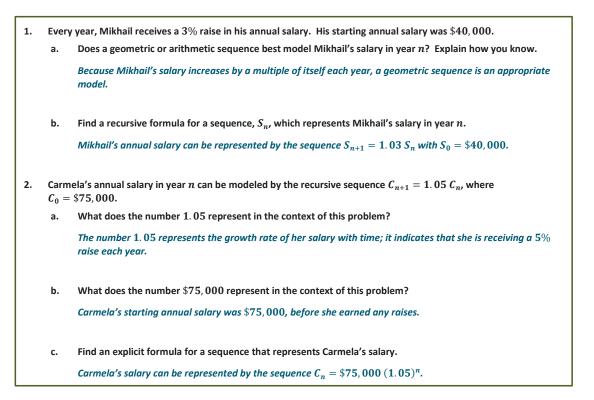
- 1. Every year, Mikhail receives a 3% raise in his annual salary. His starting annual salary was \$40,000.
 - a. Does a geometric or arithmetic sequence best model Mikhail's salary in year *n*? Explain how you know.

b. Find a recursive formula for a sequence, S_n , which represents Mikhail's salary in year n.

- 2. Carmela's annual salary in year *n* can be modeled by the recursive sequence $C_{n+1} = 1.05 C_n$, where $C_0 = $75,000$. a. What does the number 1.05 represent in the context of this problem?
 - b. What does the number \$75,000 represent in the context of this problem?
 - c. Find an explicit formula for a sequence that represents Carmela's salary.

25: Geometric Sequences and Exponential Growth and Decay

Exit Ticket Sample Solutions



Problem Set Sample Solutions

1. Convert the following recursive formulas for sequences to explicit formulas. a. $a_{n+1} = 4.2 + a_n$ with $a_0 = 12$ $a_n = 12 + 4.2n$ for $n \ge 0$ b. $a_{n+1} = 4.2a_n$ with $a_0 = 12$ $a_n = 12(4.2)^n$ for $n \ge 0$ c. $a_{n+1} = \sqrt{5} a_n$ with $a_0 = 2$ $a_n = 2(\sqrt{5})^n$ for $n \ge 0$ d. $a_{n+1} = \sqrt{5} + a_n$ with $a_0 = 2$ $a_n = 2 + n\sqrt{5}$ for $n \ge 0$ e. $a_{n+1} = \pi a_n$ with $a_0 = \pi$ $a_n = \pi(\pi)^n = \pi^{n+1}$ for $n \ge 0$

Lesson 25:

25: Geometric Sequences and Exponential Growth and Decay

engage^{ny}

Convert the following explicit formulas for sequences to recursive formulas.

2.

ALGEBRA II

 $a_n = \frac{1}{5}(3^n)$ for $n \ge 0$ a. $a_{n+1} = 3a_n$ with $a_0 = \frac{1}{5}$ b. $a_n = 16 - 2n$ for $n \ge 0$ $a_{n+1} = a_n - 2$ with $a_0 = 16$ c. $a_n = 16\left(\frac{1}{2}\right)^n$ for $n \ge 0$ $a_{n+1} = \frac{1}{2}a_n$ with $a_0 = 16$ d. $a_n = 71 - \frac{6}{7}n$ for $n \ge 0$ $a_{n+1} = a_n - \frac{6}{7}$ with $a_0 = 71$ $a_n = 190(1.03)^n$ for $n \ge 0$ e. $a_{n+1} = 1.03 \ a_n$ with $a_0 = 190$ If a geometric sequence has $a_1 = 256$ and $a_8 = 512$, find the exact value of the common ratio r. 3. The recursive formula is $a_{n+1} = a_n \cdot r$, so we have $a_8 = a_7(r)$ $= a_6(r^2)$ $=a_{5}(r^{3})$ $= a_1(r^7)$ $512 = 256(r^7)$ $2 = r^7$ $r = \sqrt[7]{2}$ If a geometric sequence has $a_2 = 495$ and $a_6 = 311$, approximate the value of the common ratio r to four decimal 4. places. The recursive formula is $a_{n+1} = a_n \cdot r$, so we have $a_6 = a_5(r)$ $= a_4(r^2)$ $= a_3(r^3)$ $= a_2(r^4)$ $311 = 495(r^4)$ $r^4 = \frac{311}{495}$ $r = \sqrt[4]{\frac{311}{495}} \approx 0.8903.$

EUREKA Math Lesson 25:

5: Geometric Sequences and Exponential Growth and Decay

begin at term a_0 and have $a_2 = 4$ and $a_4 = 12$.

5.

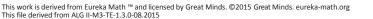
Ū

ALGEBRA II

 $a_4 - a_2 = 12 - 4 = 8$ and $a_4 - a_2 = (a_0 + 4d) - (a_0 + 2d)$, so that 8 = 2d and d = 4. Since d = 4, we know that $a_0 = a_2 - 2d = 4 - 8 = -4$. So, the explicit formula for this arithmetic sequence is $a_n = -4 + 4n$. We then know that $a_{10} = -4 + 40 = 36$. Geometric: The explicit formula has the form $a_n = a_0(r^n)$, so $a_2 = a_0(r^2)$ and $a_4 = a_0(r^4)$, so $\frac{a_4}{a_2}r^2$ and $\frac{a_4}{a_2} = \frac{12}{4} = 3$. Thus, $r^2 = 3$, so $r = \pm\sqrt{3}$. Since $r^2 = 3$, we have $a_2 = 4 = a_0(r^2)$, so that $a_0 = \frac{4}{3}$. Then the explicit formula for this geometric sequence is $a_n = \frac{4}{3} (\pm \sqrt{3})^n$. We then know that $a_{10} = \frac{4}{3} (\pm \sqrt{3})^{10} = \frac{4}{3} (3^5) = 4(3^4) = 324.$ Thus, the difference between the terms a_{10} of these two sequences is 324 - 36 = 288. Given the geometric sequence defined by the following values of a_0 and r, find the value of n so that a_n has the 6. specified value. $a_0 = 64, r = \frac{1}{2}, a_n = 2$ а. The explicit formula for this geometric sequence is $a_n = 64 \left(\frac{1}{2}\right)^n$ and $a_n = 2$. $2 = 64 \left(\frac{1}{2}\right)^n$ $\frac{1}{32} = \left(\frac{1}{2}\right)^n$ $\left(\frac{1}{2}\right)^5 = \left(\frac{1}{2}\right)^n$ *Thus,* $a_5 = 2$ *.* $a_0 = 13, r = 3, a_n = 85293$ b. The explicit formula for this geometric sequence is $a_n = 13(3)^n$, and we have $a_n = 85293$. $13(3)^n = 85293$ $3^n = 6561$ $3^n = 3^8$ n = 8*Thus,* $a_8 = 85293$. $a_0 = 6.7, r = 1.9, a_n = 7804.8$ c. The explicit formula for this geometric sequence is $a_n = 6.7(1.9)^n$, and we have $a_n = 7804.8$. $6.7(1.9)^n = 7804.8$ $(1.9)^n = 1164.9$ $n \log(1.9) = \log(1164.9)$ $n = \frac{\log(1164.9)}{\log(1.9)} = 11$ *Thus,* $a_{11} = 7804.8.$ EUREKA Lesson 25: Geometric Sequences and Exponential Growth and Decay engage

Find the difference between the terms a_{10} of an arithmetic sequence and a geometric sequence, both of which

Arithmetic: The explicit formula has the form $a_n = a_0 + nd$, so $a_2 = a_0 + 2d$ and $a_4 = a_0 + 4d$. Then



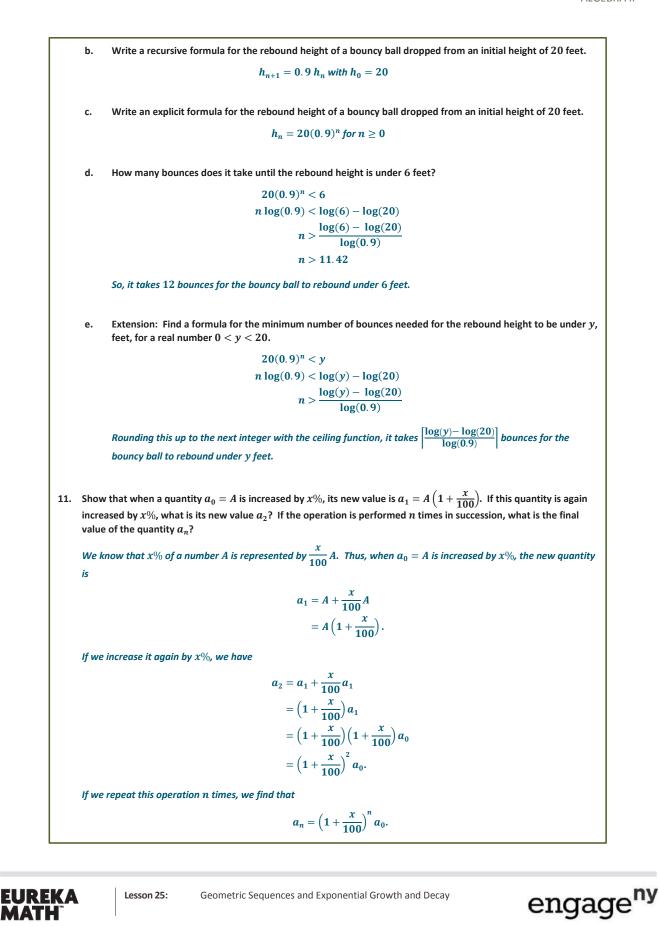
 $a_0 = 10958, r = 0.7, a_n = 25.5$ d. The explicit formula for this geometric sequence is $a_n = 10958(0.7)^n$, and we have $a_n = 25.5$. $10958(0.7)^n = 25.5$ log(10958) + n log(0.7) = log(25.5) $n = \frac{\log(25.5) - \log(10958)}{\log(0.7)}$ *n* = 17 *Thus,* $a_{17} = 25.5.$ Jenny planted a sunflower seedling that started out 5 cm tall, and she finds that the average daily growth is 3.5 cm. 7. Find a recursive formula for the height of the sunflower plant on day *n*. а. $h_{n+1} = 3.5 + h_n$ with $h_0 = 5$ Find an explicit formula for the height of the sunflower plant on day $n \ge 0$. b. $h_n = 5 + 3.5n$ Kevin modeled the height of his son (in inches) at age n years for n = 2, 3, ..., 8 by the sequence 8. $h_n = 34 + 3.2(n-2)$. Interpret the meaning of the constants 34 and 3.2 in his model. At age 2, Kevin's son was 34 inches tall, and between the ages of 2 and 8 he grew at a rate of 3.2 inches per year. 9. Astrid sells art prints through an online retailer. She charges a flat rate per order for an order processing fee, sales tax, and the same price for each print. The formula for the cost of buying n prints is given by $P_n = 4.5 + 12.6n$. Interpret the number 4.5 in the context of this problem. a. The number 4.5 represents a \$4.50 order processing fee. Interpret the number 12.6 in the context of this problem. b. The number 12.6 represents the cost of each print, including the sales tax. Find a recursive formula for the cost of buying *n* prints. с. $P_n = 12.6 + P_{n-1}$ with $P_1 = 17.10$ (Notice that it makes no sense to start the sequence with n = 0, since that would mean you need to pay the processing fee when you do not place an order.) 10. A bouncy ball rebounds to 90% of the height of the preceding bounce. Craig drops a bouncy ball from a height of 20 feet. Write out the sequence of the heights h_1, h_2, h_3 , and h_4 of the first four bounces, counting the initial height a. as $h_0 = 20$. $h_1 = 18$ $h_2 = 16.2$ $h_3 = 14.58$ $h_4 = 13.122$

MP.2

25: Geometric Sequences and Exponential Growth and Decay

M3

Lesson 25



12. When Eli and Daisy arrive at their cabin in the woods in the middle of winter, the interior temperature is 40° F. Eli wants to turn up the thermostat by $2^\circ F$ every 15 minutes. Find an explicit formula for the sequence that а. represents the thermostat settings using Eli's plan. Let *n* represent the number of 15-minute increments. The function E(n) = 40 + 2n models the thermostat settings using Eli's plan. Daisy wants to turn up the thermostat by 4% every 15 minutes. Find an explicit formula for the sequence b. that represents the thermostat settings using Daisy's plan. Let *n* represent the number of 15-minute increments. The function $D(n) = 40(1.04)^n$ models the thermostat settings using Daisy's plan Which plan gets the thermostat to 60°F most quickly? c. Making a table of values, we see that Eli's plan sets the thermostat to 60°F first. n Elapsed Time E(n)D(n)0 minutes 0 40 40.00 1 15 minutes 42 41.60 2 30 minutes 44 43.26 3 45 minutes 46 45.00 4 1 hour **48** 46.79 1 hour 15 minutes 5 50 48.67 1 hour 30 minutes 52 50.61 6 7 1 hour 45 minutes 54 52.64 8 2 hours 56 54.74 9 2 hours 15 minutes **58** 56.93 10 2 hours 30 minutes 60 59.21 Which plan gets the thermostat to 72°F most quickly? d.

Continuing the table of values from part (c), we see that Daisy's plan sets the thermostat to $72^\circ F$ first.

n	Elapsed Time	E (n)	D (n)
11	2 hours 45 minutes	62	61 . 58
12	3 hours	64	64.04
13	3 hours 15 minutes	66	66.60
14	3 hours 30 minutes	68	69.27
15	3 hours 45 minutes	70	72.04

13. In nuclear fission, one neutron splits an atom causing the release of two other neutrons, each of which splits an atom and produces the release of two more neutrons, and so on.

a. Write the first few terms of the sequence showing the numbers of atoms being split at each stage after a single atom splits. Use $a_0 = 1$.

 $a_0 = 1, a_1 = 2, a_2 = 4, a_3 = 8$

Lesson 25:

5: Geometric Sequences and Exponential Growth and Decay

b. Find the explicit formula that represents your sequence in part (a). a_n = 2ⁿ
c. If the interval from one stage to the next is one-millionth of a second, write an expression for the number of atoms being split at the end of one second. At the end of one second n = 1000000, so 2¹⁰⁰⁰⁰⁰⁰ atoms are being split.
d. If the number from part (c) were written out, how many digits would it have? The number of digits in a number x is given by rounding up log(x) to the next largest integer; that is, by the ceiling of log(x), [log(x)]. Thus, there are [log(2¹⁰⁰⁰⁰⁰⁰)] digits.

Since $log(2^{1000000}) = 1000000 log(2) \approx 301030$, there are 301030 digits in the number $2^{1000000}$.

Lesson 25:

25: Geometric Sequences and Exponential Growth and Decay

Student Outcomes

- Students develop a *general growth/decay rate formula* in the context of compound interest.
- Students compute *future values* of investments with continually compounding interest rates.

Lesson Notes

In this lesson, we develop a general growth/decay rate formula by investigating the compound interest formula. In Algebra I, the compound interest formula is described via sequences or functions whose domain is a subset of the integers. We start from this point (F-IFA.3) and extend the function to a domain of all real numbers. The function for compound interest is developed first using a recursive process to generate a geometric sequence, which is then rewritten in its explicit form (F-BF.A.1a, F-BF.A.2). Many of the situations and problems presented here were first encountered in Module 3 of Algebra I, but now students are able to use logarithms to find solutions, using technology appropriately to evaluate the logarithms (MP.5). Students also work on converting between different growth rates and time units (A-SSE.B.3c). Students continue to create equations in one variable from the exponential models to solve problems (A-CED.A.3).

Note: In this lesson, the letter r stands for the percent rate of change, which is different from how the letter r was used in Lesson 25 where it denoted the common ratio. These two concepts are slightly different (in this lesson, 1 + r is the common ratio), and this difference might cause confusion for your students. We use the letter r to refer to both, due to historical reasons and because r is the notation most commonly used by adults in both situations. Help students understand how the context dictates whether r stands for the common ratio or the percent rate of change.

Classwork

Example 1 (8 minutes)

Present the following situation, which was first seen in Algebra I, to the students. Some trigger questions are presented to help advance student understanding. A general exponential model of the form $F = P(1 + r)^t$ is presented. This formula is appropriate in most applications that can be modeled using exponential functions and was introduced in Module 3 Lesson 4 of Algebra I. It has been a while since the students have seen this formula, so it is developed slowly through this example first using a recursive process before giving the explicit form (**F-BF.A.1a, F-BF.A.2**).

A youth group has a yard sale to raise money for charity. The group earns \$800 but decides to put the money in the bank for a while. Their local bank pays an interest rate of 3% per year, and the group decides to put all of the interest they earn back into the account to earn even more interest.

Scaffolding:

- Either present the following information explicitly or encourage students to write out the first few terms without evaluating to see the structure. Once they see that P₂ = 800 · 1.03² and that P₃ = 800 · 1.03³, they should be able to see that P_m = 800 · 1.03^m.
- Have advanced learners work on their own to develop the values for years 0–3 and year m.

423

engage

- We refer to the time at which the money was deposited into the bank as year 0. At the end of each year, how can we calculate how much money is in the bank if we know the previous year's balance?
 - ^D Each year, multiply the previous year's balance by 1.03. For example, since 3% can be written 0.03, the amount at the end of the first year is 800 + 800(0.03) = 800(1 + 0.03) = 800(1.03).
- How much money is in the bank at the following times?

Year	Balance in Terms of Last Year's Balance	Balance in Terms of the Year, m
	(in dollars)	(in dollars)
0	800	800
1	824 = 800(1.03)	824 = 800(1.03)
2	848.72 = 824(1.03)	848.72 = 800(1.03)(1.03)
3	$874.18 \approx 848.72(1.03)$	$874.18 \approx 800(1.03)(1.03)(1.03)$
m	$b_{m-1} \cdot (1.03)$	$800(1.03)^m$

- If instead of evaluating, we write these balances out as mathematical expressions, what pattern do you notice?
 - For instance, the second year would be $800(1.03)(1.03) = 800(1.03)^2$. From there we can see that the balance in the m^{th} year would be $800(1.03)^m$ dollars.
- What kind of sequence do these numbers form? Explain how you know.
 - They form a geometric sequence because each year's balance is the previous year's balance multiplied by 1.03.
- Write a recursive formula for the balance in the $(m + 1)^{st}$ year, denoted by b_{m+1} , in terms of the balance of the m^{th} year, denoted by b_m .
 - $b_{m+1} = (1.03)b_m$
- What is the explicit formula that gives the amount of money, F (i.e., future value), in the bank account after m years?
 - The group started with \$800 and this increases 3% each year. After the first year, the group has $800 \cdot 1.03$ in the account, and after m years, they should have $800 \cdot 1.03^m$. Thus, the formula for the balance (in dollars) could be represented by $F = 800(1.03)^m$.
- Let us examine the base of the exponent in the above problem a little more closely, and write it as 1.03 = 1 + 0.03. Rewrite the formula for the amount they have in the bank after *m* years using 1 + 0.03 instead of 1.03.
 - $F = 800(1 + 0.03)^m$
- What does the 800 represent? What does the 1 represent? What does the 0.03 represent?
 - The number 800 represents the \$800 starting amount. The 1 represents 100% of the previous balance that is maintained every year. The 0.03 represents the 3% of the previous balance that is added each year due to interest.

Scaffolding:

Lesson 26

For struggling classes, Example 2 may be omitted in lieu of developing fluency with the formula through practice exercises. The ending discussion questions in Example 2 should be discussed throughout the practice. Some practice exercises are presented below:

- Evaluate $300(1 + 0.12)^3$
- Find the future value of an investment of \$1000 growing at a rate of 3% per year, compounded monthly.
- Find the growth rate and how many days it would take to grow \$2 into \$2 million if the amount doubles every day.
- Find the growth rate per year necessary to grow \$450 into \$900 after ten years.
- Let P be the present or starting value of 800, let r represent the interest rate of 3%, and t be the number of years, where we allow t to be any real number. Write a formula for the future value F in terms of P, r, and t.

424

MP.8

M3

ALGEBRA II

Discussion (5 minutes)

Make three important points during this discussion: (1) that the formula $F = P(1 + r)^t$ can be used in situations far more general than just finance, (2) that r is the percent rate of change expressed as a unit rate, and (3) that the domain of the function given by the formula now includes all real numbers. Note: r is expressed as a unit rate for a unit of time; in finance, that unit of time is typically a year. In the next examples, we investigate compounding interest problem with different compounding periods.

• This formula, $F = P(1 + r)^t$, can be used in far more situations than just finance, including radioactive decay and population growth. Given a *percent rate of change* (i.e., the percentage increase or decrease of an amount over a unit of time); the number r is the unit rate of that percentage rate of change. For example, if a bank account grows by 2.5% a year, the unit rate is $\frac{2.5}{100}$, which means r = 0.025. What is the unit rate if the

percent rate of change is a 12% increase? A 100% increase? A 0.2% increase? A 5% decrease?

- r = 0.12, r = 1, r = 0.002, r = -0.05
- Given the value *P* and the percent rate of change represented by the unit rate *r*, we can think of the formula as function of time *t*, that is, $F(t) = P(1 + r)^t$. In Algebra I, *t* represented a positive integer, but now we can think of the function as having a domain of all real numbers. Why can we think of the domain of this function as being all real numbers?
 - Earlier in this module, we learned how to define the value of an exponent when the power is a rational number, and we showed how to use that definition to evaluate exponents when the power is an irrational number. Thus, we can assume that the domain of the function F can be any real number.

Students can now use the fact that the function F has a domain of all real numbers and their knowledge of logarithms to solve equations involving the function $F = P(1 + r)^t$.

- In Example 1, the group's goal is to save \$1,000 with the money they made from the yard sale. How many years does it take for the amount in the bank to be at least \$1,000?
 - Substitute 1000 for F and solve for t using logarithms.

$$1000 = 800 \cdot 1.03^{t}$$
$$\frac{1000}{800} = 1.03^{t}$$
$$1.25 = 1.03^{t}$$
$$\ln(1.25) = t \cdot \ln(1.03)$$
$$t = \frac{\ln(1.25)}{\ln(1.03)} \approx 7.5$$

Since they earn interest every year, it takes them 8 years to save more than \$1,000 with this money.

- What does the approximation 7.5 mean?
 - The amount in the bank reaches \$1,000 after roughly 7 years, 6 months.

The percent rate of change can also be negative, which usually corresponds to a negative unit rate r, with -1 < r < 0.

- Can you give an example of percent rate of change that we have studied before that has a negative rate of change?
 - Radioactive decay and shrinking populations are examples that have negative rates of change. An
 interesting example is the bean-counting experiment where we started with lots of beans and removed
 beans after each trial.

425

engage

At this point in the lesson, you may want to work out one problem from the non-financial Problem Set as an example, or have students work one as an exercise.

Example 2 (8 minutes)

In the future value function $F(t) = P(1 + r)^t$, the number r is the unit rate of the percent rate of change, and t is time. Frequently, the time units for the percent rate of change and the time unit for t do not agree and some calculation needs to be done so that they do. For instance, if the growth rate is an amount per hour and the time period is a number of days, these quantities need to be converted to use the same units.

In this example, students learn about compounding periods and percent rates of change that are based upon different units (A-SSE.B.3c). Students explore these concepts through some exercises immediately following the example.

- In finance, the interest rates are almost always tied to a specific time period and only accumulate once this has elapsed (called *compounding*). In this context, we refer to the time periods as compounding periods.
- Interest rates for accounts are frequently given in terms of what is called the nominal annual percentage rate of change or nominal APR. Specifically, the nominal APR is the percent rate of change per compounding period times the number of compounding periods per year. For example, if the percent rate of change is 0.5% per month, then the nominal APR is 6% since there are 12 months in a year. The nominal APR is an easy way of discussing a monthly or daily percent rate of change in terms of a yearly rate, but as is shown in the examples below, it does not necessarily reflect actual or effective percent rate of change per year.

Note about language: In this lesson and later lessons, we often use the phrase "an interest rate of 3% per year compounded monthly" to mean, a nominal APR of 3% compounded monthly. Both phrases refer to nominal APR.

- Frequently in financial problems and real-life situations, the nominal APR is given and the percent rate of change per compounding period is deducted from it. The following example shows how to deduce the future value function in this context.
- If the nominal APR is 6% and is compounded monthly, then monthly percent rate of change is $\frac{6\%}{12}$ or 0.5% per month. That means that, if a starting value of \$800 was deposited in a bank, after one month there would be $800\left(1+\frac{0.06}{12}\right)^{1}$ in the account, after two months there would be $800\left(1+\frac{0.06}{12}\right)^{2}$, and after 12 months in the bank there would be $\$800\left(1+\frac{0.06}{12}\right)^{12}$ in the account. In fact, since it is compounding 12 times a year, it would compound 12 times over 1 year, 24 times over 2 years, 36 times over 3 years, and 12t times over t years. Hence, a function that describes the amount in the account after t years is

$$F(t) = 800 \left(1 + \frac{0.06}{12}\right)^{12t}.$$

Describe a function F that describes the amount that would be in an account after t years if P was deposited in an account with a nominal APR given by the unit rate r that is compounded n times a year.

$$\Box \quad F(t) = P\left(1 + \frac{r}{n}\right)^{nt}$$

In this form, $\frac{r}{n}$ is the unit rate per compounding period, and nt is the total number of compounding periods over time t.

• However, time *t* can be any real number; it does not have to be integer valued. For example, if a savings account earns 1% interest per year, compounded monthly, then we would say that the account compounds at a rate of $\frac{0.01}{12}$ per month. How much money would be in the account after $2\frac{1}{2}$ years with an initial deposit of \$200?

Because
$$F(2.5) = 200 \left(1 + \frac{0.01}{12}\right)^{12(2.5)} \approx 205.06$$
, there is \$205.06 in the account after $2\frac{1}{2}$ years.

Exercise (8 minutes)

Have students work through the following problem to explore the consequences of having different compounding periods. After students finish, debrief them to ensure understanding.

Exercise		
Answer the following questions.		
The youth group from Example 1 is given the option of investing their money at 2.976% interest per year, compounded monthly instead of depositing it in the original account earning 3.0% compounded yearly.		
a.	With an initial deposit of $\$800$, how much would be in each account after two years?	
	The account from the beginning of the lesson would contain \$848.72, and the new account would contain $800\left(1+\frac{0.02976}{12}\right)^{12.2} \approx 849.00.$	
b.	Compare the total amount from part (a) to how much they would have made using the interest rate of 3% compounded yearly for two years. Which account would you recommend the youth group invest its money in? Why?	
	The 3% compounded yearly yields \$848.72, while the 2.976% compounded monthly yields \$849.00 after two years. The yield from the two accounts are very close to each other, but the account compounded monthly earns \$0.28 more over the two-year period.	

In part (b), the amount from both options is virtually the same: \$848.72 versus \$849.00. But point out that there is something strange about the numbers; even though the interest rate of 2.975% is less than the interest rate of 3%, the total amount is more. This is due to compounding every month versus every year.

To illustrate this, rewrite the expression $\left(1 + \frac{0.02976}{12}\right)^{12t}$ as $((1 + 0.00248)^{12})^t$, and take the 12^{th} power of 1.00248; the result is $((1.00248)^{12})^t$, which is approximately $(1.030169)^t$. This shows that when the nominal APR of 2.975% compounded monthly is written as a percent rate of change compounded yearly (the same compounding period as in Example 1), then the interest rate is approximately 3.0169%, which is more than 3%. In other words, interest rates can only be accurately compared when they have both been converted to the same compounding period.

(cc) BY-NC-SA

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

427

Lesson 26

ALGEBRA II

Example 3 (10 minutes)

MP.7 & MP.8 In this example, students develop the $F(t) = Pe^{rt}$ model using a numerical approach. Have students perform the beginning calculations on their own as much as possible before transitioning into continuous compounding.

- Thus far, we have seen that the number of times a quantity compounds per year does have an effect on the future value. For instance, if someone tells you that one savings account gives you a nominal APR of 3% per year compounded yearly, and another gives you a nominal APR of 3% per year compounded monthly, which account generates more interest by the end of the year?
 - The account that compounds monthly generates more interest.
- How much more interest is generated? Does it give twelve times as much? How can we find out how much money we have at the end of the year if we deposit \$100?
 - Calculate using the formula.

$$F = 100(1 + 0.03)^{1} = 103$$
$$F = 100\left(1 + \frac{0.03}{12}\right)^{12} \approx 103.04$$

The account compounding monthly earned 4 cents more.

- So, even though the second account compounded twelve times as much as the other, it only earned a fraction of a dollar more. Do we think that there is a limit to how much an account can earn through increasing the number of times compounding?
 - Answers may vary. At this point, students have experience with logarithms that grow incredibly slowly but have no upper bound. This could be a situation with an upper bound or not.
- Let's explore this idea of a limit using our calculators to do the work. Holding the principal, percent rate of change, and number of time units constant, is there a limit to how large the future value can become solely through increasing the number of compounding periods?
- We can simplify this question by setting P = 1, r = 1, and t = 1. What does the expression become for n compounding periods?

$$F = 1 \left(1 + \frac{1}{n} \right)^n$$

Then the question becomes: As $n \to \infty$, does F converge to a specific value, or does it also increase without bound?

• Let's rewrite this expression as something our calculators and computers can evaluate: $y = \left(1 + \frac{1}{x}\right)^x$. For now, go into the table feature of your graphing utility, and let x start at 1 and go up by 1. Can we populate the following table as a class?

x	$y = \left(1 + \frac{1}{x}\right)^x$
1	2
2	2.25
3	2.3704
4	2.4414
5	2.4883
6	2.5216
7	2.5465

This demonstrates that although the value of the function is continuing to increase as x increases, it is increasing at a decreasing rate. Still, does this function ever start decreasing? Let's set our table to start at 10,000 and increase by 10,000.

x	$y = \left(1 + \frac{1}{x}\right)^x$
10,000	2.7181459
20,000	2.7182139
30,000	2.7182365
40,000	2.7182478
50,000	2.7182546
60,000	2.7182592
70,000	2.7182624

- It turns out that we are rapidly approaching the limit of what our calculators can reliably compute. Much past this point, the rounding that the calculator does to perform its calculations starts to insert horrible errors into the table. However, it is true that the value of the function increases forever but at a slower and slower rate. In fact, as *x* → ∞, *y* does approach a specific value. You may have started to recognize that value from earlier in the module: Euler's number, *e*.
- Unfortunately, a proof that the expression $\left(1+\frac{1}{x}\right)^x \to e$ as $x \to \infty$ requires mathematics more advanced than what we currently have available. Using calculus and other advanced mathematics, mathematicians have not only been able to show that as $x \to \infty$, $\left(1+\frac{1}{x}\right)^x \to e$, but also that as $x \to \infty$, $\left(1+\frac{r}{x}\right)^x \to e^r$!

Note: As an extension, you can hint at why the expression involving r converges to e^r : Rewrite the expression above as $\left(1+\frac{r}{x}\right)^{\left(\frac{x}{r}\right)\cdot r}$ or $\left(\left(1+\frac{r}{x}\right)^{\frac{x}{r}}\right)^r$, and substitute $u = \frac{x}{r}$. Then the expression in terms of u becomes $\left(\left(1+\frac{1}{u}\right)^u\right)^r$. If $x \to \infty$, then u does also, but as $u \to \infty$, the expression $\left(1+\frac{1}{u}\right)^u \to e$, so $\left(\left(1+\frac{1}{u}\right)^u\right)^r \to e^r$.

429

Lesson 26

M3

ALGEBRA II

- Revisiting our earlier application, what does x represent in our original formula, and what could it mean that $x \to \infty$?
 - The number *x* represents the number of compounding periods in a year. If *x* was large (e.g., 365), it would imply that interest was compounding once a day. If it were very large, say 365,000, it would imply that interest was compounding 1,000 times a day. As $x \to \infty$, the interest would be compounding continuously.
- Thus, we have a new formula for when interest is compounding continuously: $F = Pe^{rt}$. This is just another representation of the exponential function that we have been using throughout the module.
- The formula is often called the *pert* formula.

Closing (2 minutes)

Have students summarize the key points of the lesson in writing. A sample is included which you may want to share with the class, or you can guide students to these conclusions on their own.

Lesson S	Summary
	For application problems involving a percent rate of change represented by the unit rate r , we can write $F(t) = P(1 + r)^t$, where F is the future value (or ending amount), P is the present amount, and t is the number of time units. When the percent rate of change is negative, r is negative, and the quantity decreases with time.
•	The nominal APR is the percent rate of change per compounding period times the number of compounding periods per year. If the nominal APR is given by the unit rate r and is compounded n times a year, then function $F(t) = P\left(1 + \frac{r}{n}\right)^{nt}$ describes the future value at time t of an account given that is given nominal APR and an initial value of P .
•	For continuous compounding, we can write $F = Pe^{rt}$, where e is Euler's number and r is the unit rate associated to the percent rate of change.

Exit Ticket (4 minutes)

Name

Date

Lesson 26: Percent Rate of Change

Exit Ticket

April would like to invest \$200 in the bank for one year. Three banks all have a nominal APR of 1.5%, but compound the interest differently.

a. Bank A computes interest just once at the end of the year. What would April's balance be after one year with this bank?

b. Bank B compounds interest at the end of each six-month period. What would April's balance be after one year with this bank?

c. Bank C compounds interest continuously. What would April's balance be after one year with this bank?

d. Each bank decides to double the nominal APR it offers for one year. That is, they offer a nominal APR of 3%. Each bank advertises, "DOUBLE THE AMOUNT YOU EARN!" For which of the three banks, if any, is this advertised claim correct?

431

engage

Exit Ticket Sample Solutions

April would like to invest 200 in the bank for one year. Three banks all have a nominal APR of 1.5%, but compound the interest differently.

a. Bank A computes interest just once at the end of the year. What would April's balance be after one year with this bank?

 $I = 200 \cdot 0.015 = 3$

April would have \$203 at the end of the year.

b. Bank B compounds interest at the end of each six-month period. What would April's balance be after one year with this bank?

$$F = 200 \left(1 + \frac{0.015}{2}\right)^2$$
$$\approx 203.01$$

April would have \$203.01 at the end of the year.

c. Bank C compounds interest continuously. What would April's balance be after one year with this bank?

 $F = 200e^{0.015}$ ≈ 203.02

April would have \$203.02 at the end of the year.

d. Each bank decides to double the nominal APR it offers for one year. That is, they offer a nominal APR of 3%. Each bank advertises, "DOUBLE THE AMOUNT YOU EARN!" For which of the three banks, if any, is this advertised claim correct?

Bank A:

 $I = 200 \cdot 0.03 = 6$

Bank B:

$$F = 200 \left(1 + \frac{0.03}{2}\right)^2$$
$$\approx 206.045$$

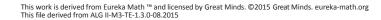
Bank C:

 $F = 200e^{0.015}$ ≈ 206.09

All three banks earn at least twice as much with a double interest rate. Bank A earns exactly twice as much, Bank B earns 2 cents more than twice as much, and Bank C earns 5 cents more than twice as much.

(cc) BY-NC-SA

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.



Percent Rate of Change

Lesson 26:

EUREKA

MATH

Problem Set Sample Solutions

Problems 1 and 2 provide students with more practice converting arithmetic and geometric sequences between explicit and recursive forms. Fluency with geometric sequences is required for the remainder of the lessons in this module.

Write each recursive sequence in explicit form. Identify each sequence as arithmetic, geometric, or neither. 1. a. $a_1 = 3$, $a_{n+1} = a_n + 5$ $a_n = 3 + 5(n - 1)$, arithmetic b. $a_1 = -1$, $a_{n+1} = -2a_n$ $a_n = -(-2)^{n-1}$, geometric c. $a_1 = 30$, $a_{n+1} = a_n - 3$ $a_n = 30 - 3(n - 1)$, arithmetic d. $a_1 = \sqrt{2}$, $a_{n+1} = \frac{a_n}{\sqrt{2}}$ $a_n = \sqrt{2} \left(\frac{1}{\sqrt{2}}\right)^{n-1}$, geometric e. $a_1 = 1$, $a_{n+1} = \cos(\pi a_n)$ $a_1 = 1, a_n = -1$ for n > 1, neither. 2. Write each sequence in recursive form. Assume the first term is when n = 1. a. $a_n = \frac{3}{2}n + 3$ $a_1 = \frac{9}{2}, a_{n+1} = a_n + \frac{3}{2}$ b. $a_n = 3\left(\frac{3}{2}\right)^n$ $a_1 = \frac{9}{2}, a_{n+1} = \frac{3}{2} \cdot a_n$ $a_n = n^2$ c. $a_1 = 1, a_{n+1} = a_n + 2n + 1$ $a_n = \cos(2\pi n)$ d. $a_1 = 1, a_{n+1} = a_n$

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This work is licensed under a

(cc) BY-NC-SA

M3

ALGEBRA II

Lesson 26

ALGEBRA II

3. Consider two bank accounts. Bank A gives simple interest on an initial investment in savings accounts at a rate of 3% per year. Bank B gives compound interest on savings accounts at a rate of 2.5% per year. Fill out the following table.

Number of Years, n	Bank A Balance, a_n (in dollars)	Bank B Balance, b_n (in dollars)
0	1,000.00	1,000.00
1	1,030.00	1,025.00
2	1,060.00	1,050.63
3	1,090.00	1,076.89
4	1, 120. 00	1, 103. 81
5	1, 150. 00	1, 131. 41

a. What type of sequence do the Bank A balances represent?

The balances in Bank A represent an arithmetic sequence with constant difference \$30.

b. Give both a recursive and an explicit formula for the Bank A balances.

Recursive: $a_0 = 1000$, $a_n = a_{n-1} + 30$ Explicit: $a_n = 1000 + 30n$ or $f_A(n) = 1000 + 30n$

- c. What type of sequence do the Bank B balances represent?
 The balances in Bank B represent a geometric sequence with common ratio 1.025.
- d. Give both a recursive and an explicit formula for the Bank B balances.

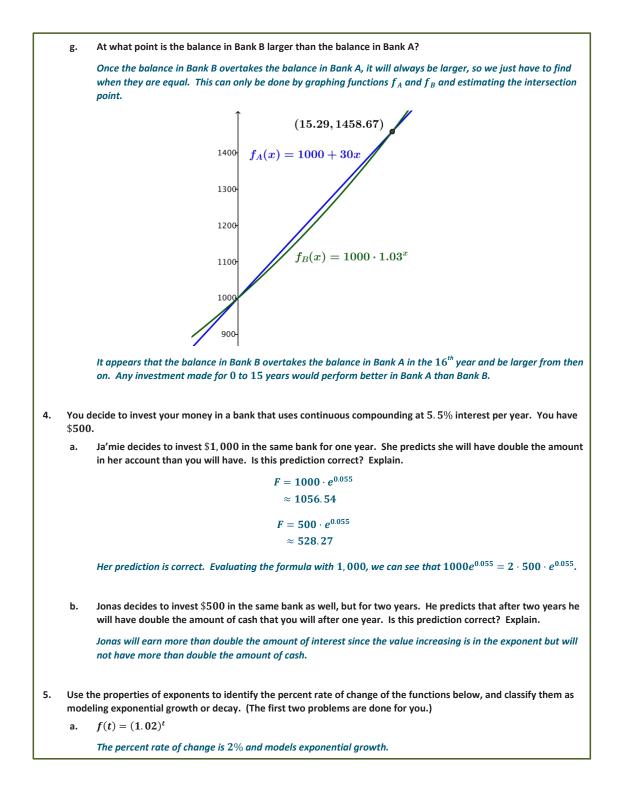
Recursive: $b_1 = 1000$, $b_n = b_{n-1} \cdot 1.025$ Explicit: $b_n = 1000 \cdot 1.025^n$ or $f_B(n) = 1000 \cdot 1.025^n$

e. Which bank account balance is increasing faster in the first five years?

During the first five years, the balance in Bank A is increasing faster at a constant rate of \$30 per year.

f. If you were to recommend a bank account for a long-term investment, which would you recommend?

The balance in Bank B would eventually outpace the balance in Bank A since the balance in Bank B is increasing geometrically.



435

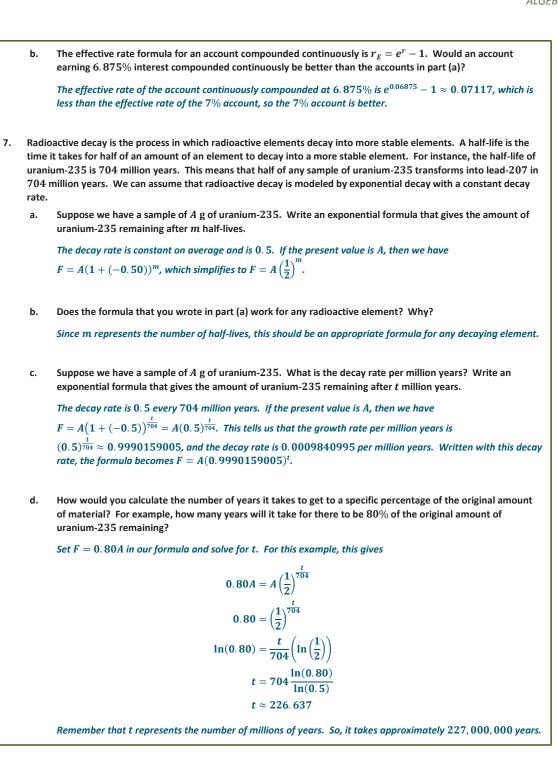
engage

ALGEBRA II

 $f(t) = (1.01)^{12t}$ b. Since $(1.01)^{12t} = ((1.01)^{12})^t \approx (1.1268)^t$, the percent rate of change is 12.68% and models exponential growth. $f(t) = (0.97)^t$ C. Since $(0.97)^t = (1 - 0.03)^t$, the percent rate of change is -3% and models exponential decay. $f(t) = 1000(1.2)^t$ d. The percent rate of change is 20% and models exponential growth. $f(t) = \frac{(1.07)^t}{1000}$ e. The percent rate of change is 7% and models exponential growth. $f(t) = 100 \cdot 3^t$ f. Since $3^t = (1+2)^t$, the percent rate of change is 200% and models exponential growth. g. $f(t) = 1.05 \cdot \left(\frac{1}{2}\right)^t$ Since $\left(\frac{1}{2}\right)^t = (0.5)^t = (1-0.5)^t$, the percent rate of change is -50% and models exponential decay. h. $f(t) = 80 \cdot \left(\frac{49}{64}\right)^{\frac{1}{2}t}$ Since $\left(\frac{49}{64}\right)^{\frac{1}{2}t} = \left(\left(\frac{49}{64}\right)^{\frac{1}{2}}\right)^t = \left(\frac{7}{8}\right)^t = \left(1 - \frac{1}{8}\right)^t = (1 - 0.125)^t$, the percent rate of change is -12.5% and models exponential decay. $f(t) = 1.02 \cdot (1.13)^{\pi t}$ i. Since $(1.13)^{\pi t} = ((1.13)^{\pi})^t \approx (1.468)^t$, the percent rate of change is 46.8% and models exponential arowth. 6. The effective rate of an investment is the percent rate of change per year associated with the nominal APR. The effective rate is very useful in comparing accounts with different interest rates and compounding periods. In general, the effective rate can be found with the following formula: $r_E = \left(1 + \frac{r}{k}\right)^k - 1$. The effective rate presented here is the interest rate needed for annual compounding to be equal to compounding n times per year. For investing, which account is better: an account earning a nominal APR of 7% compounded monthly or an account earning a nominal APR of $6.\,875\%$ compounded daily? Why? The 7% account is better. The effective rate for the 7% account is $\left(1+\frac{0.07}{12}\right)^{12}-1pprox 0.07229$ compared to the effective rate for the 6.875% account, which is 0.07116

436

engage

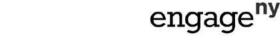


Lesson 26

How many millions of years would it take 2.35 kg of uranium-235 to decay to 1 kg of uranium? e. For our formula, the future value is 1 kg, and the present value is 2.35. $1 = 2.35 \left(\frac{1}{2}\right)^{\frac{t}{704}}$ $\frac{1}{2.35} = \left(\frac{1}{2}\right)^{\frac{t}{704}}$ $\ln\left(\frac{1}{2.35}\right) = \frac{t}{704} \cdot \ln\left(\frac{1}{2}\right)$ $t = 704 \frac{\ln\left(\frac{1}{2.35}\right)}{\ln\left(\frac{1}{2}\right)}$ $t \approx 867.793$ Since t is the number of millions of years, it would take approximately 868 million years for 2.35 kg of uranium-235 to decay to 1 kg. Doug drank a cup of tea with 130 mg of caffeine. Each hour, the caffeine in Doug's body diminishes by about 12%. 8. (This rate varies between 6% and 14% depending on the person.) Write a formula to model the amount of caffeine remaining in Doug's system after each hour. a. $c(t) = 130 \cdot (1 - 0.12)^t$ $c(t) = 130 \cdot (0.88)^t$ About how long should it take for the level of caffeine in Doug's system to drop below 30 mg? b. $30 = 130 \cdot (0.88)^t$ $\frac{3}{13} = 0.88^t$ $\ln\left(\frac{3}{13}\right) = t \cdot \ln(0.88)$ $t = \frac{\ln\left(\frac{3}{13}\right)}{\ln(0.88)}$ $t \approx 11.471$ The caffeine level is below 30 mg after about 11 hours and 28 minutes. The time it takes for the body to metabolize half of a substance is called its half-life. To the nearest 5 c. minutes, how long is the half-life for Doug to metabolize caffeine? $65 = 130 \cdot (0.88)^t$ $\frac{1}{2} = 0.88^t$ $\ln\left(\frac{1}{2}\right) = t \cdot \ln(0.88)$ $t = \frac{\ln\left(\frac{1}{2}\right)}{\ln(0.88)}$ $t \approx 5.422$ The half-life of caffeine in Doug's system is about 5 hours and 25 minutes.

MP.4

Lesson 26: Percent Rate of Change



d.

Write a formula to model the amount of caffeine remaining in Doug's system after *m* half-lives.

$$c = 130 \cdot \left(\frac{1}{2}\right)^m$$

- 9. A study done from 1950 through 2000 estimated that the world population increased on average by 1.77% each year. In 1950, the world population was 2.519 billion.
 - a. Write a function *p* for the world population *t* years after 1950.

 $p(t) = 2.519 \cdot (1+0.0177)^t$ $p(t) = 2.519 \cdot (1.0177)^t$

b. If this trend continued, when should the world population have reached 7 billion?

$$7 = 2.519 \cdot (1.0177)^{t}$$
$$\frac{7}{2.519} = 1.0177^{t}$$
$$\ln\left(\frac{7}{2.519}\right) = t \cdot \ln(1.0177)$$
$$t = \frac{\ln\left(\frac{7}{2.519}\right)}{\ln(1.0177)}$$
$$t \approx 58.252$$

The model says that the population should reach 7 billion sometime roughly $58\frac{1}{4}$ years after 1950. This would be around April 2008.

c. The world population reached 7 billion October 31, 2011, according to the United Nations. Is the model reasonably accurate?

Student responses will vary. The model was accurate to within three years, so, yes, it is reasonably accurate.

d. According to the model, when should the world population be greater than 12 billion people?

$$12 = 2.519 \cdot (1.0177)^{t}$$
$$\frac{12}{2.519} = 1.0177^{t}$$
$$\ln\left(\frac{12}{2.519}\right) = t \cdot \ln(1.0177)$$
$$t = \frac{\ln\left(\frac{12}{2.519}\right)}{\ln(1.0177)}$$
$$t \approx 88.973$$

According to the model, it will take a little less than 89 years from 1950 to get a world population of 12 billion. This would be the year 2039.

10. A particular mutual fund offers 4.5% nominal APR compounded monthly. Trevor wishes to deposit \$1,000.

a. What is the percent rate of change per month for this account?

There are twelve months in a year, so $\frac{4.5\%}{12} = 0.375\% = 0.00375$.

MP.4

engage^{ny}

ALGEBRA II

b.

Lesson 26 M

M3

Write a formula for the amount Trevor will have in the account after m months.

 $A = 1000 \cdot (1 + 0.00375)^m$ $A = 1000 \cdot (1.00375)^m$

c. *Doubling time* is the amount of time it takes for an investment to double. What is the doubling time of Trevor's investment?

$$2000 = 1000 \cdot (1.00375)^{m}$$
$$2 = 1.00375^{m}$$
$$\ln(2) = m \cdot \ln(1.00375)$$
$$m = \frac{\ln(2)}{\ln(1.00375)}$$
$$m \approx 185.186$$

It will take 186 months for Trevor's investment to double. This is 15 years and 6 months.

- 11. When paying off loans, the monthly payment first goes to any interest owed before being applied to the remaining balance. Accountants and bankers use tables to help organize their work.
 - a. Consider the situation that Fred is paying off a loan of \$125,000 with an interest rate of 6% per year compounded monthly. Fred pays \$749.44 every month. Complete the following table:

Payment	Interest Paid	Principal Paid	Remaining Principal
\$749.44	\$625.00	\$ 124 . 44	\$124, 875. 56
\$749.44	\$624.38	\$125.06	\$124,750.50
\$749.44	\$623.75	\$125.69	\$124, 624. 82

b. Fred's loan is supposed to last for 30 years. How much will Fred end up paying if he pays \$749.44 every month for 30 years? How much of this is interest if his loan was originally for \$125,000?

749.44(30)(12) = 269,798.40

Fred will pay \$269,798.40 for his loan. The interest paid will be \$269,798.40 - \$125,000.00, which is \$144,798.40.

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

440

engage^{ny}

Lesson 27: Modeling with Exponential Functions

Student Outcomes

- Students create exponential functions to model real-world situations.
- Students use logarithms to solve equations of the form $f(t) = a \cdot b^{ct}$ for t.
- Students decide which type of model is appropriate by analyzing numerical or graphical data, verbal descriptions, and by comparing different data representations.

Lesson Notes

In this summative lesson, students write exponential functions for different situations to describe the relationships between two quantities (**F-BF.A.1a**). This lesson uses real U.S. Census data to demonstrate how to create a function of the form $f(t) = a \cdot b^{ct}$ that can be used to model quantities that exhibit exponential growth or decay. Students must use properties of exponents to rewrite exponential expressions in order to interpret the properties of the function (**F-IF.C.8b**). They estimate populations at a given time and determine the time when a population reaches a certain value by writing exponential equations (**A-CED.A.1**) and solving them analytically (**F-LE.A.4**). In Algebra I, students solved these types of problems graphically or numerically, but we have developed the necessary skills in this module to solve these problems explicitly. The data is presented in different forms (**F-IF.C.9**), and students use average rate of change (**F-IF.B.6**) to decide whether a linear or an exponential function is a more appropriate model (**F-LE.A.1**). Students have several different methods for determining the formula for an exponential function from given data: using a calculator's regression feature, solving for the parameters in the function analytically, and estimating the growth rate from a table of data (as covered in this lesson). This lesson ties those methods together and asks students to determine which method is most suitable for a particular situation (MP.4).

Classwork

Opening (1 minute)

Pose this question, which recalls the work students did in Lesson 22:

- If you only have two data points, how should you decide which type of function to use to model the data?
 - Two data points could be modeled using a linear, quadratic, sinusoidal, or exponential function. You would have to have additional information or know something about the real-world situation to make a decision about which model would be best.

The Opening Exercise has students review how to find a linear and exponential model given two data points. Later in the lesson, students are then given more information about the data and asked to select and refine a model.

Scaffolding:

If students struggle with the opening question, use this problem to provide a more concrete approach:

Given the ordered pairs (0,3) and (3,6), we could write the following functions:

$$f(t) = 3 + t$$

$$g(t) = 3(2)^{\frac{L}{3}}$$

Match each function to the appropriate verbal description and explain how you made your choice.

- A: A plant seedling is 3 feet tall, and each week the height increases by a fixed amount. After three weeks, the plant is 6 feet tall.
- B: Bacteria are dividing in a petri dish. Initially there are 300 bacteria, and three weeks later, there are 600.

Encourage students who

manipulations to use the

struggle with algebraic

statistical features of a

Scaffolding:

Opening Exercise (5 minutes)

Give students time to work this Opening Exercise either independently or with a partner. Observe whether they are able to successfully write a linear and an exponential function for this data. If a majority of students are struggling to complete these exercises, then you may need to make adjustments during the lesson to help them build fluency with writing a function from given numerical data.

graphing calculator to create a **Opening Exercise** linear regression and an exponential regression The following table contains U.S. population data for the two most recent census years, 2000 and 2010. equation in part (ii) of each **Opening Exercise. Census Year** U.S. Population (in millions) 2000 281.4 2010 308 7 Steve thinks the data should be modeled by a linear function. a. i. What is the average rate of change in population per year according to this data? The average rate of change is $\frac{308.7-281.4}{2010-2000} = 2.73$ million people per year. ii. Write a formula for a linear function, L, to estimate the population t years since the year 2000. L(t) = 2.73t + 281.4b. Phillip thinks the data should be modeled by an exponential function. What is the growth rate of the population per year according to this data? i. Since $\frac{308.7}{281.4} = 1.097$, the population will increase by the factor 1.097 every 10 years. To determine the yearly rate, we would need to express 1.097 as the product of 10 equal numbers (e.g., 1.097 $\frac{1}{10}$ · $1.097^{\frac{1}{10}}$ · ... · $1.097^{\frac{1}{10}}$ ten times). The annual rate would be $1.097^{\frac{1}{10}}$, which is approximately 1.0093. ii. Write a formula for an exponential function, *E*, to estimate the population *t* years since the year 2000. Start with $E(t) = a \cdot b^t$. Substitute (0, 281.4) into the formula to solve for a. **281**. **4** = $a \cdot b^0$ Thus, a = 281.4. Next, substitute the value of a and the ordered pair (10, 308.7) into the formula to solve for b. $308.7 = 281.4b^{10}$ $b^{10} = 1.097$ $b = \sqrt[10]{1.097}$ Thus, b = 1.0093 when you round to the ten-thousandths place and $E(t) = 281.4(1.0093)^{t}.$

MP.3

Lesson 27:

Modeling with Exponential Functions

ALGEBRA II

. .

c. Who has the correct model? How do you know?

You cannot determine who has the correct model without additional information. However, populations over longer intervals of time tend to grow exponentially if environmental factors do not limit the growth, so Phillip's model is likely to be more appropriate.

Discussion (3 minutes)

MP.7

Before students start working in pairs or small groups on the modeling exercises, debrief the Opening Exercise with the following discussion to ensure that all students are prepared to begin the Modeling Exercise.

- What function best modeled the given data? Allow students to debate about whether they chose a linear or an exponential model, and encourage them to provide justification for their decision.
 - $E(t) = 281.4(1.0093)^t$
- What does the number 281.4 represent?
 - The initial population in the year 2000 was 281.4 million people.
- What does the variable t represent?
 - The number of years since the year 2000
 - What does the number 1.0093 represent?
 - The population is increasing by a factor of 1.0093 each year.
 - How does rewriting the base as 1 + 0.0093 help us to understand the population growth rate?
 - We can see the population is increasing by approximately 0.93% every year according to our model.

Mathematical Modeling Exercises 1–14 (24 minutes)

These problems ask students to compare their model from the Opening Exercise to additional models created when given additional information about the U.S. population, and then ask students to use additional data to find a better model. Students should form small groups and work these exercises collaboratively. Provide time at the end of this portion of the lesson for different groups to share their rationale for the choices that they made. Students are exposed to both tabular and graphical data (**F-IF.C.9**) as they work through these exercises. They must use the properties of exponents to interpret and compare exponential functions (**F-IF.C.8b**).

Exercise 11 requires access to the Internet to look up the current population estimate for the U.S. If students do not have convenient Internet access, you can either display the U.S. population clock at <u>http://www.census.gov/popclock</u>, which would be an interesting way to introduce this exercise, or look up the current population estimate at the onset of class and provide this information to the students. The U.S. population clock is updated every 10 or 12 seconds, so it shows a dramatic population increase through a single class period.

': Modeling with Exponential Functions

Mathematical Modeling Exercises 1–14

This challenge continues to examine U.S. census data to select and refine a model for the population of the United States over time.

1. The following table contains additional U.S. census population data. Would it be more appropriate to model this data with a linear or an exponential function? Explain your reasoning.

Census Year	U.S. Population (in millions of people)
1900	76.2
1910	92.2
1920	106.0
1930	122.8
1940	132.2
1950	150.7
1960	179.3
1970	203.3
1980	226.5
1990	248.7
2000	281.4
2010	308.7

Scaffolding:

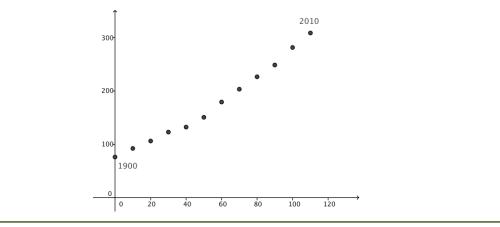
For students who are slow to recognize data as linear or exponential, create an additional column that shows the average rate of change and reinforce that unless those values are very close to a constant, a linear function is not the best model.

It is not clear by looking at a graph of this data whether it lies on an exponential curve or a line. However, from the context, we know that populations tend to grow as a constant factor of the previous population, so we should use an exponential function to model it. The graph below uses t = 0 to represent the year 1900.

OR

MP.3

The differences between consecutive population values do not remain constant and in fact get larger as time goes on, but the quotients of consecutive population values are nearly constant around 1.1. This indicates that a linear model is not appropriate but an exponential model is.



After the work in Lesson 22, students should know that a situation such as this one involving population growth should be modeled by an exponential function. However, the reasoning used by each group of students may vary. Some may plot the data and note the characteristic shape of an exponential curve. Some may calculate the quotients and differences between consecutive population values. If time permits, have students share the reasoning they used to decide which type of function to use.

Students may need to be

shown how to use the

calculator to find the

exponential regression

Scaffolding:

function.

ALGEBRA II

```
2. Use a calculator's regression capability to find a function, f, that models the U.S. Census Bureau data from 1900 to 2010.
```

Using a graphing calculator and letting the year 1900 correspond to t = 0 gives the following exponential regression equation.

$P(t) = 81.1(1.0126)^t$

3. Find the growth factor for each 10-year period and record it in the table below. What do you observe about these growth factors?

U.S. Population **Growth Factor Census Year** (in millions of people) (10-year period) 1900 76.2 92.2 1910 1.209974 1920 106.0 1.149675 1930 122.8 1.158491 1940 132.2 1.076547 1950 150.7 1.139939 1960 179.3 1.189781 1970 203.3 1.133854 1980 226.5 1.114117 1990 248.7 1.098013 2000 281.4 1.131484 2010 308.7 1.097015

The growth factors are fairly constant around 1.1.

4. For which decade is the 10-year growth factor the lowest? What factors do you think caused that decrease?

The 10-year growth factor is lowest in the 1930's, which is the decade of the Great Depression.

5. Find an average 10-year growth factor for the population data in the table. What does that number represent? Use the average growth factor to find an exponential function, *g*, that can model this data.

Averaging the 10-year growth factors gives 1.136; using our previous form of an exponential function; this means that the growth rate r satisfies 1 + r = 1.136, so r = 0.136. This represents a 13.6% population increase every ten years. The function g has an initial value g(0) = 76.2, so g is then given by $g(t) = 76.2(1.136)^{\frac{t}{10}}$, where t represents year since 1900.

6. You have now computed three potential models for the population of the United States over time: functions *E*, *f*, and *g*. Which one do you expect would be the most accurate model based on how they were created? Explain your reasoning.

Student responses will vary. Potential responses:

- I expect that function f that we found through exponential regression on the calculator is the most accurate because it uses all of the data points to compute the coefficients of the function.
- I expect that the function E is most accurate because it uses only the most recent population values.

Lesson 27:

Modeling with Exponential Functions

Students should notice that function g is expressed in terms of a 10-year growth rate (the exponent is $\frac{t}{10}$), while the other two functions are expressed in terms of single-year growth rates (the exponent is t). In Exercise 8, encourage students to realize that they need to use properties of exponents to rewrite the exponential expression in g in the form $g(t) = A(1+r)^t$ with an annual growth rate r so that the three functions can be compared in Exercise 10 (F-IF.C.8b). Through questioning, lead students to notice that time t = 0 does not have the same meaning for all three functions E, f, and g. In Exercise 9, they need to transform function E so that t = 0 corresponds to the year 1900 instead of 2000. This is the equivalent of translating the graph of y = E(t) horizontally to the right by 100 units.

7. Summarize the three formulas for exponential models that you have found so far: Write the formula, the initial populations, and the growth rates indicated by each function. What is different between the structures of these three functions?

 We have the three models:
 •
$$E(t) = 281.4(1.0093)^t$$
: Population is 281.4 million in the year 2000; annual growth rate is 0.93%.

 • $f(t) = 81.1(1.0126)^t$: Population is 281.1 million in the year 1900; annual growth rate is 1.26%.
 • $g(t) = 76.2(13.6)^{\frac{11}{10}}$: Population is 76.2 million in the year 1900; 10-year growth rate is 13.6%.

 In function $E, t = 0$ corresponds to the year growth factor instead of an annual growth factor as in functions E and f . Functions E has the year 2000 corresponding to $t = 0$, while in functions f and g , the year 1 = 0 represents the year 1900.

 8. Rewrite the functions E, f , and g as needed in terms of an annual growth rate.
 Scaffolding:

 We need to use properties of exponents to rewrite g .
 Scaffolding:

 9. Transform the functions as needed so that the time $t = 0$ represents the same year in functions E, f , and g . Then compare the values of the initial populations and annual growth rate r .
 Scaffolding:

 Struggling students may to be explicitly told that need to translate function E horizontally to the right by 100 years, giving a new function:
 Scaffolding:

 Thus, we need to translate functions:
 $E(t) = 281.4(1.0093)^{-100}$
 Struggling students may to be explicitly told that need to translate function:

 $E(t) = 281.4(1.0093)^{-100}$
 $= 281.4(1.0093)^{-100$

EUREKA ААТН

ſ

Lesson 27:

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

Modeling with Exponential Functions

446

need they the with an

Lesson 27

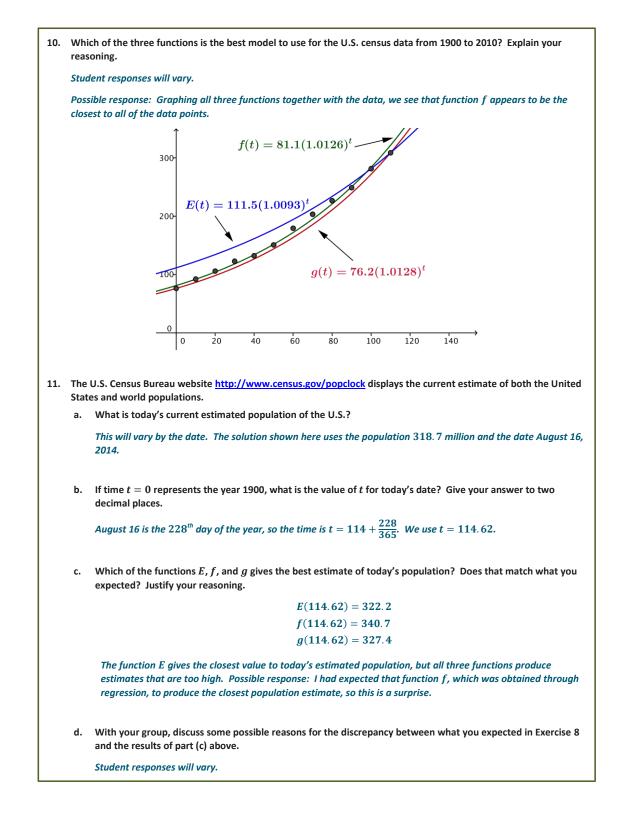
M3

ALGEBRA II

need they on E so ne year ons.

(cc) BY-NC-SA

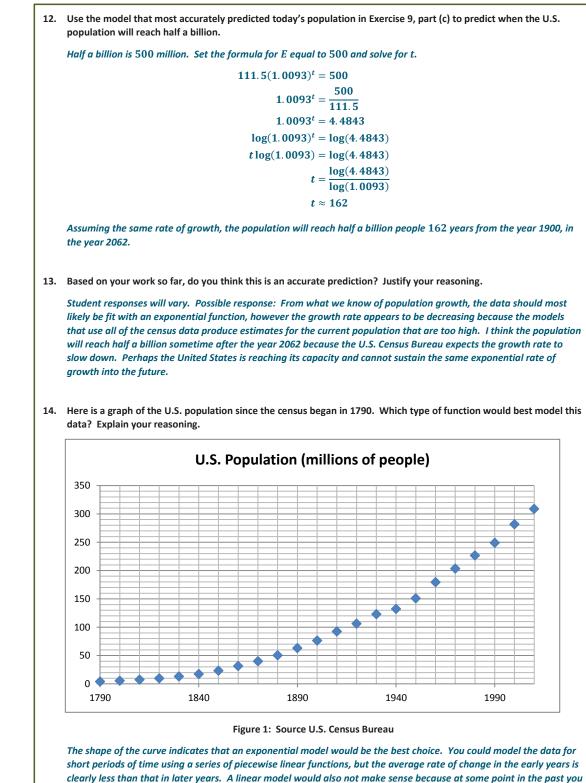
ALGEBRA II



: Modeling with Exponential Functions

Ū

ALGEBRA II



EUREKA MATH

Lesson 27:

Modeling with Exponential Functions

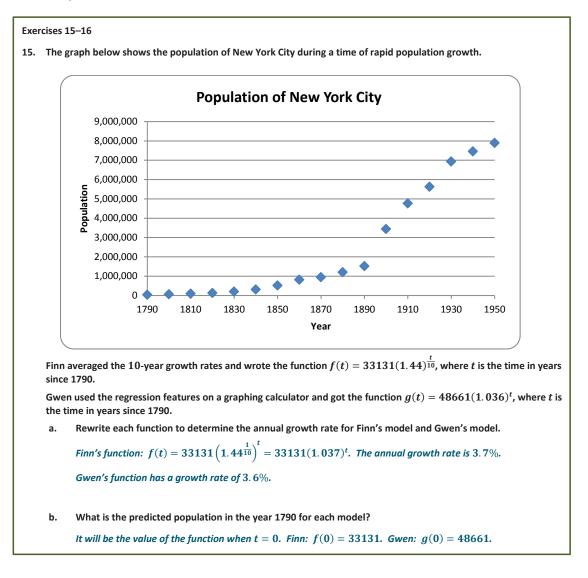
would have had a negative number of people living in the U.S.

engage^{ny}

Exercises 15–16 (6 minutes)

Exercises 15–16 are provided for students who complete the Modeling Exercises. You might consider assigning these exercises as additional Problem Sets for the rest of the class.

In these two exercises, students are asked to compare different exponential population models. They need to rewrite them to interpret the parameters when they compare the functions and apply the formula to solve a variety of problems. They are asked to compare the functions that model this data with an actual graph of the data. These problems are examples of **F-IF.C.8b**, **F-LE.A.1**, **F-LE.A.4**, and **F-IF.C.9**.



EUREKA MATH

Lenny calculated an exponential regression using his graphing calculator and got the same growth rate as c. Gwen, but his initial population was very close to 0. Explain what data Lenny may have used to find his function.

He may have used the actual year for his time values; where Gwen represented year 1790 by t = 0, Lenny may have represented year 1790 by t = 1790. If you translate Gwen's function 1790 units to the right write the resulting function in the form $f(t) = a \cdot b^t$, the value of a would be very small.

 $48661(1.036)^{\mathit{t-1790}} = \frac{48661(1.036)^{\mathit{t}}}{1.036^{1790}} \textit{ and } \frac{48661}{1.036^{1790}} \approx \ 1.56 \times 10^{-23}$

When does Gwen's function predict the population will reach 1,000,000? How does this compare to the d. graph?

Solve the equation: $48661(1.036)^t = 1000000$.

 $1.036^t = \frac{1000000}{48\,661}$ $\log(1.036)^t = \log\left(\frac{1000000}{48\,661}\right)$ $t\log(1.036) = \log\left(\frac{1000000}{48\,661}\right)$ $t = \frac{\log\left(\frac{1000000}{48661}\right)}{\log(1.036)}$

 $t \approx 85.5$

Gwen's model predicts that the population will exceed one million after 86 years, which would be during the year 1867. It appears that the population was close to one million around 1870 so the model does a fairly good job of estimating the population.

Based on the graph, do you think an exponential growth function would be useful for predicting the e. population of New York in the years after 1950?

The graph appears to be increasing but curving downwards, and an exponential model with a base greater than 1 would always be increasing at an increasing rate, so its graph would curve upwards. The difference between the function and the data would be increasing, so this is probably not an appropriate model.

- 16. Suppose each function below represents the population of a different U.S. city since the year 1900.
 - Complete the table below. Use the properties of exponents to rewrite expressions as needed to help support a. your answers.

City Population Function (<i>t</i> is years since 1900)	Population in the Year 1900	Annual Growth/Decay Rate	Predicted in 2000	Between Which Years Did the Population Double?
$A(t) = 3000(1.1)^{\frac{t}{5}}$	3000	1.9% growth	20182	Between 1936 and 1937
$B(t) = \frac{(1.5)^{2t}}{2.25}$	1	$125\% {\it growth}$	$7.3 imes 10^{34}$	Between 1901 and 1902
$C(t) = 10000(1 - 0.01)^t$	10000	1%decay	475	Never
$D(t) = 900(1.02)^t$	900	2% growth	6520	Between 1935 and 1936

(cc) BY-NC-SA

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

450

M3

ALGEBRA II

Lesson 27

Could the function $E(t) = 6520(1.219)^{\frac{1}{10}}$, where t is years since 2000 also represent the population of one b. of these cities? Use the properties of exponents to support your answer. Yes, it could represent the population in the city with function D. The expression $1.219\overline{10} \approx 1.02^t$ for any real number t. Also, $E(0) \approx D(100)$, which would make sense if the point of reference in time is 100 years apart. Which cities are growing in size, and which are decreasing according to these models? c. The cities represented by functions A, B, and D are growing because their base value is greater than 1. The city represented by function C is shrinking because 1 - 0.01 is less than 1. Which of these functions might realistically represent city population growth over an extended period of d. time? Based on the United States and New York City data, it is unlikely that a city in the United States could sustain a 50% growth rate every two years for an extended period of time as indicated by function B and its predicted population in the year 2000. The other functions seem more realistic, with annual growth or decay rates similar to other city populations we examined.

Closing (2 minutes)

Have students respond to these questions either in writing or with a partner.

- How do you decide when an exponential function would be an appropriate model for a given situation?
 - You must consider the real-world situation to determine whether growth or decay by a constant factor is appropriate or not. Analyzing patterns in the graphs or data tables can also help.
- Which method do you prefer for determining a formula for an exponential function?
 - Student responses will vary. A graphing calculator provides a statistical regression equation, but you have to type in the data to use that feature.
- Why did we rewrite the expression for function *g*?
 - We can more easily compare the properties of functions if they have the same structure.

Lesson Summary

To model exponential data as a function of time:

- Examine the data to see if there appears to be a constant growth or decay factor.
- Determine a growth factor and a point in time to correspond to t = 0.
- Create a function $f(t) = a \cdot b^{ct}$ to model the situation, where b is the growth factor every $\frac{1}{c}$ years and a is the value of f when t = 0.

Logarithms can be used to solve for t when you know the value of f(t) in an exponential function.

Exit Ticket (4 minutes)

EUREKA MATH

Name

Date _____

Lesson 27: Modeling with Exponential Functions

Exit Ticket

1. The table below gives the average annual cost (e.g., tuition, room, and board) for four-year public colleges and universities. Explain why a linear model might not be appropriate for this situation.

Year	Average Annual Cost
1981	\$2,550
1991	\$5,243
2001	\$8,653
2011	\$15,918

2. Write an exponential function to model this situation.

3. Use the properties of exponents to rewrite the function from Problem 2 to determine an annual growth rate.

If this trend continues, when will the average annual cost of attendance exceed \$35,000? 4.

engage^{ny}

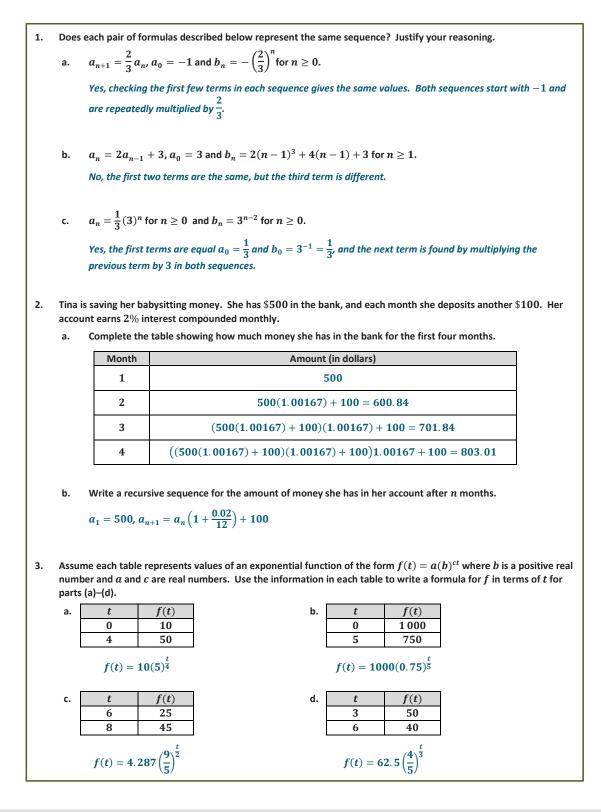
Exit Ticket Sample Solutions

The table below gives the average annual cost (e.g., tuition, room, and board) for four-year public colleges and 1. universities. Explain why a linear model might not be appropriate for this situation. Average Year **Annual Cost** 1981 \$2.550 1991 \$5,243 2001 \$8,653 2011 \$15,918 A linear function would not be appropriate because the average rate of change is not constant. Write an exponential function to model this situation. 2. If you calculate the growth factor every 10 years, you get the following values. $1981 - 1991: \frac{5243}{2550} = 2.056$ $1991 - 2001: \frac{8653}{5243} = 1.650$ $2001 - 2011: \frac{15918}{8653} = 1.840$ The average of these growth factors is 1.85. Then the average annual cost in dollars t years after 1981 is $C(t) = 2550(1.85)^{\frac{1}{10}}$. 3. Use the properties of exponents to rewrite the function from Problem 2 to determine an annual growth rate. We know that $2550(1.85)^{\frac{t}{10}} = 2250\left(1.85^{\frac{1}{10}}\right)^t$ and $1.85^{\frac{1}{10}} \approx 1.063$. Thus the annual growth rate is 6.3%. 4. If this trend continues, when will the average annual cost exceed \$35,000? We need to solve the equation C(t) = 35000 for t. $2550(1.85)^{\frac{t}{10}} = 35000$ $(1.85)^{\frac{t}{10}} = 13.725$ $\log\left((1.85)^{\frac{t}{10}}\right) = \log(13.725)$ $\frac{t}{10} = \frac{\log(13.725)}{\log(1.85)}$ $t = 10 \left(\frac{\log(13.725)}{\log(1.85)} \right)$ $t \approx 42.6$ The cost will exceed \$35,000 after 43 years, in the year 2024.

EUREKA

Modeling with Exponential Functions

Problem Set Sample Solutions



Lesson 27: Modeling with Exponential Functions

Rewrite the expressions for each function in parts (a)–(d) to determine the annual growth or decay rate. e. For part (a), $5^{\frac{t}{4}} = (5^{\frac{1}{4}})^t$ so the annual growth factor is $5^{\frac{1}{4}} \approx 1.495$, and the annual growth rate is 49.5%. For part (b), $0.75\frac{t}{5} = (0.75\frac{1}{5})^t$ so the annual growth factor is $0.75\frac{1}{5} \approx 0.596$, so the annual growth rate is -40.4%, meaning that the quantity is decaying at a rate of 40.4%For part (c), $\left(\frac{9}{5}\right)^{\frac{1}{2}} = \left(\left(\frac{9}{5}\right)^{\frac{1}{2}}\right)^{t}$ so the annual growth factor is $\left(\frac{9}{5}\right)^{\frac{1}{2}} \approx 1.312$ and the annual growth rate is 31.2% For part (a), $\left(\frac{4}{5}\right)^{\frac{1}{3}} = \left(\left(\frac{4}{5}\right)^{\frac{1}{3}}\right)^{t}$ so the annual growth factor is $\left(\frac{4}{5}\right)^{\frac{1}{3}} \approx 0.928$ and the annual growth rate is -0.072, which is a decay rate of 7.2%. For parts (a) and (c), determine when the value of the function is double its initial amount. f. For part (a), solve the equation $2 = 5^{\frac{1}{4}}$ for t. $2 = 5^{\frac{t}{4}}$ $\log(2) = \log\left(5^{\frac{t}{4}}\right)$ $\frac{t}{4} = \frac{\log(2)}{\log(5)}$ $t = 4\left(\frac{\log(2)}{\log(5)}\right)$ $t \approx 1.723$ For part (c), solve the equation $2 = \left(\frac{9}{5}\right)^{\frac{1}{2}}$ for t. The solution is 2.358. For parts (b) and (d), determine when the value of the function is half of its initial amount. g. For part (b), solve the equation $\frac{1}{2} = (0.75)^{\frac{l}{5}}$ for t. The solution is 12.047. For part (d), solve the equation $\frac{1}{2} = \left(\frac{4}{5}\right)^{\frac{L}{3}}$ for t. The solution is 9.319. 4. When examining the data in Example 1, Juan noticed the population doubled every five years and wrote the formula $P(t) = 100(2)^{\frac{1}{5}}$. Use the properties of exponents to show that both functions grow at the same rate per year. Using properties of exponents, $100(2)^{\frac{t}{5}} = 100(2^{\frac{1}{5}})^{t}$. The annual growth is $2^{\frac{1}{5}}$. In the other function, the annual growth is $4^{\frac{1}{10}} = (4^{\frac{1}{2}})^{\frac{1}{5}} = 2^{\frac{1}{5}}$. 5. The growth of a tree seedling over a short period of time can be modeled by an exponential function. Suppose the tree starts out 3 feet tall and its height increases by 15% per year. When will the tree be 25 feet tall? We model the growth of the seedling by $h(t) = 3(1.15)^t$, where t is measured in years, and we find that $3(1.15)^t = 25$ when $t = \frac{\log(\frac{25}{3})}{\log(1.15)}$ so $t \approx 15.17$ years. The tree will be 25 feet tall when it is 15 years and 2 months old.

Modeling with Exponential Functions

6.

7.

EUREKA

MATH

a.

ALGEBRA II

M3

Lesson 27

From the table, we see that $P(2) = 50$ and $P(4) = 1250$. So, the growth rate over two years is $\frac{1250}{50} = 25$.
Since $P(2) = 50$, and $P(t) = P_0(25)^{\frac{1}{2}}$, we know that $50 = P_0(25)$, so $P_0 = 2$. Then $50r^2 = P_0r^4$, so $50r^2 = 1250$. Thus, $r^2 = 25$ and then $r = 5$. Since $50 = P_0r^2$, we see that $P_0 = 2$. Therefore,
$P(t)=2(5^t).$
According to your model, when will the population of loggerhead turtles be over 5,000? Give your answer in years and months.
$2(5^t) = 5000$
$5^t = 2500$
$t\log(5) = \log(2500)$
$t = \frac{\log(2500)}{\log(5)}$
$t \approx 4.86$
The population of loggerhead turtles will be over $5,000$ after year 4.86 , which is roughly 4 years and 11 months.
dioactive isotope seaborgium-266 has a half-life of 30 seconds, which means that if you have a sample of A of seaborgium-266, then after 30 seconds half of the sample has decayed (meaning it has turned into
er element), and only $rac{A}{2}$ grams of seaborgium-266 remain. This decay happens continuously.
Define a sequence a_0, a_1, a_2, \dots so that a_n represents the amount of a 100-gram sample that remains after n minutes.
In one minute, the sample has been reduced by half two times, leaving only $\frac{1}{4}$ of the sample. We can
represent this by the sequence $a_n = 100 \left(\frac{1}{2}\right)^{2n} = 100 \left(\frac{1}{4}\right)^n$. (Either form is acceptable.)
Define a function $a(t)$ that describes the amount of a 100-gram sample of seaborgium-266 that remains after t minutes.
$a(t) = 100 \left(\frac{1}{4}\right)^t = 100 \left(\frac{1}{2}\right)^{2t}$
Do your sequence from part (a) and your function from part (b) model the same thing? Explain how you know.
The function models the amount of seaborgium-266 as it constantly decreases every fraction of a second, and the sequence models the amount of seaborgium-266 that remains only in 30-second intervals. They model nearly the same thing, but not quite. The function is continuous and the sequence is discrete.

Loggerhead turtles reproduce every 2–4 years, laying approximately 120 eggs in a clutch. Studying the local

Population

50

1250

population, a biologist records the following data in the second and fourth years of her study: Year

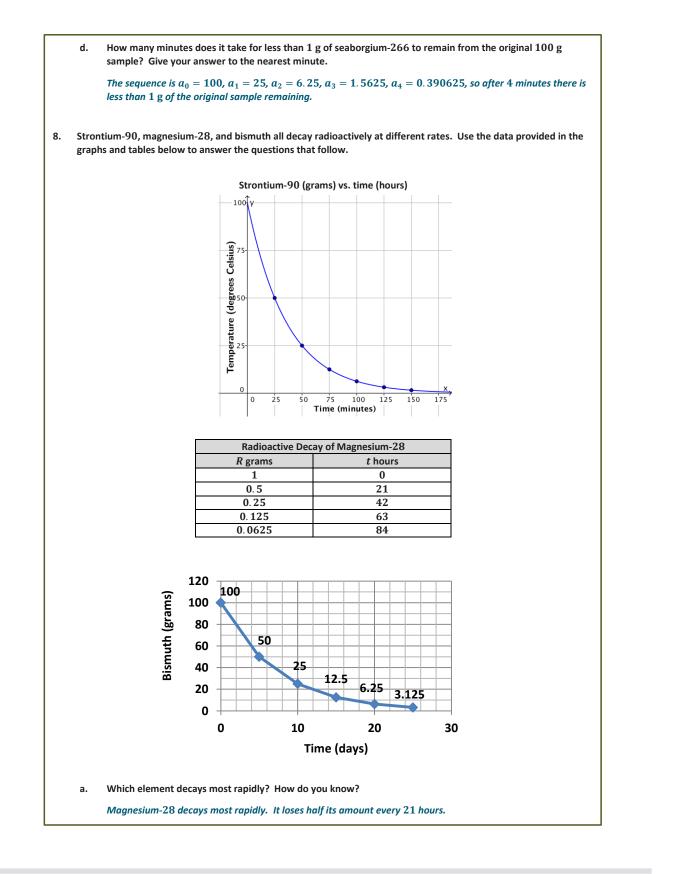
2

4

Find an exponential model that describes the loggerhead turtle population in year t.

NYS COMMON CORE MATHEMATICS CURRICULUM

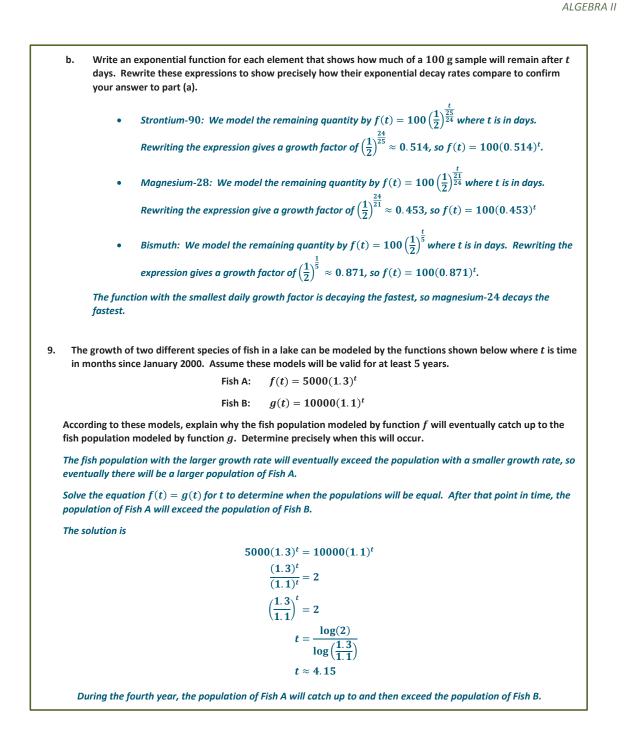
ALGEBRA II



Lesson 27: Modeling with Exponential Functions

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This work is licensed under a



Modeling with Exponential Functions

10. When looking at U.S. minimum wage data, you can consider the nominal minimum wage, which is the amount paid in dollars for an hour of work in the given year. You can also consider the minimum wage adjusted for inflation. Below are a table showing the nominal minimum wage and a graph of the data when the minimum wage is adjusted for inflation. Do you think an exponential function would be an appropriate model for either situation? Explain your reasoning.

Year	Nominal Minimum
	Wage
1940	\$0.30
1945	\$ 0 . 40
1950	\$0.75
1955	\$ 0 . 75
1960	\$1.00
1965	\$1.25
1970	\$1.60
1975	\$2.10
1980	\$3.10
1985	\$3.35
1990	\$3.80
1995	\$4.25
2000	\$5.15
2005	\$5.15
2010	\$7.25



strictly increase or decrease. The other data when graphed does appear roughly exponential, and a good model would be $f(t) = 0.40(1.044)^t$.

Modeling with Exponential Functions

- 11. A dangerous bacterial compound forms in a closed environment but is immediately detected. An initial detection reading suggests the concentration of bacteria in the closed environment is one percent of the fatal exposure level. Two hours later, the concentration has increased to four percent of the fatal exposure level.
 - a. Develop an exponential model that gives the percentage of fatal exposure level in terms of the number of hours passed.

$$P(t) = 1 \cdot \left(\frac{4}{1}\right)^{\frac{t}{2}}$$
$$= 4^{\frac{t}{2}}$$
$$= 2^{t}$$

b. Doctors and toxicology professionals estimate that exposure to two-thirds of the bacteria's fatal concentration level will begin to cause sickness. Offer a time limit (to the nearest minute) for the inhabitants of the infected environment to evacuate in order to avoid sickness.

$$66.66 = 2^{t}$$

$$\log(66.66) = t \cdot \log(2)$$

$$t = \frac{\log(66.66)}{\log(2)} \approx 6.0587$$

Inhabitants should evacuate before 6 hours and 3 minutes.

c. A more conservative approach is to evacuate the infected environment before bacteria concentration levels reach 45% of the fatal level. Offer a time limit (to the nearest minute) for evacuation in this circumstance.

$$2^{t} = 45$$
$$t \cdot \log(2) = \log(45)$$
$$t = \frac{\log(45)}{\log(2)} \approx 5.492$$

Inhabitants should evacuate within 5 hours and 30 minutes.

d. To the nearest minute, when will the infected environment reach 100% of the fatal level of bacteria concentration

$$t \cdot \log(2) = \log(100)$$
$$t = \frac{2}{\log(2)} \approx 6.644$$

The infected environment will reach 100% of the fatal level of bacteria in 6 hours and 39 minutes.

Lesson 27:

Modeling with Exponential Functions

engage^{ny}

Lesson 27

12. Data for the number of users at two different social media companies is given below. Assuming an exponential growth rate, which company is adding users at a faster annual rate? Explain how you know.

Social Media Company A		Social Me	edia Company B
Year	Number of Users (Millions)	Year	Number of Users (Millions)
2010	54	2009	360
2012	185	2012	1056

t is time in years since 2010. Company B: The number of users (in millions) can be modeled by $B(t) = b \left(\frac{1056}{360}\right)^{\frac{t}{3}}$ where *b* is the initial amount

and t is time in years since 2009. Rewriting the expressions, you can see that Company A's annual growth factor is $\left(\frac{185}{54}\right)^{\frac{1}{2}} \approx 1.851$, and Company

B's annual growth factor is $\left(\frac{1056}{360}\right)^{\frac{1}{3}} \approx 1.432$. Thus, Company A is growing at the faster rate of 85.1% compared to Company B's 43.2%.

: Modeling with Exponential Functions

Lesson 28: Newton's Law of Cooling, Revisited

Student Outcomes

 Students apply knowledge of exponential and logarithmic functions and transformations of functions to a contextual situation.

Lesson Notes

Newton's law of cooling is a complex topic that appears in physics and calculus; the formula can be derived using differential equations. In Algebra I (Module 3), students completed a modeling lesson in which Newton's law of cooling was simplified to focus on the idea of applying transformations of functions to a contextual situation. In this lesson, students take another look at Newton's law of cooling, this time incorporating their knowledge of the number *e* and logarithms. Students now have the capability of finding the decay constant, *k*, for a contextual situation through the use of logarithms (**F-LE.A.4**). Students expand their understanding of exponential functions and transformations to build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential and relate these functions to the model (**F-BF.A.1.b**). The entire lesson highlights modeling with mathematics (MP.4) and also provides students with an opportunity to interpret scenarios using Newton's law of cooling when presented with functions represented in various ways (numerically, graphically, algebraically, or verbally) (**F-IF.C.9**).

Classwork

MP.2

Opening (2 minutes)

Review the formula $T(t) = T_a + (T_0 - T_a) \cdot e^{-kt}$ that was first introduced in Algebra I. There is one difference in the current presentation of the formula; in Algebra I, the base was expressed as 2.718 because students had not yet learned about the number *e*. Allow students a minute to examine the given formula. Before they begin working, discuss each parameter in the formula as a class.

- What does T_a represent? T_0 ? k? T(t)?
 - The constant T_a represents the temperature surrounding the object, often called the ambient temperature. The initial temperature of the object is denoted by T_0 . The constant k is called the decay constant. The temperature of the object after time t has elapsed is denoted by T(t).
- Is e one of the parameters in the formula?
 - No; the number *e* is a constant that is approximately equal to 2.718.
 - Assuming that the temperature of the object is greater than the temperature of the environment, is this formula an example of exponential growth or decay?
 - It is an example of decay, because the temperature is decreasing.
 - Why would it be decay when the base *e* is greater than 1? Shouldn't that be exponential growth?
 - The base is raised to a negative exponent. If we rewrite the exponential expression using properties of exponents, we see that $e^{-kt} = \left(\frac{1}{e}\right)^{kt}$, and $\frac{1}{e} < 1$. In this form, we can clearly identify exponential decay.

ALGEBRA II

Newton's law of cooling is used to model the temperature of an object placed in an environment Scaffolding: of a different temperature. The temperature of the object t hours after being placed in the new environment is modeled by the formula Use the interactive demonstration on Wolfram $T(t) = T_a + (T_0 - T_a) \cdot e^{-kt},$ Alpha that was used in Algebra where: I to assist in analyzing the T(t) is the temperature of the object after a time of t hours has elapsed, formula. T_a is the ambient temperature (the temperature of the surroundings), assumed to be http://demonstrations.wolfram constant and not impacted by the cooling process, .com/NewtonsLawOfCooling/ T_0 is the initial temperature of the object, and k is the decay constant.

Mathematical Modeling Exercise 1 (15 minutes)

Have students work in groups on parts (a) and (b) of the exercise. Circulate the room and provide assistance as needed. Stop and debrief to ensure that students set up the equations correctly. Discuss the next scenario as a class before having students continue through the exercise.

Mathematical Modeling Exercise 1 A crime scene investigator is called to the scene of a crime where a dead body has been found. He arrives at the scene and measures the temperature of the dead body at 9:30 p.m. to be 78.3°F. He checks the thermostat and determines that the temperature of the room has been kept at 74°F. At 10:30 p.m., the investigator measures the temperature of the body again. It is now 76.8°F. He assumes that the initial temperature of the body was 98.6°F (normal body temperature). Using this data, the crime scene investigator proceeds to calculate the time of death. According to the data he collected, what time did the person die? Can we find the time of death using only the temperature measured at 9:30 p.m.? Explain. a. No. There are two parameters that are unknown, k and t. We need to know the decay constant, k, in order to be able to find the elapsed time. Set up a system of two equations using the data. b. Let t1 represent the elapsed time from the time of death until 9:30 when the first measurement was taken, and let t_2 represent the elapsed time between the time of death and 10:30 when the second measurement was taken. Then $t_2 = t_1 + 1$. We have the following equations: $T(t_1) = 74 + (98.6 - 74)e^{-kt_1}$ $T(t_2) = 74 + (98.6 - 74)e^{-kt_2}.$ Substituting in our known value $T(t_1) = 78.3$ and $T(t_2) = 76.8$, we get the system: $78.3 = 74 + (98.6 - 74)e^{-kt_1}$ $76.8 = 74 + (98.6 - 74)e^{-k(t_1+1)}.$

- Why do we need two equations to solve this problem?
 - Because there are two unknown parameters.
- What does t_1 represent in the equation? Why does the second equation contain $(t_1 + 1)$ instead of just t_1 ?
 - The variable t_1 represents the elapsed time from time of death to 9:30 p.m. The second equation uses $(t_1 + 1)$ because the time of the second measurement is one hour later, so one additional hour has passed.

Joanna set up her equations as follows:

 $78.3 = 74 + (98.6 - 74)e^{-k(t_2 - 1)}$ $76.8 = 74 + (98.6 - 74)e^{-kt_2}$

In her equations, what does t₂ represent?

- Elapsed time from time of death to 10:30 p.m.
- Will she still find the same time of death? Explain why.

If students are unsure, have some groups work through the problem using one set of equations and some using the other. Re-address this question at the end.

- Yes, she will still find the same time of death. She will find a value of t that is one hour greater since she is measuring elapsed time to 10:30 rather than 9:30, but she will still get the same time of death.
- Now that we have this system of equations, how should we go about solving it?

Allow students to struggle with this for a few minutes. They may propose subtracting 74 from both sides or subtracting 98.6 - 74.

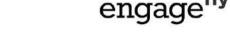
$$4.3 = 24.6e^{-kt_1}$$
$$2.8 = 24.6e^{-k(t_1+1)}$$

- What do we need to do now?
 - Combine the two equations in some way using the method of substitution or elimination.
- What is our goal in doing this?
 - We want to eliminate one of the variables.
- Would it be helpful to subtract the two equations? If students say yes, have them try it.
 - No. Subtracting one equation from the other did not eliminate a variable.
- How else could we combine the equations?
 - We could use the multiplication property of equality to divide 4.3 by 2.8 and $24.6e^{-kt_1}$ by $24.6e^{-k(t_1+1)}$.

If nobody offers this suggestion, lead students to the idea by reminding them of the properties of exponents. If we divide the exponential expressions, we subtract the exponents and eliminate the variable t_1 .

Have students continue the rest of the problem in groups.

с.	Find the value of the decay constant, k.
	$4.3 = 24.6e^{-kt_1}$
	$2.8 = 24.6e^{-k(t_1+1)}$
	$\frac{4.3}{2.8} = e^{-kt_1 + k(t_1 + 1)}$
	$\frac{4.3}{2.8} = e^k$
	$\ln\left(\frac{4\cdot3}{2\cdot8}\right) = \ln(e^k)$
	$\ln\left(\frac{4.3}{2.8}\right) = k$
	$k \approx 0.429$



464

MP.1

MP.2

8

MP.3

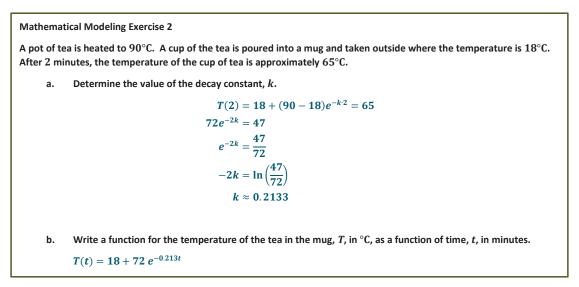
ALGEBRA II

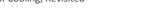
d.	What was the time of death?
	$4.3 = 24.6e^{-0.429t_1}$
	$\frac{4.3}{24.6} = e^{-0.429t_1}$
	$\ln\left(\frac{4.3}{24.6}\right) = \ln(e^{-0.429t_1})$
	$\ln\left(\frac{4.3}{24.6}\right) = -0.429t_1$
	$4.0656 = t_1$
	The person died approximately 4 hours before 9:30 p.m., so the time of death was approximately 5:30 p.m

- Would we get the same time of death if we used the set of equations where t₂ represents time elapsed from death until 10: 30 p.m.?
 - Yes. We would find that $t_2 = 5$, so the death occurred 5 hours before 10:30 p.m., at 5:30 p.m.

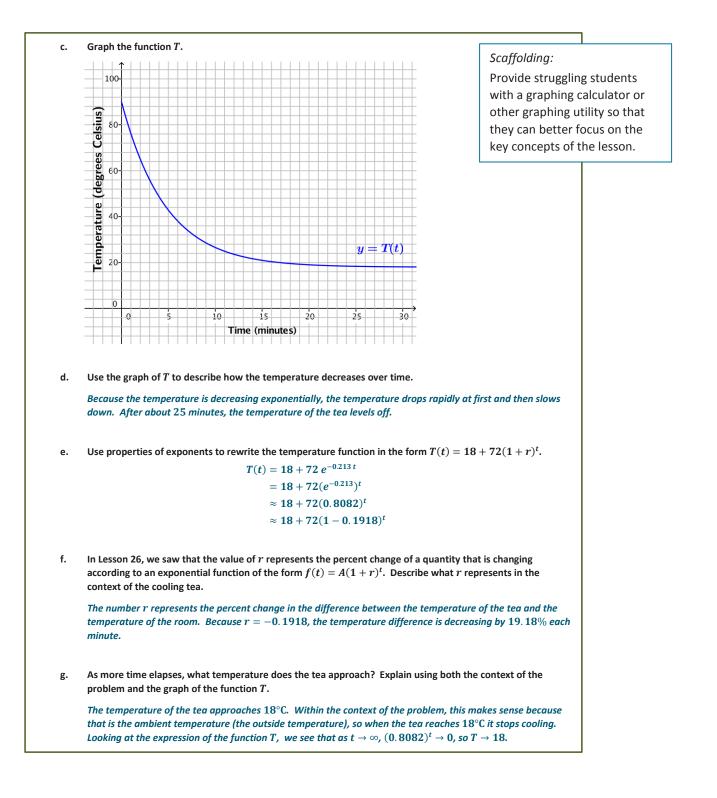
Mathematical Modeling Exercise 2 (10 minutes)

Allow students time to work in groups before discussing responses as a class. During the debrief, share and discuss work from different groups.





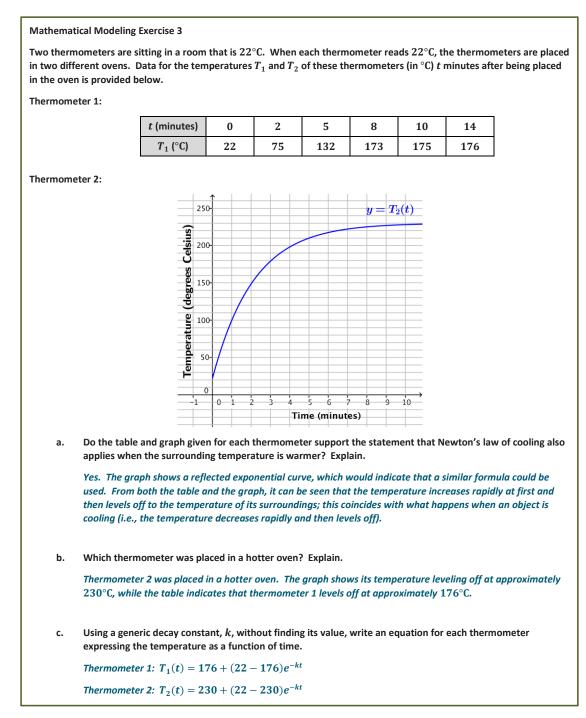
engage^{ny}

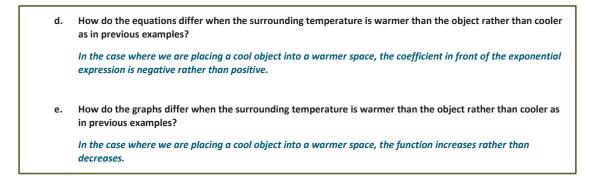


Newton's Law of Cooling, Revisited

Mathematical Modeling Exercise 3 (10 minutes)

Newton's law of cooling also applies when a cooler object is placed in an area with a warmer surrounding temperature. (In this case, we could call it Newton's law of heating.) Allow students time to work in groups before discussing responses as a class. During the debrief, share and discuss work from different groups.





Closing (3 minutes)

Use the closing to highlight how this lesson built on their experiences from Algebra I with exponential decay and transformations of functions as well as the content learned in this module, such as the number *e* and logarithms.

- For Exercise 2, describe the transformations required to graph T starting from the graph of the natural exponential function $f(t) = e^t$.
 - The graph is reflected across the *y*-axis, stretched both vertically and horizontally, and translated up.
- Why were logarithms useful in exploring Newton's law of cooling?
 - It allowed us to find the decay constant or the amount of time elapsed, both of which involve solving an exponential equation.
- How do you find the percent rate of change of the temperature difference from the Newton's law of cooling equation?
 - Rewrite $T(t) = T_0 + (T_a T_0)e^{-kt}$ as $T(t) = T_0 + (T_a T_0)(e^{-k})^t$, then express e^{-k} as $e^{-k} = 1 r$, for some number r. Then r represents the percent rate of change of the temperature difference.

Exit Ticket (5 minutes)

Name

Date _____

Lesson 28: Newton's Law of Cooling, Revisited

Exit Ticket

A pizza, heated to a temperature of 400° F, is taken out of an oven and placed in a 75°F room at time t = 0 minutes. The temperature of the pizza is changing such that its decay constant, k, is 0.325. At what time is the temperature of the pizza 150°F and, therefore, safe to eat? Give your answer in minutes.

Exit Ticket Sample Solutions

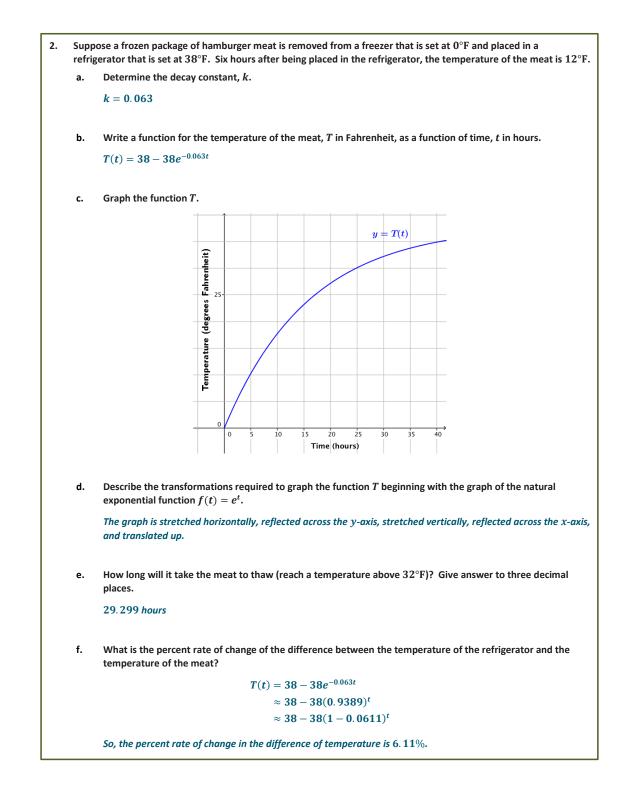
A pizza, heated to a temperature of 400° Fahrenheit, is taken out of an oven and placed in a 75°F room at time t = 0 minutes. The temperature of the pizza is changing such that its decay constant, k, is 0.325. At what time is the temperature of the pizza 150°F and, therefore, safe to eat? Give your answer in minutes.

 $T(t) = 75 + (400 - 75)e^{-0.325t} = 150$ $325e^{-0.325t} = 75$ $e^{-0.325t} = \frac{75}{325}$ $-0.325t = \ln\left(\frac{75}{325}\right)$ $t \approx 4.512$ The pizza will reach 150°F after approximately 4 $\frac{1}{2}$ minutes.

Problem Set Sample Solutions

1.	Experiments with a covered cup of coffee show that the temperature (in degrees Fahrenheit) of the coffee can be modeled by the following equation:		
		$f(t) = 112e^{-0.08t} + 68,$	
where the time is measured in minutes after the coffee was poured into the cup. a. What is the temperature of the coffee at the beginning of the experiment?			
	What is the temperature of the room?		
		68°F	
	c.	After how many minutes is the temperature of the coffee 140° F? Give your answer to 3 decimal places.	
		5.523 minutes	
	d. What is the temperature of the coffee after a few hours have elapsed?		
		The temperature is slightly above 68°F.	
e. What is the percent rate of change of the difference between the temperature of the room and the temperature of the coffee?			
		$f(t) = 112(e^{-0.08t}) + 68$	
		$= 112(e^{-0.08})^t + 68$	
		$\approx 112(0.9231)^t + 68$	
		$pprox 112(1-0.0769)^t + 68$	
		Thus, the percent rate of change of the temperature difference is a decrease of 7.69% each minute.	

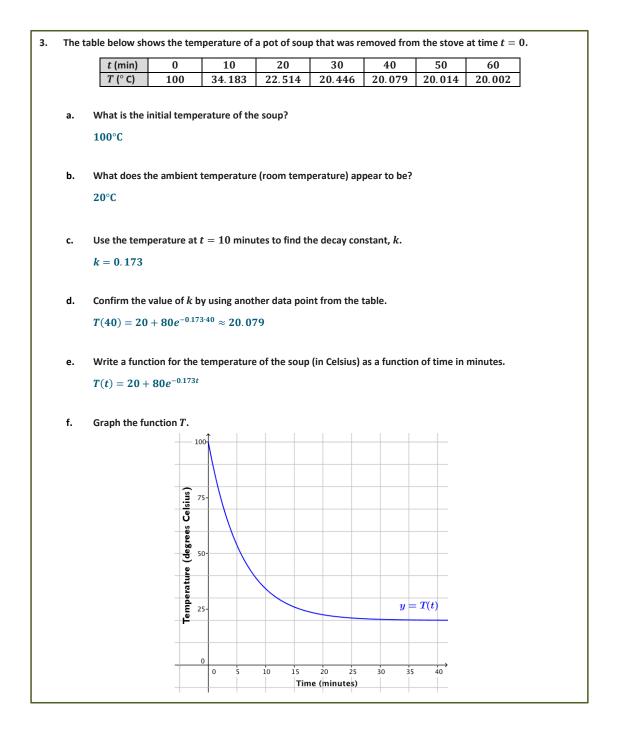
Lesson 28: Newton's Law of Cooling, Revisited

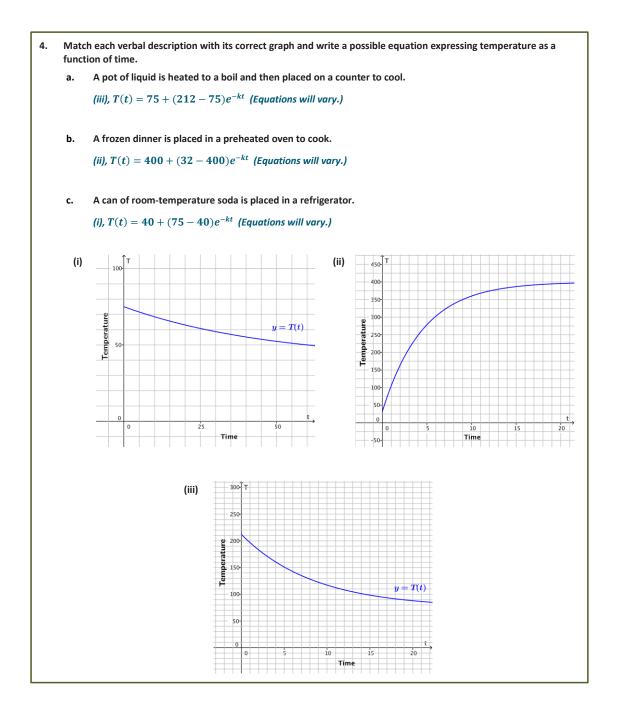


EUREKA MATH

Lesson 28 **M3**

ALGEBRA II





Lesson 29: The Mathematics Behind a Structured Savings

Student Outcomes

- Students derive the sum of a finite geometric series formula.
- Students apply the sum of a finite geometric series formula to a structured savings plan.

Lesson Notes

Module 3 ends with a series of lessons centered on finance. In the remaining lessons, students progress through the mathematics of a structured savings plan, buying a car, borrowing on credit cards, and buying a house. The module ends with an investigation of how to save over one million dollars in assets by the time the students are 40 years old. Throughout these lessons, students engage in various parts of the modeling cycle: formulating, computing, interpreting, validating, and re-formulating.

In Lesson 29, students derive the formula for the sum of a finite geometric series (**A-SSE.B.4**). Once established, students work with and develop fluency with summation notation, sometimes called sigma notation. Students are then presented with the problem of a structured savings plan (known as a sinking fund, but this terminology is avoided). Students use the modeling cycle to identify essential features of structured savings plans and develop a model from the formula for the sum of a finite geometric series. By the end of the lesson, students have both the formula for a sum of a finite geometric series (where the common ratio is not 1) and the formula for a structured savings plan. The structured savings plan is modified in the remaining lessons to apply to other types of loans, and additional formulas are developed based on that of the structured savings plan.

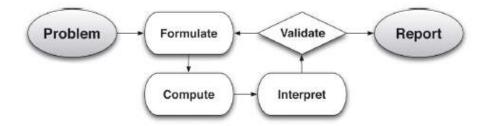
The formula $A_f = R\left(\frac{(1+i^n)-1}{i}\right)$ gives the future value A_f of a structured savings plan with recurring payment R,

interest rate *i* per compounding period, and number of compounding periods *n*. In the context of loans, sometimes *P* is used to represent the payment instead of *R*, but *R* has been chosen because the formula is first presented as a structured savings plan and this notation avoids conflict with the common practice of using *P* for principal.

Recall that the definition of a sequence in high school is simply a function whose domain is the natural numbers or nonnegative integers. Students have worked with arithmetic and geometric sequences in Module 3 of Algebra I as well as in Lesson 25 of this module. Sequences can be described both recursively and explicitly (**F-BF.A.2**). Although students primarily work with geometric sequences in Lessons 29 through 33, arithmetic sequences are reviewed in the problem sets of the lessons.

A copy of the modeling cycle flowchart is included below to assist with the modeling portions of these lessons. Whenever students consider a modeling problem, they need to first identify variables representing essential features in the situation, formulate a model to describe the relationships between the variables, analyze and perform operations on the relationships, interpret their results in terms of the original situation, validate their conclusions, and either improve the model or report on their conclusions and their reasoning. Both descriptive and analytic modeling are used. Suggestions are made for the teacher, but the full extent of modeling done in the first three lessons in this topic is left to the discretion of the teacher and can be adapted as time permits.

The Mathematics Behind a Structured Savings Plan



Note: Consider breaking this lesson up over two days.

Classwork

Opening Exercise (3 minutes)

This is a quick exercise designed to remind students of the future value function $F = P\left(1 + \frac{r}{n}\right)^{nt}$ from Lesson 26.

Opening Exercise
Suppose you invested \$1,000 in an account that paid an annual interest rate of 3% compounded monthly. How much would you have after 1 year?
Since $F = 1000 \left(1 + \frac{0.03}{12}\right)^{12}$, we have $F = (1.0025)^{12} = \$1,030.42$.

After students have found the answer, have the following discussion *quickly*. It is important for setting up the notation for Topic E.

- To find the percent rate of change in the problem above, we took the annual interest rate of 3% compounded monthly (called the nominal APR) and divided it by 12. How do we express that in the future value formula from Lesson 26 using *r* and *n*?
 - We can express the percent rate of change in the future value formula by using the expression $\frac{r}{n}$, where r is the unit rate associated to the nominal APR and n is the number of compounding periods in a year.
- In today's lesson and in the next set of lessons, we are going to replace $\frac{r}{n}$ with something simpler: We use the letter *i* to represent the unit rate of the percent rate of change per time period (i.e., the interest rate per compounding period). What is the value of *i* in the problem above?
 - □ *i* = 0.0025
- Also, since we only need to make calculations based upon the number of time periods, we can use *m* to stand for the total number of time periods (i.e., total number of compounding periods). What is *m* in the problem above?

□ *m* = 12

Thus, the formula we work with is $F = P(1 + i)^m$ where P is the present value and F is the future value. This formula helps make our calculations more transparent, but we need to always remember to find the interest rate per compounding period first.

9: The Mathematics Behind a Structured Savings Plan

477

engage

Discussion (7 minutes)

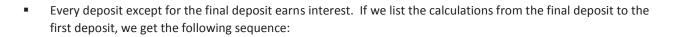
MP.4 & MP.8 This discussion sets up the reason for studying geometric series: Finding the future value of a structured savings plan. After this discussion, we develop the formula for the sum of a series and then return to this discussion to show how to use the formula to find the future value of a structured savings plan. This sum of a geometric series is brought up again and again throughout the remainder of the finance lessons to calculate information on structured savings plans, loans, annuities, and more. Look for ways you can use the discussion to help students formulate the problem.

- Let us consider the example of depositing \$100 at the end of every month into an account for 12 months. If there is no interest earned on these deposits, how much money do we have at the end of 12 months?
 - We have 12 · \$100 = \$1,200. (Some students may be confused about the first and last payments. Have them imagine they start a job where they get paid at the end of each month, and they put \$100 from each paycheck into a special account. Then they would have \$0 in the account until the end of the first month at which time they deposit \$100. Similarly, they would have \$200 at the end of month 2, \$300 at the end of month 3, and so on.)
- Now let us make an additional assumption: Suppose that our account is earning an annual interest rate of 3% compounded monthly. We would like to find how much will be in the account at the end of the year. The answer requires several calculations, not just one.
- What is the interest rate per month?
 - □ *i* = 0.025
- How much would the \$100 deposited at the end of month 1 and its interest be worth at the end of the year?
 - Since the interest on the \$100 would be compounded 11 times, it and its interest would be worth $(1.025)^{11}$ using the formula $F = P(1 + i)^m$. (Some students may calculate the value to be \$131.21, but tell them to leave their answers in exponential form for now.)
- How much would the \$100 deposited at the end of month 2 and its interest be worth at the end of the year?
 - □ \$100(1.025)¹⁰
- Continue: Find how much the \$100 deposited at the end of the remaining months plus its compounded interest is worth at the end of the year by filling out the table:

Month Deposited	Amount at the End of the Year, in Dollars
1	$100(1.025)^{11}$
2	$100(1.025)^{10}$
3	100(1.025) ⁹
4	100(1.025) ⁸
5	$100(1.025)^7$
6	$100(1.025)^6$
7	$100(1.025)^5$
8	$100(1.025)^4$
9	$100(1.025)^3$
10	$100(1.025)^2$
11	100(1.025)
12	100

Lesson 29:

The Mathematics Behind a Structured Savings Plan



 $100, 100(1.025)^1, 100(1.025)^2, 100(1.025)^3, \dots, 1000(1.025)^{10}, 1000(1.02)^{11}$

- What do you notice about this sequence?
 - The sequence is geometric with initial term 100 and common ratio 1.025.
- Describe how to calculate the amount of money we will have at the end of 12 months.
 - Sum the 12 terms in the geometric sequence to get the total amount in the account at the end of 12 months.
- The answer,

$$100 + 100(1.025) + 100(1.025)^2 + \dots + 100(1.025)^{11}$$
,

is an example of a geometric series. In the next example, we find a formula to find the sum of this series quickly. For now, let's discuss the definition of series. When we add some of the terms of a sequence we get a series:

• SERIES: Let $a_1, a_2, a_3, a_4, \dots$ be a sequence of numbers. A sum of the form

$$a_1 + a_2 + a_3 + \dots + a_n$$

for some positive integer n is called a *series* (or *finite series*) and is denoted S_n .

The a_i 's are called the *terms* of the series. The number S_n that the series adds to is called the *sum* of the series.

• **GEOMETRIC SERIES:** A *geometric series* is a series whose terms form a geometric sequence.

Since a geometric sequence is of the form $a, ar, ar^2, ar^3, ...,$ the general form of a finite geometric sequence is of the form

$$S_n = a + ar + ar^2 + \dots + ar^{n-1}.$$

- In the geometric series we generated from our structured savings plan, what is the first term a? What is the common ratio r? What is n?
 - a = 100, r = 1.025, and n = 12

Example 1 (10 minutes)

Work through the following example to establish the formula for finding the sum of a finite geometric series. In the example, we calculate the general form of a sum of a generic geometric series using letters a and r. We use letters instead of a numerical example for the following reasons:

The Mathematics Behind a Structured Savings Plan

• Using letters in this situation actually makes the computations clearer. Students need only keep track of two letters instead of several numbers (as in 3, 6, 12, 24, 48, 96, ...).

Lesson 29:

479

engage

Lesson 29

ALGEBRA II

Students have already investigated series several times before in different forms without realizing it. For example, throughout Topic A of Module 1 of Algebra II, they worked with the identity $(1-r)(1+r^2+r^3+\cdots+r^{n-1})=1-r^n$ for any real number r, and they even used the identity to find the sum $1 + 2 + 2^2 + 2^3 + \dots + 2^{31}$. In fact, students already derived the geometric series sum formula in

the Problem Set of Lesson 1 of this module.

However, depending upon your class's strengths, you might consider doing a "mirror" calculation. On the left half of your board/screen do the calculation below, and on the right half "mirror" a numerical example; that is, for every algebraic line you write on the left, write the corresponding line using numbers on the right. A good numerical series to use is 2 + 6 + 18 + 54 + 162.

Example 1
Let
$$a, ar, ar^2, ar^3, ar^4, \dots$$
 be a geometric sequence with first term a and common ratio r . Show that the sum S_n of the first n terms of the geometric series
 $S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$ $(r \neq 1)$
is given by the equation
 $S_n = a \left(\frac{1-r^n}{1-r}\right)$.

Give students 2–3 minutes to try the problem on their own (or in groups of two). It is completely okay if no one gets an answer—you are giving them structured time to persevere, test conjectures, and grapple with what they are expected to show. Give a hint as you walk around the class: What identity from Module 1 can we use? Or, just ask them to see if the formula works for a = 1, r = 2, n = 5. If a student or group of students solves the problem, tell them to hold on to their solution for a couple of minutes. Then go through this discussion:

Multiply both sides of the equation $S_n = a + ar + ar^2 + \dots + ar^{n-2} + ar^{n-1}$ by *r*.

$$r \cdot S_n = ar + ar^2 + ar^3 + \dots + ar^{n-1} + ar^n$$

Compare the terms on the right-hand side of the old and new equations:

$$S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$$

 $r \cdot S_n = ar + ar^2 + ar^3 + \dots + ar^{n-1} + ar^n$

- What are the only terms on the right-hand side of the original equation and the new equation that are not found in both?
 - The only terms that are not found in both are a and ar^n .
- Therefore, when we subtract $S_n rS_n$, all the common terms on the right-hand side of the equations subtract to zero leaving only $a - ar^n$ (after applying the associative and commutative properties repeatedly):

$$S_n - rS_n = (a + ar + ar^2 + \dots + ar^{n-1}) - (ar + ar^2 + \dots + ar^{n-1} + ar^n)$$

= $a + (ar - ar) + (ar^2 - ar^2) + \dots + (ar^{n-1} - ar^{n-1}) - ar^n$
= $a - ar^n$.

Isolate S_n in the equation $S_n - rS_n = a - ar^n$ to get the formula (when $r \neq 1$):

$$S_n(1-r) = a(1-r^n) \implies S_n = a\left(\frac{1-r^n}{1-r}\right).$$

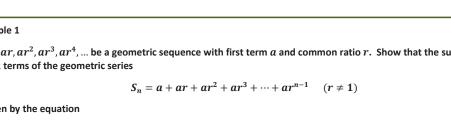
Lesson 29: The Mathematics Behind a Structured Savings Plan

MP.7

EUREKA

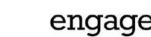
480

• For struggling students, do this calculation twice, first using a concrete sequence such as a = 3 and r = 2before generalizing.



ALGEBRA II

Lesson 29



Any student who used the identity equation $(1 - r)(1 + r + r^2 + r^3 + \dots + r^{n-1}) = 1 - r^n$ or a different verifiable method (like proof by induction) should be sent to the board to explain the solution to the rest of class as an alternative explanation to your explanation. If no one was able to show the formula, you can wrap up the explanation by linking the formula back to the work they have done with this identity: Divide both sides of the identity equation by (1 - r) to isolate the sum $1 + r + r^2 + \dots + r^{n-1}$ and then for $r \neq 1$,

$$a + ar + ar^{2} + \dots + ar^{n-1} = a(1 + r + r^{2} + \dots + r^{n-1}) = a\left(\frac{1 - r^{n}}{1 - r}\right)$$

Exercises 1–3 (5 minutes)

Exe	rcises 1–3	Scaffolding: Ask advanced students to first find	
1. Find the sum of the geometric series $3 + 6 + 12 + 24 + 48 + 96 + 192$.the sumThe first term is 3, so $a = 3$. The common ratio is $6/3 = 2$, so $r = 2$. Since there are 7 $a + ar^2$ terms, $n = 7$.and then t			
2.	Find the sum of the geometric series $40 + 40(1.005) + 40(1.005)^2 + \dots + 40(1.005)^{11}$. Reading directly off the sum, $a = 40$, $r = 1.005$, and $n = 12$. Thus, $S_{12} = 40 \cdot \left(\frac{1 - 1.005^{12}}{1 - 1.005}\right)$, so $S_{12} \approx 493.42$.		
3.	Describe a situation that might lead to calculating the sum of the geometric series in Exercise 2. Investing \$40 a month into an account with an annual interest rate of 6% compounded monthly (or investing \$40 a month into an account with an interest rate of 0.05% per month) can lead to the geometric series in Exercise 2.		

Example 2 (2 minutes)

Let's now return to the Opening Exercise and answer the problem we encountered there.

Example 2	
A 100 deposit is made at the end of every month for 12 months in an account that earns interest at an an rate of 3% compounded monthly. How much will be in the account immediately after the last payment?	nual interest
Answer: The total amount is the sum $100 + 100(1.025) + 100(1.025)^2 + \dots + 100(1.025)^{11}$. This is a series with $a = 100$, $r = 1.025$, and $n = 12$. Using the formula for the sum of a geometric series, $S_{12} = 100\left(\frac{1-1.025^{12}}{1-1.025}\right)$, so $S \approx 1379.56$. The account will have \$1,379.56 in it immediately after the lateral series is a series of the se	5

Point out to your students that \$1,379.56 is significantly more money than stuffing \$100 in your mattress every month for 12 months. A structured savings plan like this is one way people can build wealth over time. Structured savings plans are examples of *annuities*. An annuity is commonly thought of as a type of retirement plan, but in this lesson, we are using the term in a much simpler way to refer to any situation where money is transferred into an account in equal amounts on a regular, recurring basis.

The Mathematics Behind a Structured Savings Plan

Discussion (5 minutes)

Explain the following text to your students, and work with them to answer the questions below it.

Discussion

An *annuity* is a series of payments made at fixed intervals of time. Examples of annuities include structured savings plans, lease payments, loans, and monthly home mortgage payments. The term annuity sounds like it is only a yearly payment, but annuities often require payments monthly, quarterly, or semiannually. The *future amount of the annuity*, denoted A_f , is the sum of all the individual payments made plus all the interest generated from those payments over the specified period of time.

We can generalize the structured savings plan example above to get a generic formula for calculating the future value of an annuity A_f in terms of the recurring payment R, interest rate i, and number of payment periods n. In the example above, we had a recurring payment of R = 100, an interest rate per time period of i = 0.025, and 12 payments, so n = 12. To make things simpler, we always assume that the payments and the time period in which interest is compounded are at the same time. That is, we do not consider plans where deposits are made halfway through the month with interest compounded at the end of the month.

In the example, the amount A_f of the structured savings plan annuity was the sum of all payments plus the interest accrued for each payment:

$$A_f = R + R(1+i)^1 + R(1+i)^2 + \dots + R(1+i)^{n-1}.$$

This, of course, is a geometric series with n terms, a = R, and r = 1 + i, which after substituting into the formula for a geometric series and rearranging is

$$A_f = R\left(\frac{(1+i)^n - 1}{i}\right).$$

- Explain how to get the formula above from the sum of a geometric series formula.
 - Substitute R, 1 + i, and n into the geometric series and rearrange:

$$A_f = R\left(\frac{1-(1+i)^n}{1-(1+i)}\right) = R\left(\frac{1-(1+i)^n}{-i}\right) = R\left(\frac{(1+i)^n-1}{i}\right).$$

- (Optional depending on time.) How much money would need to be invested every month into an account with an annual interest rate of 12% compounded monthly in order to have \$3,000 after 18 months?
 - $3000 = R\left(\frac{(1.01)^{18}-1}{0.01}\right)$. Solving for R yields $R \approx 152.95$. For such a savings plan, \$152.95 would need to be invested monthly.

Example 3 (5 minutes)

Example 3 develops summation notation, sometimes called sigma notation. Including summation notation at this point is natural to reduce the amount of writing in sums and to develop fluency before relying on summation notation in precalculus and calculus. Plus, it "wraps up" all the important components of describing a series (starting value, index, explicit formula, and ending value) into one convenient notation. We further explore summation notation in the problem sets of Lessons 29 through 33 to develop fluency with the notation. Summation notation is specifically used to represent series. Students may be interested to know that a similar notation exists for products; product notation makes use of a capital pi, Π , instead of a capital sigma but is otherwise identical in form to summation notation. For example, we can represent n! by $\prod_{k=1}^{n} k = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n = n!$.

The Mathematics Behind a Structured Savings Plan

Lesson 29

Mathematicians use notation to reduce the amount of writing and to prevent ambiguity in mathematical sentences. Mathematicians use a special symbol with sequences to indicate that we would like to sum up the sequence. This symbol is a capital sigma, Σ . The sum of a sequence is called a *series*.

- The first letter of summation is "S," and the Greek letter for "S" is sigma. Capital sigma looks like this: Σ .
- There is no rigid way to use Σ to represent a summation, but all notations generally follow the same rules. Let's discuss the most common way it used. Given a sequence $a_1, a_2, a_3, a_4, ...$, we can write the sum of the first *n* terms of the sequence using the expression:

$$\sum_{k=1}^n a_k.$$

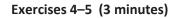
It is read, "The sum of a_k from k = 1 to k = n." The letter k is called the index of the summation. The notation acts like a for-next loop in computer programming: Replace k in the expression right after the sigma by the integers (in this case) 1, 2, 3, ..., n, and add the resulting expressions together. Since

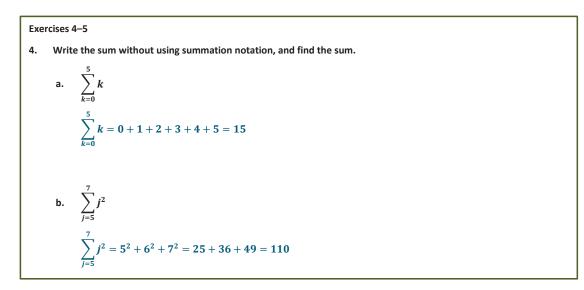
$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + \dots + a_n,$$

the notation can be used to greatly simplify writing out the sum of a series.

When the terms in a sequence are given by an explicit function, like the geometric sequence given by $a_k = 2^k$ for example, we often use the expression defining the explicit function instead of sequence notation. For example, the sum of the first five powers of 2 can be written as

$$\sum_{k=1}^{5} 2^{k} = 2^{1} + 2^{2} + 2^{3} + 2^{4} + 2^{5}.$$





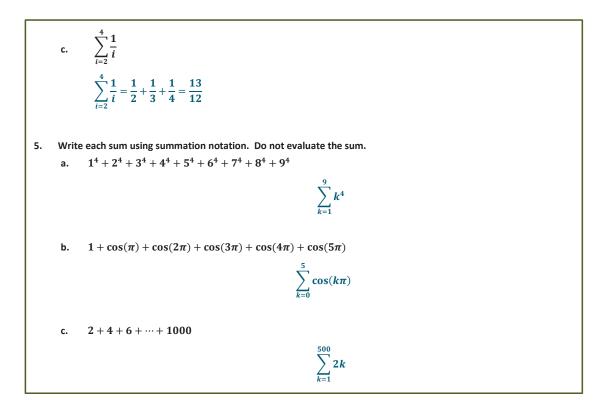
EUREKA

Lesson 29:

The Mathematics Behind a Structured Savings Plan

483

engage

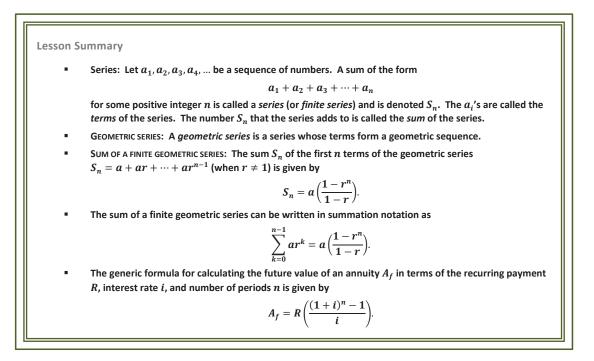


Closing (2 minutes)

Have students summarize the lesson in writing or with a partner. Circulate and informally assess understanding. Ensure that every student has the formula for the sum of a finite geometric series and the formula for the future value of a structured savings plan. Ask questions to prompt student memory of the definitions and formulas below.

: The Mathematics Behind a Structured Savings Plan

J



Exit Ticket (3 minutes)

: The Mathematics Behind a Structured Savings Plan

Name

Date

Lesson 29: The Mathematics Behind a Structured Savings Plan

Exit Ticket

Martin attends a financial planning conference and creates a budget for himself, realizing that he can afford to put away \$200 every month in savings and that he should be able to keep this up for two years. If Martin has the choice between an account earning an interest rate of 2.3% yearly versus an account earning an annual interest rate of 2.125% compounded monthly, which account gives Martin the largest return in two years?

The Mathematics Behind a Structured Savings Plan

Exit Ticket Sample Solutions

Martin attends a financial planning conference and creates a budget for himself, realizing that he can afford to put away \$200 every month in savings and that he should be able to keep this up for two years. If Martin has the choice between an account earning an interest rate of 2.3% yearly versus an account earning an annual interest rate of 2.125% compounded monthly, which account gives Martin the largest return in two years?

$A_f = R\left(\frac{(1+i)^n - 1}{i}\right)$ $A_f = 2400\left(\frac{(1.023)^2 - 1}{0.023}\right) = 4855.20$ $A_f = 200\left(\frac{\left(1 + \frac{0.0215}{12}\right)^{24} - 1}{\frac{0.0215}{12}}\right) \approx 4900.21$

The account earning an interest rate of 2.125% compounded monthly returns more than the yearly account.

Problem Set Sample Solutions

The first problem in the Problem Set asks students to perform the research necessary to personalize Lesson 30. Problems 2–13 develop fluency with summation notation and summing a geometric series. In Problems 14–21, students apply the future value formula to financial scenarios, and the problem set ends with developing a formula for summing arithmetic series.

 A car loan is one of the first secured loans most Americans obtain. Research used car prices and specifications in your area to find a reasonable used car that you would like to own (under \$10,000). If possible, print out a picture of the car you selected.

 a. What is the year, make, and model of your vehicle? *Answers will vary. For instance, 2006 Pontiac G6 GT.* b. What is the selling price for your vehicle? *Answers will vary. For instance, \$7,500*

9: The Mathematics Behind a Structured Savings Plan

с.

Five-Year (60-month) Loan		
	Amount per \$1000	
Interest Rate	Financed	
1.0%	\$17.09	
1.5%	\$17.31	
2.0%	\$17.53	
2.5%	\$17.75	
3.0%	\$17.97	
3.5%	\$18.19	
4 . 0 %	\$18.41	
4.5%	\$18.64	
5 . 0 %	\$18.87	
5.5%	\$19.10	
6.0%	\$19.33	
6.5%	\$19.56	
7 . 0 %	\$19.80	
7.5%	\$20.04	
8.0%	\$20.28	
8.5%	\$20.52	
9 . 0 %	\$20.76	

Answers will vary. At 5% interest, financing a \$7,500 car for 60 months costs \$18.87 \cdot 7.5, which is approximately \$141.53 per month.

d. What is the gas mileage for your vehicle?

Answers will vary. For instance, the gas mileage might be 29 miles per gallon.

e. Suppose that you drive 120 miles per week and gas costs \$4 per gallon. How much does gas cost per month? Answers will vary but should be based on the answer to part (d). For instance, with gas mileage of 29 miles per gallon, the gas cost would be $\frac{120}{29} \cdot 4.3 \cdot $4 \approx 71.17 per month.

2. Write the sum without using summation notation, and find the sum.

 $1+2+3+4+5+6+7+8=4\cdot 9=36$

Lesson 29:

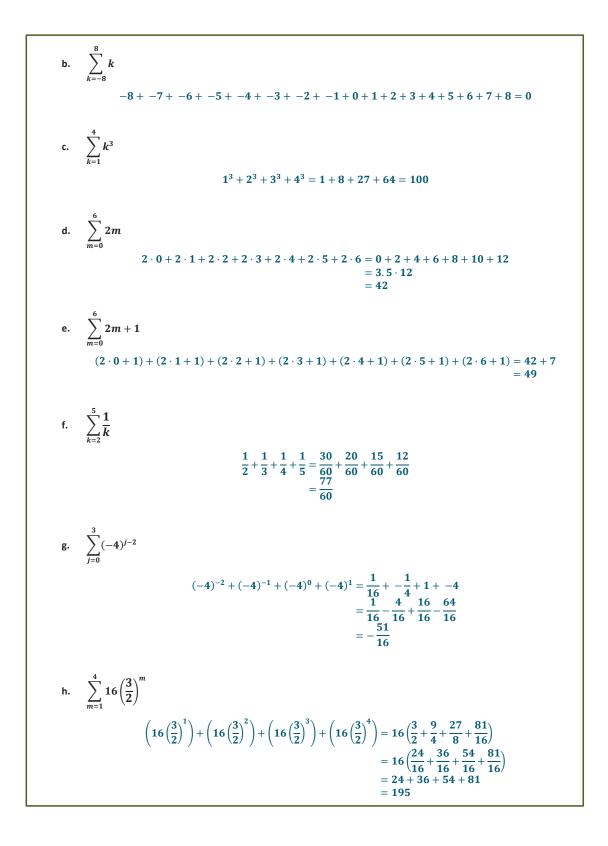
: The Mathematics Behind a Structured Savings Plan

M3

ALGEBRA II

Lesson 29



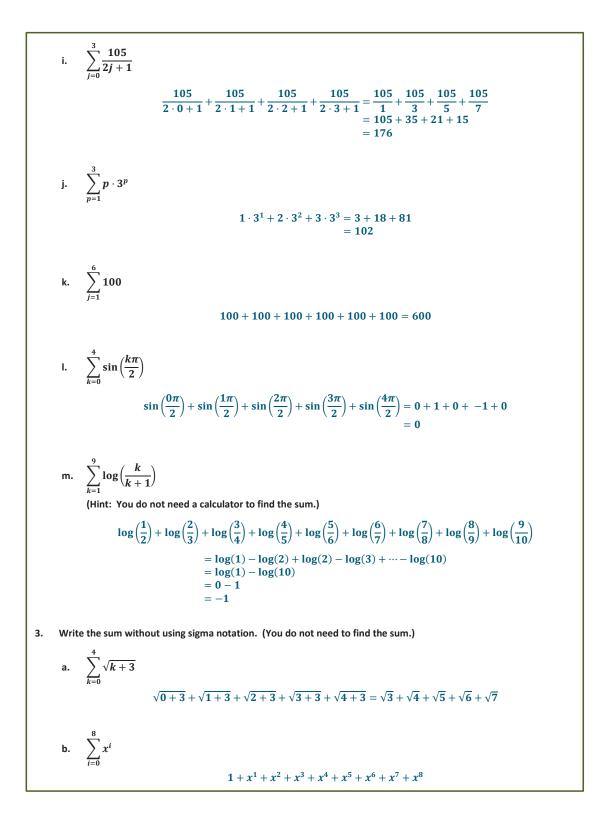


EUREKA

Lesson 29:

The Mathematics Behind a Structured Savings Plan

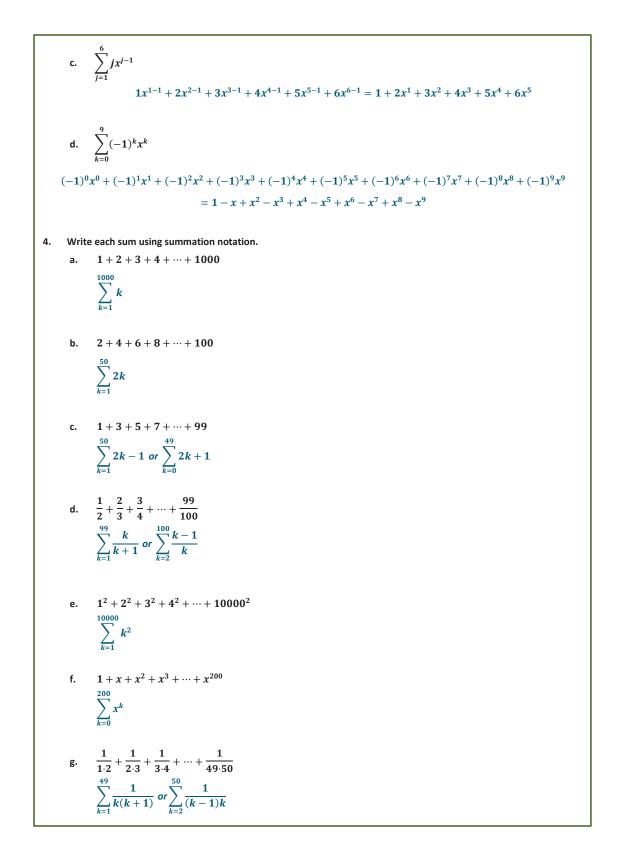
Lesson 29 **M3**



EUREKA

Lesson 29:

The Mathematics Behind a Structured Savings Plan



EUREKA MATH

Lesson 29:

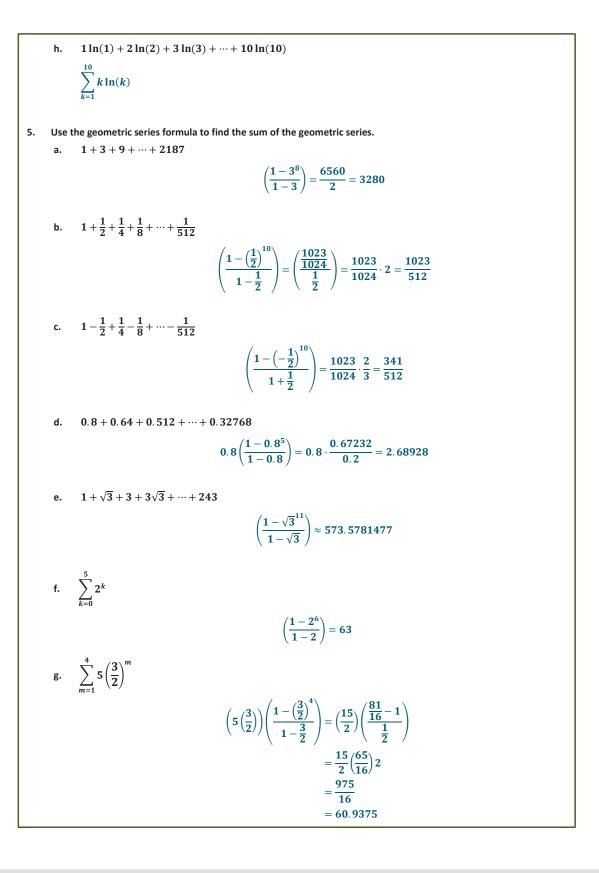
: The Mathematics Behind a Structured Savings Plan

491

engage

M3

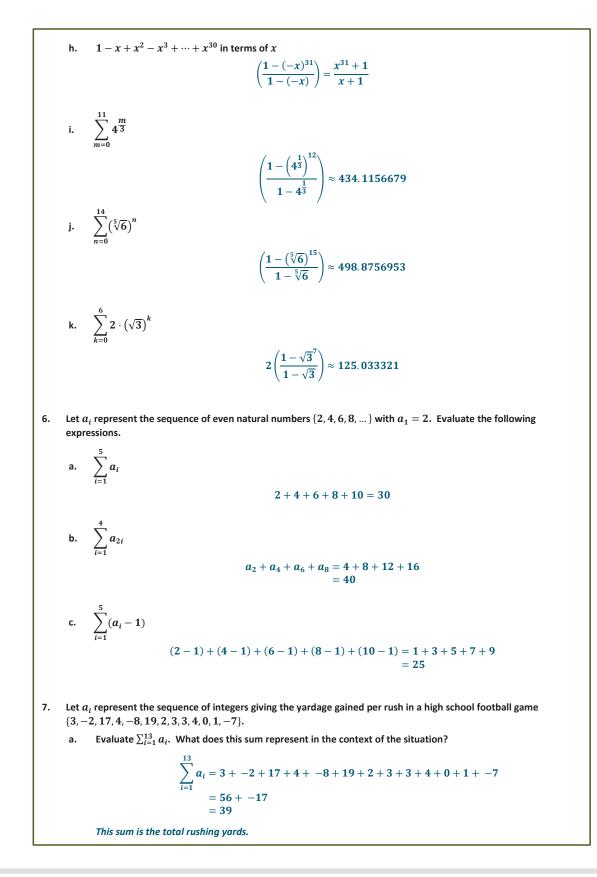
Lesson 29



EUREKA

Lesson 29:

The Mathematics Behind a Structured Savings Plan



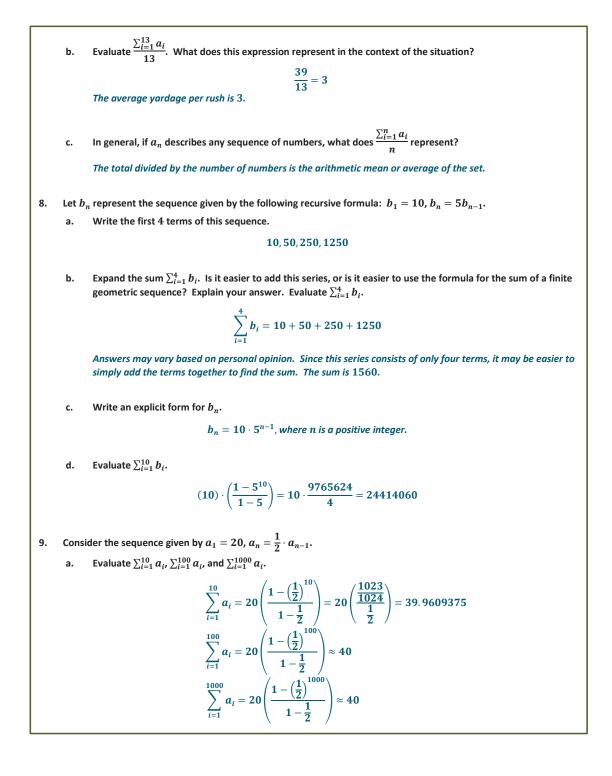
Lesson 29:

: The Mathematics Behind a Structured Savings Plan

493

engage^{ny}

Lesson 29



EUREKA MATH

: The Mathematics Behind a Structured Savings Plan

b. What value does it appear this series is approaching as n continues to increase? Why might it seem like the series is bounded? The series is almost exactly 40. In the numerator we are subtracting a number that is incredibly small and gets even smaller the farther we go in the sequence. So, as $n \to \infty$, the sum approaches $\frac{20}{1} = 40$. 10. The sum of a geometric series with 4 terms is 60, and the common ratio is $r = \frac{1}{2}$. Find the first term. $60 = a\left(\frac{1-\left(\frac{1}{2}\right)^4}{1-\frac{1}{2}}\right)$ $60 = a\left(\frac{1-\frac{1}{16}}{\frac{1}{2}}\right)$ $60 = a\left(\frac{15}{16} \cdot 2\right)$ $60 = a\left(\frac{15}{8}\right)$ $a = 4 \cdot 8 = 32$ 11. The sum of the first 4 terms of a geometric series is 203, and the common ratio is 0.4. Find the first term. $203 = a\left(\frac{1-0.4^4}{1-0.4}\right)$ $a = 203\left(\frac{0.6}{1-0.4^4}\right) = 125$ 12. The third term in a geometric series is $\frac{27}{2}$, and the sixth term is $\frac{729}{16}$. Find the common ratio. $ar^2 = \frac{27}{2}$ $ar^5 = \frac{729}{16}$ $r^3 = \frac{729}{16} \cdot \frac{2}{27} = \frac{27}{8}$ $r=\frac{3}{2}$ 13. The second term in a geometric series is 10, and the seventh term is 10, 240. Find the sum of the first six terms. ar = 10 $ar^6 = 10240$ $r^5 = 1024$ r = 4 $a = \frac{10}{4} = \frac{5}{2}$ $S_6 = \frac{5}{2} \left(\frac{1 - 4^6}{1 - 4} \right)$ $=\frac{5}{2}\left(\frac{4095}{3}\right)$ = 3412.5

Lesson 29:

: The Mathematics Behind a Structured Savings Plan

M3

Lesson 29

14. Find the interest earned and the future value of an annuity with monthly payments of \$200 for two years into an account that pays 6% interest per year compounded monthly.

$$A_f = 200 \left(\frac{\left(1 + \frac{0.06}{12}\right)^{24} - 1}{\frac{0.06}{12}} \right)$$

\$\approx 5086.39\$

The future value is \$5,086.39, *and the interest earned is* \$286.39.

15. Find the interest earned and the future value of an annuity with annual payments of 1,200 for 15 years into an account that pays 4% interest per year.

$$A_f = 1200 \left(\frac{(1+0.04)^{15} - 1}{0.04} \right)$$

\$\approx 24028.31\$

The future value is \$24,028.31, and the interest earned is \$6,028.31.

16. Find the interest earned and the future value of an annuity with semiannual payments of \$1,000 for 20 years into an account that pays 7% interest per year compounded semiannually.

$$A_f = 1000 \left(\frac{\left(1 + \frac{0.07}{2}\right)^{40} - 1}{\frac{0.07}{2}} \right) \approx 84550.28$$

The future value is \$84, 550.28, and the interest earned is \$44, 550.28.

17. Find the interest earned and the future value of an annuity with weekly payments of \$100 for three years into an account that pays 5% interest per year compounded weekly.

$$A_f = 100 \left(\frac{\left(1 + \frac{0.05}{52}\right)^{156} - 1}{\frac{0.05}{52}} \right) \approx 16822.05$$

The future value is \$16,822.05, and the interest earned is \$1,222.05.

18. Find the interest earned and the future value of an annuity with quarterly payments of \$500 for 12 years into an account that pays 3% interest per year compounded quarterly.

$$A_{f} = 500 \left(\frac{\left(1 + \frac{0.03}{4}\right)^{48} - 1}{\frac{0.03}{4}} \right)$$

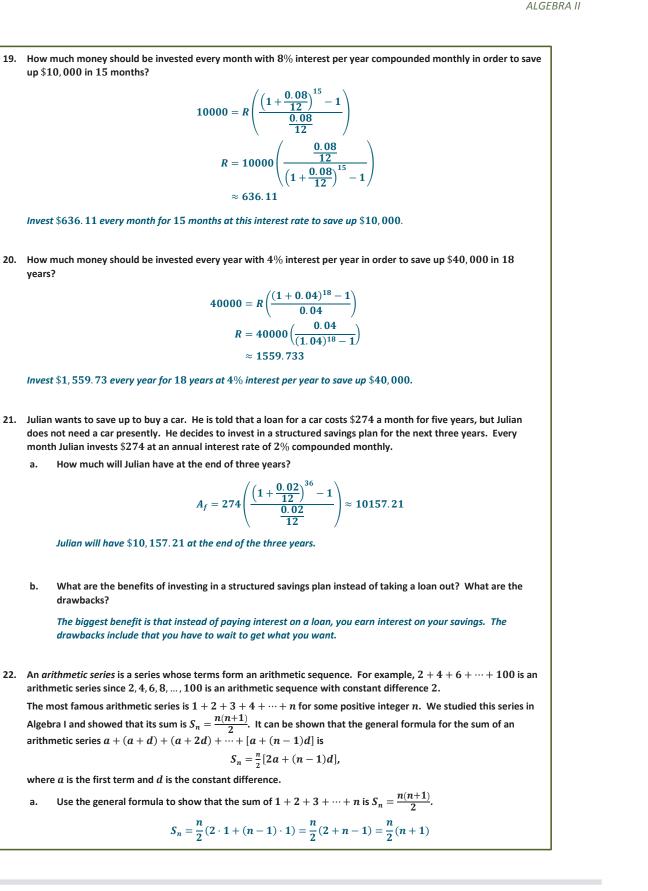
\$\approx 28760.36\$

The future value is \$28,760.36, and the interest earned is \$4,760.36.

The Mathematics Behind a Structured Savings Plan

19.

M3



EUREKA

Lesson 29:

The Mathematics Behind a Structured Savings Plan

Lesson 29 M3

ALGEBRA II

b. Use the general formula to find the sum of $2 + 4 + 6 + 8 + 10 + \dots + 100$.

$$S_n = \frac{50}{2}(4 + (50 - 1)2) = 25(102) = 2550$$

23. The sum of the first five terms of an arithmetic series is 25, and the first term is 2. Find the constant difference.

$$25 = \frac{5}{2}(2 + a_5)$$

$$10 = 2 + a_5$$

$$a_5 = 8$$

$$8 = 2 + d(4)$$

$$6 = d(4)$$

$$d = \frac{3}{2}$$

24. The sum of the first nine terms of an arithmetic series is 135, and the first term is 17. Find the ninth term.

$$135 = \frac{9}{2}(17 + a_9)$$

$$30 = 17 + a_9$$

$$13 = a_9$$

$$13 = 17 + d(8)$$

$$-4 = d(8)$$

$$d = -\frac{1}{2}$$

25. The sum of the first and 100th terms of an arithmetic series is 101. Find the sum of the first 100 terms.

$$S_{100} = \frac{100}{2}(101) = 5050$$

The Mathematics Behind a Structured Savings Plan

Student Outcomes

Students use the sum of a finite geometric series formula to develop a formula to calculate a payment plan for a car loan and use that calculation to derive the present value of an annuity formula.

Lesson Notes

In this lesson, students explore the idea of getting a car loan. The lesson extends their knowledge on saving money from the last lesson to the mathematics behind borrowing it. The formula for the monthly payment on a loan is derived using the formula for the sum of a geometric series. Amortization tables are used to help students develop an understanding of borrowing money.

In this lesson, we derive the future amount of an annuity formula again in the context of purchasing a car and use it to understand the present value of an annuity formula:

$$A_p = R\left(\frac{1 - (1+i)^{-n}}{i}\right).$$

It is helpful to think of the present value of an annuity A_p in the following way: Calculate the future amount of an annuity A_f (as in Lesson 29) to find out the total amount that would be in an account after making all of the payments. Then, use the compound interest formula $F = P(1 + i)^n$ from Lesson 26 to compute how much would need to be invested today (i.e., A_p) in one single large deposit to equal the amount A_f in the future. More specifically, for an interest rate of i per time period with n payments each of amount R, then the present value can be computed (substituting A_p for P and A_f for F in the compound interest formula) to be

$$A_f = A_p (1+i)^n.$$

Using the future amount of an annuity formula and solving for A_p gives

$$A_p = R\left(\frac{(1+i)^n - 1}{i}\right)(1+i)^{-n},$$

which simplifies to the first formula above. The play between the sum of a geometric series (A-SSE.B.4) and the combination of functions to get the new function A_p (F-BF.A.1b) constitutes the entirety of the mathematical content of this lesson.

While the mathematics is fairly simple, the context—car loans and the amortization process—is also new to students. To help the car loan process make sense (and loans in general), we have students think about the following situation: Instead of paying the full price of a car immediately, a student asks the dealer to develop a loan payment plan in which the student pays the same amount each month. The car dealer agrees and does the following calculation to determine the amount R that the student should pay each month:

The car dealer first imagines how much she would have if she took the amount of the loan (i.e., price of the • car) and deposited it into an account for 60 months (5 years) at a certain interest rate per month.

- The car dealer then imagines taking the student's payments (*R* dollars) and depositing them into an account making the same interest rate per month. The final amount is calculated just like calculating the final amount of a structured savings plan from Lesson 29.
- The car dealer then reasons that, to be fair to her and her customer, the two final amounts should be the same—that is, the car dealer should have the same amount in each account at the end of 60 months either way. This sets up the equation above, which can then be solved for *R*.

This lesson is the first lesson where the concept of amortization appears. An example of amortization is the process of decreasing the amount owed on a loan over time, which decreases the amount of interest owed over time as well. This can be thought of as doing an annuity calculation like in Lesson 29 but run backward in time. Whenever possible, use online calculators such as http://www.bankrate.com/calculators/mortgages/amortization-calculator.aspx to generate amortization tables (i.e., tables that show the amount of the principal and interest for each payment). Students have filled in a few amortization tables in Lesson 26 as an application of interest, but the concept was not presented in its entirety.

Classwork

Opening Exercise (2 minutes)

The following problem is similar to homework students did in the previous lesson; however, the savings terms are very similar to those found in car loans.

Opening Exercise

Write a sum to represent the future amount of a structured savings plan (i.e., annuity) if you deposit \$250 into an account each month for 5 years that pays 3.6% interest per year, compounded monthly. Find the future amount of your plan at the end of 5 years.

$$250(1.003)^{59} + 250(1.003)^{58} + \dots + 250(1.003) + 250 = 250 \left(\frac{(1.003)^{60} - 1}{0.003} \right)^{10}$$

≈ 16407.90.

The amount in the account after 5 years will be \$16,407.90.

Example (15 minutes)

Many people take out a loan to purchase a car and then repay the loan on a monthly basis. Announce that we will figure out how banks determine the monthly payment for a loan in today's class.

- When deciding to get a car loan, there are many things to consider. What do we know that goes into getting a loan for a vehicle?
 - Look for the following: down payment, a monthly payment, interest rates on the loan, number of years of the loan. Explain any of these terms that students may not know.

For car loans, a down payment is not always required, but a typical down payment is 15% of the total cost of the vehicle. Let's assume throughout this example that no down payment is required.

This example provides a sequence of problems to work through with your students that guides students through the process for finding the recurring monthly payment for a car loan described in the teacher notes. After the example, students are given more information on buying a car and calculate the monthly payment for a car that they researched on the Internet as part of their homework in Lesson 29.

Example

Jack wanted to buy a 9,000 2-door sports coupe but could not pay the full price of the car all at once. He asked the car dealer if she could give him a loan where he paid a monthly payment. She told him she could give him a loan for the price of the car at an annual interest rate of 3.6% compounded monthly for 60 months (5 years).

The problems below exhibit how Jack's car dealer used the information above to figure out how much his monthly payment of R dollars per month should be.

a. First, the car dealer imagined how much she would have in an account if she deposited \$9,000 into the account and left it there for 60 months at an annual interest rate of 3.6% compounded monthly. Use the compound interest formula $F = P(1 + i)^n$ to calculate how much she would have in that account after 5 years. This is the amount she would have in the account after 5 years if Jack gave her \$9,000 for the car, and she immediately deposited it.

 $F=9000(1+0.003)^{60}=9000(1.003)^{60}\approx 10772.05.$ At the end of 60 months, she would have \$10,772.05 in the account.

b. Next, she figured out how much would be in an account after 5 years if she took each of Jack's payments of R dollars and deposited it into a bank that earned 3.6% per year (compounded monthly). Write a sum to represent the future amount of money that would be in the annuity after 5 years in terms of R, and use the sum of a geometric series formula to rewrite that sum as an algebraic expression.

This is like the structured savings plan in Lesson 29. The future amount of money in the account after 5 years can be represented as

$$R(1.003)^{59} + R(1.003)^{58} + \dots + R(1.003) + R.$$

Applying the sum of a geometric series formula

$$S_n = a\left(\frac{1-r^n}{1-r}\right)$$

to the geometric series above using a = R, r = 1.003, and n = 60, one gets

$$S_n = R\left(\frac{1 - (1.003)^{60}}{1 - 1.003}\right) = R\left(\frac{(1.003)^{60} - 1}{0.003}\right)$$

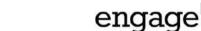
At this point, we have re-derived the future amount of an annuity formula. Point this out to your students! Help them to see the connection between what they are doing in this context with what they did in Lesson 29. The future value formula is

$$A_f = R\left(\frac{(1+i)^n - 1}{i}\right).$$

c. The car dealer then reasoned that, to be fair to her and Jack, the two final amounts in both accounts should be the same—that is, she should have the same amount in each account at the end of 60 months either way. Write an equation in the variable *R* that represents this equality.

$$9000(1.003)^{60} = R\left(\frac{(1.003)^{60} - 1}{0.003}\right)$$

Lesson 30: Buying a Car



d. She then solved her equation to get the amount *R* that Jack would have to pay monthly. Solve the equation in part (c) to find out how much Jack needed to pay each month. Solving for *R* in the equation above, we get $R = 9000 \cdot (1.003)^{60} \left(\frac{0.003}{(1.003)^{60} - 1}\right) \approx 164.13.$ Thus, Jack will need to make regular payments of \$164.13 a month for 60 months.

Ask students questions to see if they understand what the \$164.13 means. For example, if Jack decides not to buy the car and instead deposited \$164.13 a month into an account earning 3.6% interest compounded monthly, how much does he have at the end of 60 months? Students should be able to answer \$10,772.05, the final amount of the annuity that the car dealer calculated in part (a) or (b). Your goal is to help them see that both ways of calculating the future amount should be equal.

Discussion (10 minutes)

In this discussion, students are lead to the present value of an annuity formula using the calculations they just did in the example (**F-BF.A.1b**).

Let's do the calculations in part (a) of the example again but this time using A_p for the loan amount (the present value of an annuity), *i* for the interest rate per time period, *n* to be the number of time periods. As in part (a), what is the future value of A_p if it is deposited in an account with an interest rate of *i* per time period for *n* compounding periods?

•
$$F = A_n (1+i)^n$$

• As in part (b) of the example above, what is the future value of an annuity A_f in terms of the recurring payment R, interest rate i, and number of periods n?

$$\Box \quad A_f = R\left(\frac{1 - (1+i)^n - 1}{i}\right)$$

If we assume (as in the example above) that both methods produce the same future value, we can equate $F = A_f$ and write the following equation:

$$A_p(1+i)^n = R\left(\frac{(1+i)^n - 1}{i}\right).$$

- - Where did we use this formula in the example above?
 - The equation derived in part (c).
 - We can now solve this equation for R as we did in the example, but it is more common in finance to solve for A_n by multiplying both sides by $(1 + i)^{-n}$:

$$A_p = R\left(\frac{(1+i)^n - 1}{i}\right)(1+i)^{-n},$$

and then distributing it through the binomial to get the *present value of an annuity* formula:

$$A_p = R\left(\frac{1 - (1 + i)^{-n}}{i}\right).$$

MP.8

Lesson 30: Buying a Car

When a bank (or a car dealer) makes a loan that is to be repaid with recurring payments *R*, then the payments form an annuity whose present value *A_p* is the amount of the loan. Thus, we can use this formula to find the payment amount *R* given the size of the loan *A_p* (as in Example 1), or we can find the size of the loan *A_p* if we know the size of the payments *R*.

Exercise (3 minutes)

Exercise
A college student wants to buy a car and can afford to pay \$200 per month. If she plans to take out a loan at 6% interest
per year with a recurring payment of \$200 per month for four years, what price car can she buy?

$$A_p = 200 \left(\frac{1 - (1.005)^{-48}}{0.005} \right) \approx 8516.06$$
She can afford to take out a \$8,516.06 loan. If she has no money for a down payment, she can afford a car that is about
\$8,500.

You might want to point out to your students that the present value formula can always be easily and quickly derived from the future amount of annuity formula $A_f = R\left(\frac{1-(1+i)^n}{i}\right)$ and the compound interest formula $A_f = A_p(1+i)^n$ (using the variables A_f and A_p instead of F and P).

Mathematical Modeling Exercise (8 minutes)

The customization and open-endedness of this challenge depends upon how successful students were in researching the price of a potential car in the Problem Set to Lesson 29. For students who did not find a car, you can have them use the list provided below. After the challenge, there are some suggestions for ways to introduce other modeling elements into the challenge. Use the suggestions as you see fit. The solutions throughout this section are based on the 2007 two-door small coupe.

Mathematical Modeling Exercise

MP 1

MP.4

EUREKA

In the Problem Set of Lesson 29, you researched the price of a car that you might like to own. In this exercise, we determine how much a car payment would be for that price for different loan options.

If you did not find a suitable car, select a car and selling price from the list below:

Car	Selling Price
2005 Pickup Truck	\$ 9 , 000
2007 Two-Door Small Coupe	\$7,500
2003 Two-Door Luxury Coupe	\$10,000
2006 Small SUV	\$8,000
2008 Four-Door Sedan	\$8, 500

a. When you buy a car, you must pay sales tax and licensing and other fees. Assume that sales tax is 6% of the selling price and estimated license/title/fees are 2% of the selling price. If you put a \$1,000 down payment on your car, how much money do you need to borrow to pay for the car and taxes and other fees?

Answers will vary. For the 2007 two-door small coupe: 7500 + 7500(0.06) + 7500(0.02) - 1000 = 7100. You would have to borrow \$7,100.

Lesson 30: But

Buying a Car

Scaffolding:

For English language learners,

provide a visual image of each

2-Door Small Coupe

2-Door Luxury Coupe

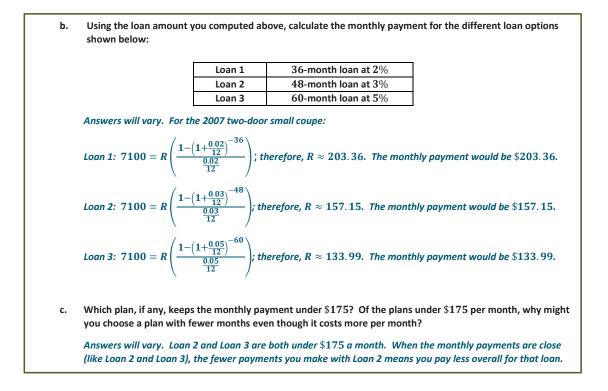
vehicle type along with a specific make and model.Pickup Truck

Small SUV 4-Door Sedan

Lesson 30

M3

ALGEBRA II



If a student found a dealer that offered a loan for the car they were researching, encourage them to do the calculations above for terms of that loan. (Call it loan option 4.)

Further Modeling Resources

If students are interested in the actual details of purchasing and budgeting for a car, consider having them research vehicle fees, including the sales tax in your state (or county), inspection fees (if any), license and title fees, and car insurance rates.

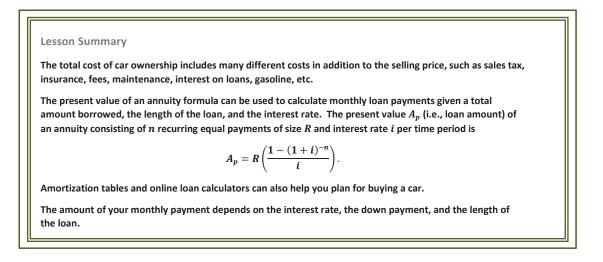
Furthermore, you can ask:

- What sort of extra costs go into buying a car?
 - Answers may vary, but students should be able identify sales tax. Other fees include license and title.
 An inspection is often required shortly after purchase. Individual states may have additional fees.
- What extra costs go into maintaining a car?
 - Insurance, repairs, maintenance like oil changes, car washing/detailing, etc. For used and new cars, use an online calculator to estimate car insurance and maintenance costs as well as likely depreciation and interest costs for a loan.

Closing (2 minutes)

Close this lesson by asking students to summarize in writing or with a partner what they know so far about borrowing money to buy a car.

- Based on the work you did in this lesson, summarize what you know so far about borrowing money to buy a car.
 - Making the loan term longer does make the monthly payment go down but causes the total interest paid to go up. Interest rates, down payment, and total length of the loan all affect the monthly payment. In the end, the amount of the loan you get depends on what you can afford to pay per month based on your budget.



Exit Ticket (5 minutes)

Name

Date _____

Lesson 30: Buying a Car

Exit Ticket

Fran wants to purchase a new boat. She starts looking for a boat around \$6,000. Fran creates a budget and thinks that she can afford \$250 every month for 2 years. Her bank charges her 5% interest per year, compounded monthly.

1. What is the actual monthly payment for Fran's loan?

2. If Fran can only pay \$250 per month, what is the most expensive boat she can buy without a down payment?

engage^{ny}

Exit Ticket Sample Solutions

Fran wants to purchase a new boat. She starts looking for a boat around 6,000. Fran creates a budget and thinks that she can afford 250 every month for 2 years. Her bank charges her 5% interest per year, compounded monthly.

1. What is the actual monthly payment for Fran's loan?

$6000 = R\left(\frac{1 - \left(1 + \frac{0.05}{12}\right)^{-24}}{\frac{0.05}{12}}\right)$ $R = 6000\left(\frac{\left(\frac{0.05}{12}\right)}{1 - \left(1 + \frac{0.05}{12}\right)^{-24}}\right)$ $R \approx 263.23$

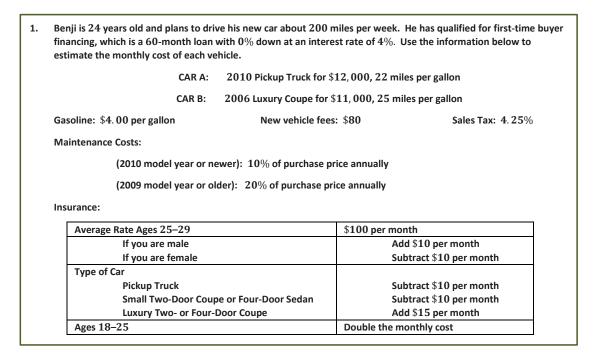
The actual monthly payment for Fran's loan would be \$263.23.

2. If Fran can only pay \$250 per month, what is the most expensive boat she can buy without a down payment?

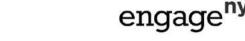
$$P = 250 \left(\frac{1 - \left(1 + \frac{0.05}{12}\right)^{-24}}{\frac{0.05}{12}} \right)$$
$$P \approx 5698.47$$

Fran can afford a boat that costs about \$5,700 if she does not have a down payment.

Problem Set Sample Solutions

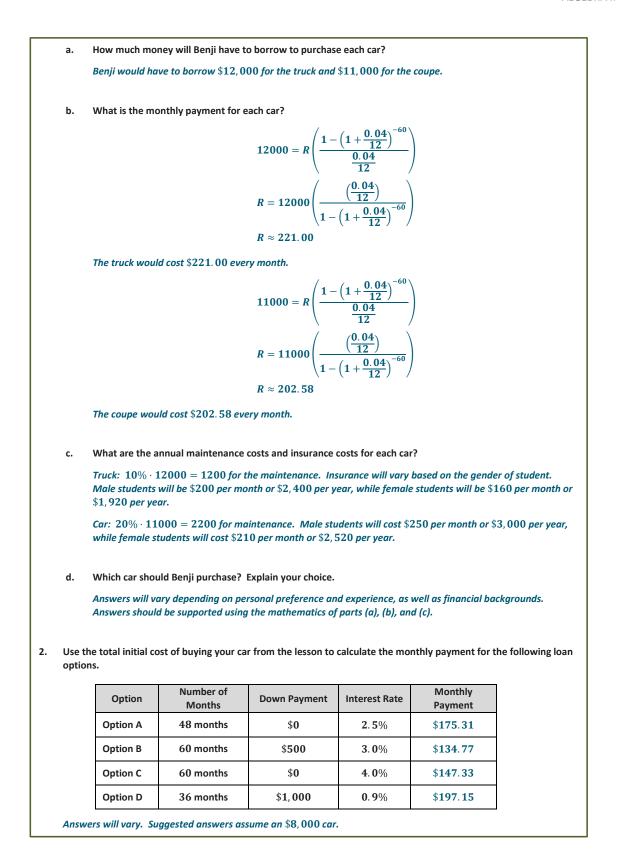


Lesson 30: Buying a Car



M3

Lesson 30



a.

ALGEBRA II

For each option, what is the total amount of money you will pay for your vehicle over the life of the loan?

Option A: $$175.31 \cdot 48 = 8414.88

Option B: $$500 + $134.77 \cdot 60 = 8586.20

Option C: $$147.33 \cdot 60 = 8839.80

Option D: $$1000 + $197.15 \cdot 36 = 8097.40

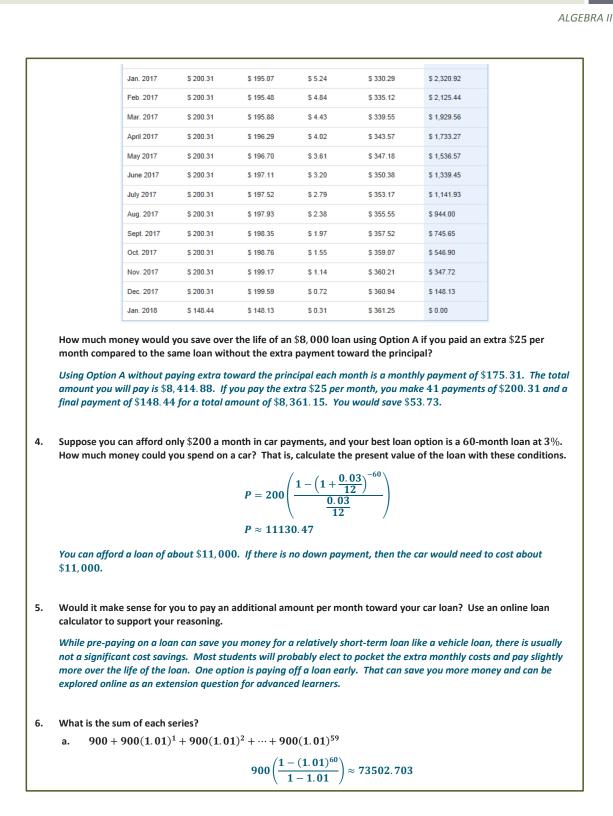
b. Which option would you choose? Justify your reasoning.

Answers will vary. Option B is the cheapest per month but requires a down payment. Of the plans without down payments, Option A saves the most money in the end, but Option C is cheaper per month. Option D saves the most money long term but requires the largest down payment and the largest monthly payment.

3. Many lending institutions allow you to pay additional money toward the principal of your loan every month. The table below shows the monthly payment for an \$8,000 loan using Option A above if you pay an additional \$25 per month.

Month/ Year	Payment	Principal Paid	Interest Paid	Total Interest	Balance
Aug. 2014	\$ 200.31	\$ 183.65	\$ 16.67	\$ 16.67	\$ 7,816.35
Sept. 2014	\$ 200.31	\$ 184.03	\$ 16.28	\$ 32.95	\$ 7,632.33
Oct. 2014	\$ 200.31	\$ 184.41	\$ 15.90	\$ 48.85	\$ 7,447.91
Nov. 2014	\$ 200.31	\$ 184.80	\$ 15.52	\$ 64.37	\$ 7,263.12
Dec. 2014	\$ 200.31	\$ 185.18	\$ 15.13	\$ 79.50	\$ 7,077.94
Jan. 2015	\$ 200.31	\$ 185.57	\$ 14.75	\$ 94.25	\$ 6,892.37
Feb. 2015	\$ 200.31	\$ 185.95	\$ 14.36	\$ 108.60	\$ 6,706.42
Mar. 2015	\$ 200.31	\$ 186.34	\$ 13.97	\$ 122.58	\$ 6,520.08
April 2015	\$ 200.31	\$ 186.73	\$ 13.58	\$ 136.16	\$ 6,333.35
May 2015	\$ 200.31	\$ 187.12	\$ 13.19	\$ 149.35	\$ 6,146.23
June 2015	\$ 200.31	\$ 187.51	\$ 12.80	\$ 162.16	\$ 5,958.72
July 2015	\$ 200.31	\$ 187.90	\$ 12.41	\$ 174.57	\$ 5,770.83
Aug. 2015	\$ 200.31	\$ 188.29	\$ 12.02	\$ 186.60	\$ 5,582.54
Sept. 2015	\$ 200.31	\$ 188.68	\$ 11.63	\$ 198.23	\$ 5,393.85
Oct. 2015	\$ 200.31	\$ 189.08	\$ 11.24	\$ 209.46	\$ 5,204.78
Nov. 2015	\$ 200.31	\$ 189.47	\$ 10.84	\$ 220.31	\$ 5,015.31
Dec. 2015	\$ 200.31	\$ 189.86	\$ 10.45	\$ 230.75	\$ 4,825.45
Note: The months from January 2016 to December 2016 are not shown.					

This work is derived from Eureka Math [™] and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015



engage^{ny}

b.
$$\sum_{n=0}^{47} 15000 \left(1 + \frac{0.04}{12}\right)^n$$
$$\sum_{n=0}^{47} 15000 \left(1 + \frac{0.04}{12}\right)^n = 15000 \left(\frac{1 - \left(1 + \frac{0.04}{12}\right)^{48}}{1 - \left(1 + \frac{0.04}{12}\right)}\right)$$
$$= 15000 \left(\frac{\left(1 + \frac{0.04}{12}\right)^{48} - 1}{\frac{0.04}{12}}\right)$$
$$\approx 779394.015$$

7. Gerald wants to borrow \$12,000 in order to buy an engagement ring. He wants to repay the loan by making monthly installments for two years. If the interest rate on this loan is $9\frac{1}{2}\%$ per year, compounded monthly, what is the amount of each payment?

$$12000 = R\left(\frac{1 - \left(1 + \frac{0.095}{12}\right)^{-24}}{\frac{0.095}{12}}\right)$$
$$R = 12000\left(\frac{\left(\frac{0.095}{12}\right)}{1 - \left(1 + \frac{0.95}{12}\right)^{-24}}\right)$$
$$R \approx 550.97$$

Gerald will need to pay \$550.97 each month.

8. Ivan plans to surprise his family with a new pool using his Christmas bonus of \$4,200 as a down payment. If the price of the pool is \$9,500 and Ivan can finance it at an interest rate of $2\frac{7}{8}\%$ per year, compounded quarterly, how long is the term of the loan if his payments are \$285.45 per quarter?

$$5300 = 285.45 \left(\frac{1 - \left(1 + \frac{0.02875}{4}\right)^{-n}}{\frac{0.02875}{4}} \right)$$
$$\frac{5300}{285.45} \cdot \frac{0.02875}{4} = 1 - \left(1 + \frac{0.02875}{4}\right)^{-n}$$
$$\left(1 + \frac{0.02875}{4}\right)^{-n} = 1 - \frac{5300}{285.45} \cdot \frac{0.02875}{4}$$
$$-n \cdot \ln\left(1 + \frac{0.02875}{4}\right) = \ln\left(1 - \frac{5300}{285.45} \cdot \frac{0.02875}{4}\right)$$
$$n = -\frac{\ln\left(1 - \frac{5300}{285.45} \cdot \frac{0.02875}{4}\right)}{\ln\left(1 + \frac{0.02875}{4}\right)}$$
$$n \approx 20$$

It will take $\ensuremath{\text{lvan}}\xspace 20$ quarters, or five years, to pay off the pool at this rate.

Lesson 30: Buying a Car

engage^{ny}

9. Jenny wants to buy a car by making payments of \$120 per month for three years. The dealer tells her that she needs to put a down payment of \$3,000 on the car in order to get a loan with those terms at a 9% interest rate per year, compounded monthly. How much is the car that Jenny wants to buy?

$$P - 3000 = 120 \left(\frac{1 - \left(1 + \frac{0.09}{12}\right)^{-36}}{\frac{0.09}{12}} \right)$$
$$P \approx 3\,773.\,62 + 3000$$

The car Jenny wants to buy is about \$6,773.62.

10. Kelsey wants to refinish the floors in her house and estimates that it will cost \$39,000 to do so. She plans to finance the entire amount at $3\frac{1}{4}\%$ interest per year, compounded monthly for 10 years. How much is her monthly payment?

$$39000 = R\left(\frac{1 - \left(1 + \frac{0.0325}{12}\right)^{-120}}{\frac{0.0325}{12}}\right)$$
$$R = 39000\left(\frac{\left(\frac{0.0325}{12}\right)}{1 - \left(1 + \frac{0.0325}{12}\right)^{-120}}\right)$$
$$R \approx 381.10$$

Kelsey will have to pay \$381.10 every month.

11. Lawrence coaches little league baseball and needs to purchase all new equipment for his team. He has \$489 in donations, and the team's sponsor will take out a loan at $4\frac{1}{2}\%$ interest per year, compounded monthly for one year, paying up to \$95 per month. What is the most that Lawrence can purchase using the donations and loan?

$$P - 489 = 95 \left(\frac{1 - \left(1 + \frac{0.045}{12}\right)^{-12}}{\frac{0.045}{12}} \right)$$
$$P \approx 489 + 1112.69$$

The team will have access to \$1,601.69.

This work is derived from Eureka Math [™] and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

M3

ALGEBRA II

Lesson 30

Student Outcomes

- Students compare payment strategies for a decreasing credit card balance.
- Students apply the sum of a finite geometric series formula to a decreasing balance on a credit card.

Lesson Notes

This lesson develops the necessary tools and terminology to analyze the mathematics behind credit cards and other unsecured loans. Credit cards can provide flexibility to budgets, but they must be carefully managed to avoid the pitfalls of bad credit. For young adults, credit card interest rates can be expected to be between 19.99% and 29.99% per year (29.99% is currently the maximum allowable interest rate by federal law). Adults with established credit can be offered interest rates around 8% to 14%. The credit limit for a first credit card is typically around \$500, but these limits quickly increase with a history of timely payments.

In this modeling lesson, students explore the mathematics behind calculating the monthly balance on a single credit card purchase and recognize that the decreasing balance can be modeled by the sum of a finite geometric series (**A-SSE.B.4**). We are intentionally keeping the use of rotating credit such as credit cards simple in this lesson. The students make one charge of \$1,500 on this hypothetical credit card and pay down the balance without making any additional charges. With this simple example, we can realistically ignore the fact that the interest on a credit card is charged based on the average daily balance of the account; in our example, the daily balance only changes once per month when the payment is made.

The students need to recall the following definitions from Lesson 29:

• SERIES: Let $a_1, a_2, a_3, a_4, \dots$ be a sequence of numbers. A sum of the form

$$a_1 + a_2 + a_3 + \dots + a_n$$

for some positive integer n is called a *series* (or *finite series*) and is denoted S_n . The a_i 's are called the *terms* of the series. The number S_n that the series adds to is called the *sum* of the series.

• **GEOMETRIC SERIES:** A geometric series is a series whose terms form a geometric sequence.

The sum S_n of the first n terms of the finite geometric series $S_n = a + ar + \dots + ar^{n-1}$ (when $r \neq 1$) is given by

$$S_n = a \left(\frac{1-r^n}{1-r}\right).$$

The sum formula of a geometric series can be written in summation notation as

$$\sum_{k=0}^{n-1} ar^k = a\left(\frac{1-r^n}{1-r}\right).$$

513

engage

Classwork

Opening (3 minutes)

Assign students to small groups, and keep them in the same groups throughout this lesson. In the first mathematical modeling exercise, all groups work on the same problem, but in the second mathematical modeling exercise, the groups are assigned one of three different payment schemes to investigate.

- In the previous lesson, you investigated the mathematics needed for a car loan. What if you have decided to buy a car, but you have not saved up enough money for the down payment? If you are buying through a dealership, it is possible to put the down payment onto a credit card. For today's lesson, we investigate the finances of charging \$1,500 onto a credit card for the down payment on a car. We investigate different payment plans and how much you end up paying in total using each plan.
- The annual interest rates on a credit card for people who have not used credit in the past tend to be much higher than for adults with established good credit, ranging between 14.99% and 29.99%, which is the maximum interest rate allowed by law. Throughout this lesson, we use a 19.99% annual interest rate, and we explore problems with other interest rates in the Problem Set.
- One of the differences between a credit card and a loan is that you can pay as much as you want toward your credit card balance, as long as it is at least the amount of the "minimum payment," which is determined by the lender. In many cases, the minimum payment is the sum of the interest that has accrued over the month and 1% of the outstanding balance, or \$25, whichever is greater.
- Another difference between a credit card and a loan is that a loan has a fixed term of repayment—you pay it off over an agreed-upon length of time such as five years—and that there is no fixed term of repayment for a credit card. You can pay it off as quickly as you like by making large payments, or you can pay less and owe money for a longer period of time. In the mathematical modeling exercise, we investigate the scenario of paying a fixed monthly payment of various sizes toward a credit card balance of \$1,500.

Mathematical Modeling Exercise (25 minutes)

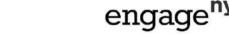
In this exercise, students model the repayment of a single charge of \$1,500 to a credit card that charges 19.99% annual interest. Before beginning the Mathematical Modeling Exercise, assign students to small groups, and assign groups to be either part of the 50-team, 100-team, or 150-team. The groups in each of the three teams investigate how long it takes to pay down the \$1,500 balance making fixed payments of either \$50, \$100, or \$150 each month.

As you circulate the room while students are working, take note of groups that are working well together on this set of problems. Select at least one group on each team to present their work at the end of the exercise period.

Mathematical Modeling Exercise You have charged \$1,500 for the down payment on your car to a credit card that charges	Scaffolding:
19. 99% annual interest, and you plan to pay a fixed amount toward this debt each month until it is paid off. We denote the balance owed after the n^{th} payment has been made as b_n . a. What is the monthly interest rate, <i>i</i> ? Approximate <i>i</i> to 5 decimal places.	For struggling students, use an interest rate of 24.00% so that $i = 0.02$ and $r = 1.02$.
$i = \frac{0.1999}{12} \approx 0.01666$	

Lesson 31: Credit Cards

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015



514

icensed under a

b. You have been assigned to either the 50-team, the 100-team, or the 150-team, where the number indicates the size of the monthly payment *R* you make toward your debt. What is your value of *R*?

Students will answer 50, 100, or 150 as appropriate.

c. Remember that you can make any size payment toward a credit card debt, as long as it is at least as large as the minimum payment specified by the lender. Your lender calculates the minimum payment as the sum of 1% of the outstanding balance and the total interest that has accrued over the month, or \$25, whichever is greater. Under these stipulations, what is the minimum payment? Is your monthly payment *R* at least as large as the minimum payment?

The minimum payment is 0.01(\$1500) + 0.01666(\$1500) = \$39.99. All given values of R are greater than the minimum payment.

d. Complete the following table to show 6 months of payments.

Month, n	Interest Due (in dollars)	Payment, <i>R</i> (in dollars)	Paid to Principal (in dollars)	Balance, b _n (in dollars)
0				1, 500. 00
1	24.99	50	25.01	1,474.99
2	24.57	50	25.43	1,449.56
3	24.15	50	25.85	1,423.71
4	23.72	50	26.28	1, 397. 43
5	23.28	50	26.72	1, 370. 71
6	22.83	50	27.17	1, 343. 54

Month, n	Interest Due (in dollars)	Payment, <i>R</i> (in dollars)	Paid to Principal (in dollars)	Balance, b_n (in dollars)
0				1, 500. 00
1	24.99	100	75.01	1,424.99
2	23.74	100	76.26	1, 348. 73
3	22.47	100	77.53	1,271.20
4	21.18	100	78.82	1, 192. 38
5	19.86	100	80.14	1, 112. 24
6	18.53	100	81.47	1,030.77

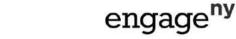
Month, n	Interest Due (in dollars)	Payment, <i>R</i> (in dollars)	Paid to Principal (in dollars)	Balance, b_n (in dollars)
0				1, 500. 00
1	24.99	150	125.01	1, 374. 99
2	22.91	150	127.09	1, 247. 90
3	20.79	150	129.21	1, 118. 69
4	18.64	150	131.36	987.33
5	16.45	150	133.55	853.78
6	14.22	150	135.78	718.00

e. Write a recursive formula for the balance b_n in month n in terms of the balance b_{n-1} .

To calculate the new balance, $b_{n\nu}$ we compound interest for one month on the previous balance b_{n-1} and then subtract the payment R:

 $b_n = b_{n-1}(1+i) - R$, with $b_0 = 1500$.

Lesson 31: Credit Cards



Lesson 31

M3

ALGEBRA II

Lesson 31

f. Write an explicit formula for the balance b_n in month n, leaving the *expression* 1 + i in symbolic form. We have the following formulas: $b_1 = b_0(1+i) - R$ $b_2 = b_1(1+i) - R$ $= [b_0(1+i) - R](1+i) - R$ $= b_0(1+i)^2 - R(1+i) - R$ $b_3 = b_2(1+i) - R$ $= [b_0(1+i)^2 - R(1+i) - R](1+i) - R$ $= b_0(1+i)^3 - R(1+i)^2 - R(1+i) - R$ $b_n = b_0(1+i)^n - R(1+i)^{n-1} - R(1+i)^{n-2} - \dots - R(1+i) - R$ Rewrite your formula in part (f) using r to represent the quantity (1 + i). g. $b_n = b_0 r^n - Rr^{n-1} - Rr^{n-2} - \dots - Rr - R$ $= b_0 r^n - R(1 + r + r^2 + \dots + r^{n-1})$ What can you say about your formula in part (g)? What term do we use to describe r in this formula? h. The formula in part (g) contains the sum of a finite geometric series with common ratio r. Write your formula from part (g) in summation notation using Σ . i. $b_n = b_0 r^n - R(1 + r + r^2 + \dots + r^{n-1})$ Scaffolding: $=b_0r^n-R\sum_{k=0}^{n-1}r^k$ Ask advanced learners to develop a generic formula for the balance b_n in terms of the Apply the appropriate formula from Lesson 29 to rewrite your formula from part (g). payment amount R and the j. growth factor r. Using the sum of a finite geometric series formula, $b_n = b_0 r^n - R(1 + r + r^2 + \dots + r^{n-1})$ $= b_0 r^n - R\left(\frac{1-r^n}{1-r}\right)$

(

ALGEBRA II

k. Find the month when your balance is paid off.

The balance is paid off when $b_n = 0$. (The final payment is less than a full payment so that the debt is not overpaid.)

Students will likely do this calculation with the values of r, b_0 , and R substituted in.

$$b_0 r^n - R\left(\frac{1-r^n}{1-r}\right) = 0$$

$$b_0 r^n = R\left(\frac{1-r^n}{1-r}\right)$$

$$(1-r)(b_0 r^n) = R(1-r^n)$$

$$(1-r)(b_0 r^n) + Rr^n = R$$

$$r^n(b_0(1-r) + R) = R$$

$$r^n = \frac{R}{(b_0(1-r) + R)}$$

$$n \log(r) = \log\left(\frac{R}{(b_0(1-r) + R)}\right)$$

$$n = \frac{\log\left(\frac{R}{(b_0(1-r) + R)}\right)}{\log(r)}$$

If R = 50, then $n \approx 41.925$. The debt is paid off in 42 months. If R = 100, then $n \approx 17.49$. The debt is paid off in 18 months. If R = 150, then $n \approx 11.0296$. The debt is paid off in 12 months.

I. Calculate the total amount paid over the life of the debt. How much was paid solely to interest?

For R = 50: The debt is paid in 41 payments of \$50, and the last payment is the amount b_{41} with interest:

$$50(41) + (1+i)b_{41} = 2050 + r\left(b_0r^n - R\left(\frac{1-r^n}{1-r}\right)\right)$$

$$\approx 2050 + r(45.61)$$

$$\approx 2096.37.$$

The total amount paid using monthly payments of \$50 is \$2,096.37. Of this amount, \$596.37 is interest.

For R = 100: The debt is paid in 17 payments of \$100, and the last payment is the amount b_{17} with interest.

$$100(17) + (1+i)b_{17} = 1700 + r\left(b_0r^{17} - R\left(\frac{1-r^{17}}{1-r}\right)\right)$$

\$\approx 1700 + r(40.52)\$
\$\approx 1740.52\$

The total amount paid using monthly payments of \$100 is \$1,740.52. Of this amount, \$240.52 is interest. For R = 150: The debt is paid in 11 payments of \$150, and the last payment is the amount b_{11} with interest.

$$150(11) + (1+i)b_{11} = 1700 + r\left(b_0r^n - R\left(\frac{1-r^n}{1-r}\right)\right)$$

\$\approx 1650 + r(4.49)\$
\$\approx 1654.49\$\$

The total amount paid using monthly payments of \$150 is \$1,654.49. Of this amount, \$154.49 is interest.

Lesson 31: Credit Cards

Discussion (9 minutes)

Have students from each team present their solutions to parts (k) and (l) to the class. After the three teams have made their presentations, lead students through the following discussion, which should help them to make sense of the different results that arise from the different payment values R.

- What happens to the number of payments as you increase the amount *R* of the recurring monthly payment?
 - As the amount *R* of the payment increases, the number of payments decreases.
- What happens to the total amount of interest paid as you increase the amount *R* of the recurring monthly payment?
 - As the amount R of the payment increases, the number of payments decreases.
- What is the largest possible amount of the payment R? In that case, how many payments are made?
 - The largest possible payment would be to pay the entire balance in one payment: (1 + i)\$1500 = \$1524.99.

Ask students about the formulas that they developed in the Mathematical Modeling Exercise to calculate the balance of the debt in month *n*. Students may use different notations, but they should have come up with a formula similar to $b_n = b_0 r^n - R\left(\frac{1-r^n}{1-r}\right)$. Depending on what notation the students used, you may need to draw the parallel from this formula to the present value of an annuity formula developed in Lesson 30. If we substitute $b_n = 0$ as the future value of the annuity when it is paid off in *n* payments, and $A_p = b_0$ as the present value/initial value of the annuity, then we have

$$b_{n} = b_{0}r^{n} - R\left(\frac{1-r^{n}}{1-r}\right)$$

$$0 = A_{p}r^{n} - R\left(\frac{1-r^{n}}{1-r}\right)$$

$$A_{p}r^{n} = R\left(\frac{1-r^{n}}{1-r}\right)$$

$$A_{p}(1+i)^{n} = R\left(\frac{1-(1+i)^{n}}{1-(1+i)}\right)$$

$$A_{p}(1+i)^{n} = R\left(\frac{1-(1+i)^{n}}{-i}\right)$$

$$A_{p} = R\left(\frac{(1+i)^{n}-1}{i}\right) \cdot (1+i)^{-n}$$

$$A_{p} = R\left(\frac{1-(1+i)^{-n}}{i}\right).$$

518

engage^{ny}

Closing (3 minutes)

Ask students to summarize the main points of the lesson either in writing or with a partner. Some highlights that should be included are listed below.

- Calculating the balance from a single purchase on a credit card requires that we sum a finite geometric series.
- We have a formula from Lesson 29 that calculates the sum of a finite geometric series:

$$\sum_{k=0}^{n-1} ar^k = a \left(\frac{1-r^n}{1-r} \right).$$

- When you have incurred a credit card debt, you need to decide how to pay it off.
 - If you choose to make a lower payment each month, then both the time required to pay off the debt and the total interest paid over the life of the debt increases.
 - If you choose to make a higher payment each month, then both the time required to pay off the debt and the total interest paid over the life of the debt decreases.

Exit Ticket (5 minutes)

519

engage^{ny}

Name

M3

ALGEBRA II

Date

Lesson 31

Lesson 31: Credit Cards

Exit Ticket

Suppose that you currently have one credit card with a balance of \$10,000 at an annual rate of 24.00% interest. You have stopped adding any additional charges to this card and are determined to pay off the balance. You have worked out the formula $b_n = b_0 r^n - R(1 + r + r^2 + \dots + r^{n-1})$, where b_0 is the initial balance, b_n is the balance after you have made n payments, r = 1 + i, where i is the monthly interest rate, and R is the amount you are planning to pay each month.

- a. What is the monthly interest rate i? What is the growth rate, r?
- b. Explain why we can rewrite the given formula as $b_n = b_0 r^n R\left(\frac{1-r^n}{1-r}\right)$.

c. How long does it take to pay off this debt if you can afford to pay a constant \$250 per month? Give the answer in years and months.

Exit Ticket Sample Solutions

Suppose that you currently have one credit card with a balance of \$10,000 at an annual rate of 24.00% interest. You have stopped adding any additional charges to this card and are determined to pay off the balance. You have worked out the formula $b_n = b_0 r^n - R(1 + r + r^2 + \dots + r^{n-1})$, where b_0 is the initial balance, b_n is the balance after you have made n payments, r = 1 + i, where i is the monthly interest rate, and R is the amount you are planning to pay each month.

a. What is the monthly interest rate *i*? What is the growth rate, *r*?

The monthly interest rate i is given by $i = \frac{0.24}{12} = 0.02$, and r = 1 + i = 1.02.

b. Explain why we can rewrite the given formula as $b_n = b_0 r^n - R \left(\frac{1-r^n}{1-r}\right)$.

Using summation notation and the sum formula for a finite geometric series, we have

$$\begin{split} 1 + r + r^2 + \cdots + r^{n-1} &= \sum_{k=0}^{n-1} r^k \\ &= \frac{1 - r^n}{1 - r}. \end{split}$$

Then the formula becomes

$$b_n = b_0 r^n - R(1 + r + r^2 + \dots + r^{n-1})$$

= $b_0 r^n - R\left(\frac{1 - r^n}{1 - r}\right)$.

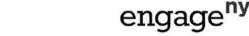
c. How long does it take to pay off this debt if you can afford to pay a constant \$250 per month? Give the answer in years and months.

When the debt is paid off, $b_n \leq 0$. Then $b_0r^n - R\left(\frac{1-r^n}{1-r}\right) = 0$, and $b_0r^n = R\left(\frac{1-r^n}{1-r}\right)$. Since $b_0 = 10000$, R = 250, and r = 1.02, we have

$$\begin{split} & 10000(1.02)^n \leq 250 \left(\frac{1-1.02^n}{1-1.02}\right) \\ & 10000(1.02)^n \leq -12500(1-1.02^n) \\ & 10000(1.02)^n \leq 12500(1.02^n-1) \\ & (1.02)^n \leq 1.25(1.02)^n - 1.25 \\ & 1.25 \leq 0.25(1.02)^n \\ & 5 \leq 1.02^n \\ & \log(5) \leq n \log(1.02) \\ & n \geq \frac{\log(5)}{\log(1.02)} \\ & n \geq 81.27 \end{split}$$

It takes 82 months to pay off this debt, which means it takes 6 years and 10 months.

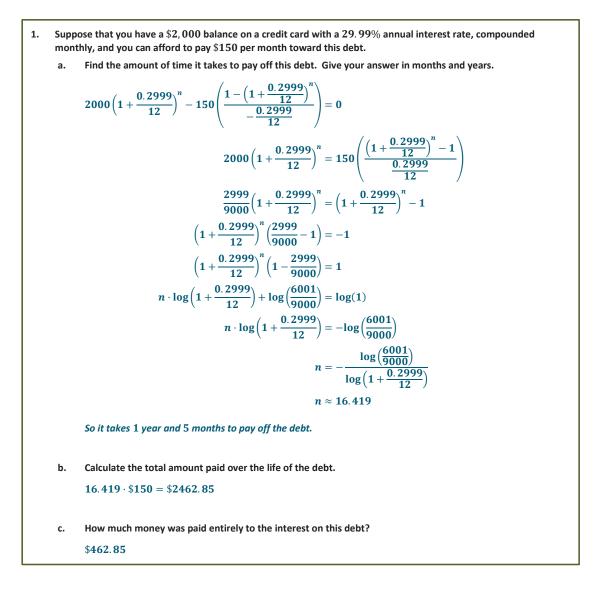
Lesson 31: Credit Cards



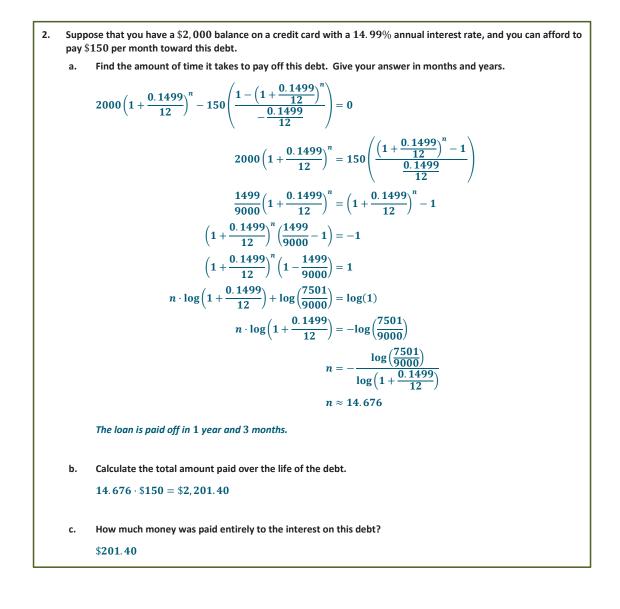
Problem Set Sample Solutions

Problems 1–4 ask students to compare credit card scenarios with the same initial debt and the same monthly payments but different interest rates. Problems 5, 6, and 7 require students to compare properties of functions given by different representations, which aligns with **F-IF.C.9** and **F-LE.B.5**.

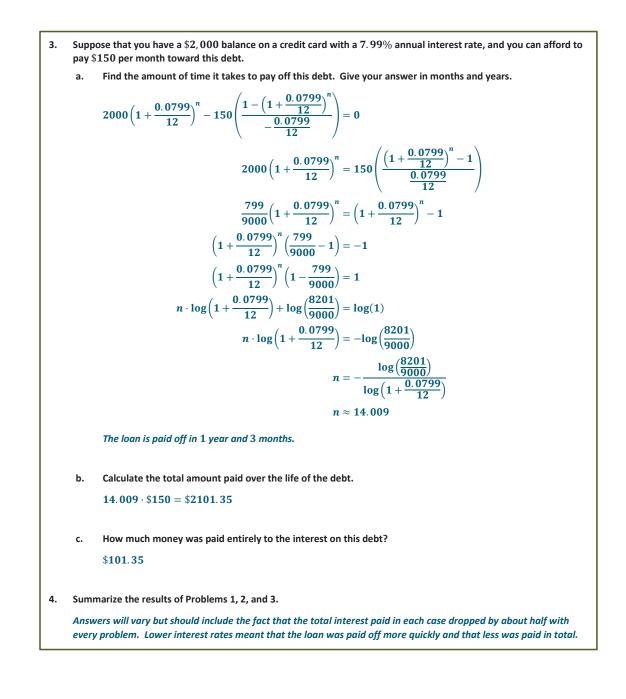
The final two problems in this Problem Set require students to do some online research in preparation for Lesson 32, in which they select a career and model the purchase of a house. Have some printouts of real-estate listings ready to hand to students who have not brought their own to class. Feel free to add some additional constraints to the criteria for selecting a house to purchase. The career data in Problem 9 can be found at http://themint.org/teens/starting-salaries.html. For additional jobs and more information, please visit the U.S. Bureau of Labor Statistics at http://www.bls.gov/ooh/about/teachers-guide.htm. The salary for the "entry-level full-time" position is based on the projected federal minimum wage in 2016 of \$10.10 per hour and a 2,000-hour work year.



Lesson 31: Credit Cards



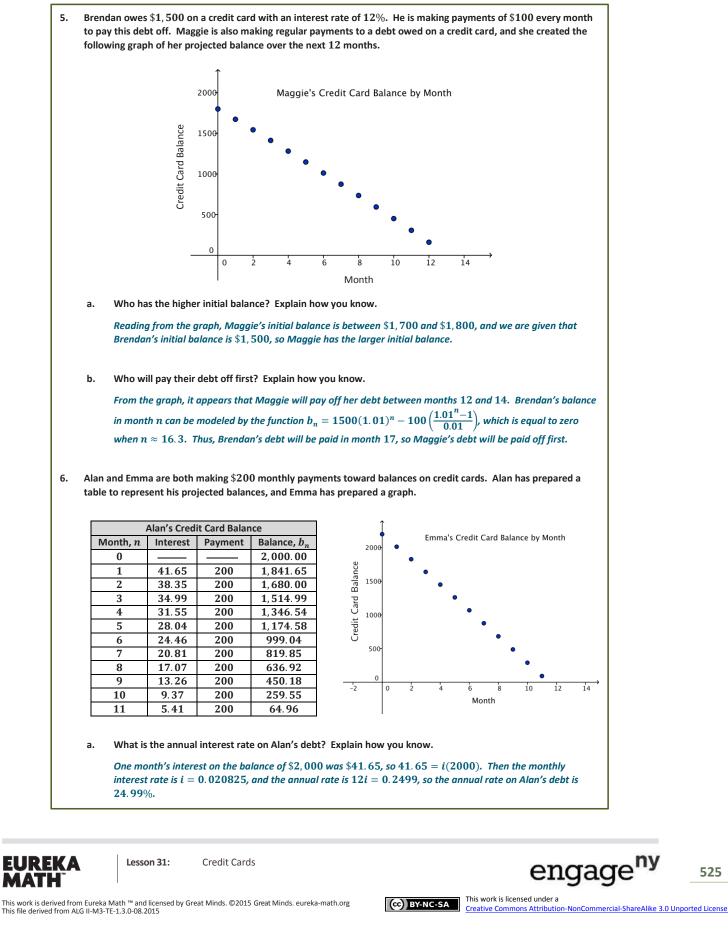
Credit Cards



Lesson 31:

Credit Cards





	b.	Who has the higher initial balance? Explain how you know.
		From the table, we can see that Alan's initial balance is \$2,000, while Emma's initial balance is the y-intercept of the graph, which is above \$2,000. Thus, Emma's initial balance is higher.
	c.	Who will pay their debt off first? Explain how you know.
		Both Alan and Emma will pay their debts off in month 12 because both of their balances in month 11 are under \$100.
	d.	What do your answers to parts (a), (b), and (c) tell you about the interest rate for Emma's debt?
		Because Emma had the higher initial balance, and they made the same number of payments, Emma must have a lower interest rate on her credit card than Alan does. In fact, since the graph decreases apparently linearly, this implies that Emma has an interest rate of 0% .
7.	card	Gary and Helena are paying regular monthly payments to a credit card balance. The balance on Gary's credit debt can be modeled by the recursive formula $g_n = g_{n-1}(1.01666) - 200$ with $g_0 = 2500$, and the balance
	on He for <i>n</i>	elena's credit card debt can be modeled by the explicit formula $h_n = 2000(1.01666)^n - 250\left(\frac{1.01666^n - 1}{0.01666}\right)$
	a.	\geq 0. Who has the higher initial balance? Explain how you know.
		Gary has the higher initial balance. Helena's initial balance is \$2,000, and Gary's is \$2,500.
	b.	Who has the higher monthly payment? Explain how you know.
		Helena has the higher monthly payment. She is paying $\$250$ every month while Gary is paying $\$200$.
	c.	Who will pay their debt off first? Explain how you know.
		Helena will pay her debt off first since she starts at a lower balance and is paying more per month. Additionally, they appear to have the same interest rates.
8.		e next lesson, we will apply the mathematics we have learned to the purchase of a house. In preparation for ask, you need to come to class prepared with an idea of the type of house you would like to buy.
	a.	Research the median housing price in the county where you live or where you wish to relocate.
		Answers will vary.
	b.	Find the range of prices that are within 25% of the median price from part (a). That is, if the price from part (a) was P , then your range is $0.75P$ to $1.25P$.
		Answers will vary.
	c.	Look at online real estate websites, and find a house located in your selected county that falls into the price range specified in part (b). You will be modeling the purchase of this house in Lesson 32, so bring a printout of the real estate listing to class with you.
		Answers will vary.

Lesson 31:

9.

ALGEBRA II

Select a career that interests you from the following list of careers. If the career you are interested in is not on this list, check with your teacher to obtain permission to perform some independent research. Once it has been selected, use the career to answer questions in Lesson 32 and Lesson 33.

Occupation	Median Starting Salary	Education Required
Entry-level full-time		
(wait staff, office clerk,	\$20, 200	High school diploma or GED
lawn care worker, etc.)		
Accountant	\$54,630	4-year college degree
Athletic Trainer	\$36, 560	4-year college degree
Chemical Engineer	\$ 78, 860	4-year college degree
Computer Scientist	\$93,950	4-year college degree or more
Database Administrator	\$64,600	4-year college degree
Dentist	\$136,960	Graduate degree
Desktop Publisher	\$34, 130	4-year college degree
Electrical Engineer	\$75,930	4-year college degree
Graphic Designer	\$39,900	2- or 4-year college degree
HR Employment Specialist	\$42, 420	4-year college degree
HR Compensation Manager	\$66, 530	4-year college degree
Industrial Designer	\$54, 560	4-year college degree or more
Industrial Engineer	\$68,620	4-year college degree
Landscape Architect	\$55, 140	4-year college degree
Lawyer	\$102,470	Law degree
Occupational Therapist	\$60,470	Master's degree
Optometrist	\$91,040	Master's degree
Physical Therapist	\$66,200	Master's degree
Physician—Anesthesiology	\$259, 948	Medical degree
Physician—Family Practice	\$137, 119	Medical degree
Physician's Assistant	\$74,980	2 years college plus 2-year program
Radiology Technician	\$47, 170	2-year degree
Registered Nurse	\$57,280	2- or 4-year college degree plus
Social Worker—Hospital	\$48, 420	Master's degree
Teacher—Special Education	\$47,650	Master's degree
Veterinarian	\$71,990	Veterinary degree

Credit Cards



Student Outcomes

- Students model the scenario of buying a house.
- Students recognize that a mortgage is mathematically equivalent to car loans studied in Lesson 30 and apply the present value of annuity formula to a new situation.

Lesson Notes

In the Problem Set of Lesson 31, students selected both a future career and a home that they would like to purchase. In this lesson, the students investigate the question of whether or not they can afford the home that they have selected on the salary of a novice working in the career that they have chosen. We do not develop the standard formulas for mortgage payments, but rather students use the concepts from prior lessons on buying a car and paying off a credit card balance to decide for themselves how to model mortgage payments (MP.4). Have students work in pairs or small groups through this lesson, but each student should be working through their own scenario with their own house and their own career. That is, students decide together how to approach the problem, but they each work with their own numbers.

If you teach in a region where the cost of living is particularly high, the median starting salaries given in the list in Problem 9 of Lesson 31 may need to be appropriately adjusted upward in order to make any home purchase feasible in this exercise. Use your professional judgment to make these adjustments.

The students have the necessary mathematical tools to model the payments on a mortgage, but they may not realize it. Allow them to struggle, to debate, and to persevere with the task of deciding how to model this situation (MP.1). It will eventually become apparent that the process of buying a house is only slightly more complicated mathematically than the process of buying a car and that the present value of an annuity formula developed in Lesson 30 applies in this situation (**A-SSE.B.4**). The formula

$$A_p = R\left(\frac{1 - (1 + i)^{-n}}{i}\right)$$

can be solved for the monthly payment *R*:

$$R = \frac{A_p \cdot i}{1 - (1 + i)^{-n}}$$

and this formula can be used to answer many of the questions in this lesson. Students may apply the formulas immediately, or they may investigate the balance on the mortgage without using the formulas, which should lead them to develop these formulas on their own. Be sure to ask students to explain their thinking in order to accurately assess their understanding of the mathematics.

528

engage^{ny}

Classwork

Opening (3 minutes)

As part of your homework last night, you have selected a potential career that interests you, and you have selected a house that you would like to purchase.

Call on a few students to ask them to share the careers that they have selected, the starting salary, and the price of the home they have chosen.

- Today you answer the following question: Can you afford the house that you have chosen? There are a few constraints that you need to keep in mind.
 - The total monthly payment for the house cannot exceed 30% of your monthly salary.
 - Your payment includes the payment of the loan for the house and payments into an account called an
 escrow account, which is used to pay for taxes and insurance on your home.
 - Mortgages are usually offered with 30, 20, or 15-year repayment options. Start with a 30-year mortgage.
 - You need to make a down payment on the house, meaning that you pay a certain percentage of the price up front and borrow the rest. You make a 10% down payment for this exercise.

Mathematical Modeling Exercise (25 minutes)

Students may immediately recognize that the previous formulas from Lessons 30 and 31 can be applied to a mortgage, or they may investigate the balance on the mortgage without using the formulas. Both approaches are presented in the sample responses below.

Mathematical Modeling Exercise

Now that you have studied the mathematics of structured savings plans, buying a car, and paying down a credit card debt, it's time to think about the mathematics behind the purchase of a house. In the problem set in Lesson 31, you selected a future career and a home to purchase. The question of the day is this: Can you buy the house you have chosen on the salary of the career you have chosen? You need to adhere to the following constraints:

- Mortgages are loans that are usually offered with 30-, 20-, or 15year repayment options. Start with a 30-year mortgage.
- The annual interest rate for the mortgage will be 5%.
- Your payment includes the payment of the loan for the house and payments into an account called an *escrow account*, which is used to pay for taxes and insurance on your home. We approximate the annual payment to escrow as 1.2% of the home's selling price.
- The bank can only approve a mortgage if the total monthly payment for the house, including the payment to the escrow account, does not exceed 30% of your monthly salary.
- You have saved up enough money to put a 10% down payment on this house.

Scaffolding:

For struggling students, illustrate the concepts of mortgage, escrow, and down payments using a concrete example with sample values.

Scaffolding:

Struggling students may need to be presented with a set of carefully structured questions:

- 1. What is the monthly salary for the career you chose?
- 2. What is 30% of your monthly salary?
- 3. How much money needs to be paid into the escrow account each year?
- 4. How much money needs to be paid into the escrow account each month?
- 5. What is the most expensive house that the bank will allow you to purchase?
- 6. Is a mortgage like a car loan?
- 7. What is the formula we used to model a car loan?
- 8. Which of the values A_p, n, i, and R do we know?
- 9. Can you rewrite that formula to isolate the *R*?
- 10. What is the monthly payment according to the formula?
- 11. Will the bank allow you to purchase the house that you have chosen?

Lesson 32: Buying a House

engage

Will the bank approve a 30-year mortgage on the house that you have chosen?

I chose the career of a graphic designer, with a starting salary of \$39,900. My monthly salary is $\frac{$39900}{122} = $3325.$

 $\frac{12}{12} = 33325.$

1.

Thirty percent of my \$3,325 monthly salary is \$997.50.

I found a home that is suitable for \$190,000.

Since 0.012(190000) = 2280, I need to contribute \$2,280 to escrow for the year, which means I need to pay \$190 to escrow each month.

I will make a \$19,000 down payment, meaning that I need a mortgage for \$171,000.

APPROACH 1: We can think of the total owed on the house in two different ways.

- If we had placed the original loan amount $A_p = 171000$ in a savings account earning 5% annual interest, then the future amount in 30 years would be $A_f = A_p (1 + i)^{360}$.
- If we deposit a payment of R into an account monthly and let the money in the account accumulate and earn interest for 30 years, then the future value is

$$A_f = R + R(1+i) + R(1+i)^2 + \dots + R(1+i)^{359}$$
$$= R \sum_{k=0}^{359} (1+i)^k$$

$$= R\left(\frac{1-(1+i)^{360}}{1-(1+i)}\right)$$
$$= R\left(\frac{(1+i)^{360}-1}{i}\right)$$

Setting these two expressions for A_f equal to each other, we have

$$A_p(1+i)^{360} = R\left(\frac{(1+i)^{360}-1}{i}\right),$$

so

$$R = \frac{A_p \cdot i \cdot (1+i)^{360}}{(1+i)^{360}-1},$$

which can also be expressed as

$$R = \frac{A_p \cdot i}{1 - (1 + i)^{-360}}$$

This is the formula for the present value of an annuity, but rewritten to isolate R.

Then using my values of A_p , i and n we have

$$R = \frac{171000(0.004167)}{1 - (1.004167)^{-360}}$$
$$R = 918.01.$$

Then, the monthly payment on the house I chose would be $R + 190 = 1\,108.01$. The bank will not lend me the money to buy this house because \$1,108.01 is higher than \$997.50.

APPROACH 2: From Lesson 30, we know that the present value of an annuity formula is $A_p = R\left(\frac{1-(1+i)^{-n}}{i}\right)$, where i is the monthly interest rate, R is the monthly payment, and n is the number of months in the term. In my example, $i = \frac{0.05}{12} \approx 0.004167$, R is unknown, $n = 12 \cdot 30 = 360$, and $A_p = 171000$. We can solve the above formula for R, then we can substitute the known values of the variables and calculate the resulting payment R.

$$A_p = R\left(\frac{1-(1+i)^n}{i}\right)$$
$$A_p \cdot i = R(1-(1+i)^{-n})$$

$$R=\frac{A_p\cdot i}{1-(1+i)^{-n}}$$

Then using my values of A_p , i and n we have

 $R = \frac{171\,000(0.\,004167)}{1 - (1.\,004167)^{-360}}$ $R = 918.\,01.$

Then, the monthly payment on the house I chose would be R + 190 = 1108.01. The bank will not lend me the money to buy this house because \$1, 108.01 is higher than \$997.50.

2. Answer either (a) or (b) as appropriate.

a. If the bank approves a 30-year mortgage, do you meet the criteria for a 20-year mortgage? If you could get a mortgage for any number of years that you want, what is the shortest term for which you would qualify?

(This scenario did not happen in this example.)

b. If the bank does not approve a 30-year mortgage, what is the maximum price of a house that fits your budget?

The maximum that the bank allows for my monthly payment is 30% of my monthly salary, which is \$997.50. This includes the payment to the loan and to escrow. If the total price of the house is H dollars, then I will make a down payment of 0.1H and finance 0.9H. Using the present value of an annuity formula, we have

 $0.9H = R\left(\frac{1 - (1 + i)^{-n}}{i}\right)$ $0.9H = R\left(\frac{1 - (1.004167)^{-360}}{0.004167}\right)$ 0.9H = R(186.282)

However, R represents just the payment to the loan and not the payment to the escrow account. We know that the escrow portion is one-twelfth of 1.2% of the house value. If we denote the total amount paid for the loan and escrow by P, then P = R + 0.001H, so R = P - 0.001H. We know that the largest value for P is P = 997.50, so then

$$0.9H = R(186.282)$$

$$0.9H = (997.50 - 0.001H)(186.282)$$

$$0.9H = 185816 - 0.186282H$$

$$1.086282H = 185816$$

$$H = 171056.87$$

Then, I can only afford a house that is priced at or below \$171,056.87.

Scaffolding:

Lesson 32

ALGEBRA II

Mortgage rates can be as low as 3.0%, and in the 1990's rates were often as high as 10%. Ask early finishers to compute the maximum price of a house that they can afford first with an annual interest rate of 5%, then with an annual interest rate of 3%, and then with an annual interest rate of 10%.

Lesson 32: Buying a House

Discussion (9 minutes)

As time permits, ask students to present their results to the class and to explain their thinking. Select students who were approved for their mortgage and those who were not approved to make presentations. Be sure that students who did not immediately recognize that the present value of an annuity formula applies to a mortgage understand that this method is valid. Then, debrief the modeling exercise with the following questions:

- If the bank did not approve the loan, what are your options?
 - I could wait to purchase the house and save up a larger down payment, I could get a higher-paying job, or I could look for a more reasonably priced house.
- What would happen if the annual interest rate on the mortgage increased to 8%?
 - If the annual interest rate on the mortgage increased to 8%, then the monthly payments would increase dramatically since the loan term is always fixed.
- Why does the bank limit the amount of the mortgage to 30% of your income?
 - The bank wants to ensure that you will pay back the loan and that you will not overextend your finances.

Closing (3 minutes)

Ask students to summarize the lesson with a partner or in writing by responding to the following questions:

- Which formula from the previous lessons was useful to calculate the monthly payment on the mortgage? Why did that formula apply to this situation?
- How is a mortgage like a car loan? How is it different?
- How is paying a mortgage like paying a credit card balance? How is it different?

Exit Ticket (5 minutes)

Name

Date _____

Lesson 32: Buying a House

Exit Ticket

1. Recall the present value of an annuity formula, where A_p is the present value, R is the monthly payment, i is the monthly interest rate, and n is the number of monthly payments:

$$A_p = R\left(\frac{1 - (1 + i)^{-n}}{i}\right).$$

Rewrite this formula to isolate *R*.

- 2. Suppose that you want to buy a house that costs \$175,000. You can make a 10% down payment, and 1.2% of the house's value is paid into the escrow account each month.
 - a. Find the monthly payment for a 30-year mortgage on this house.

b. Find the monthly payment for a 15-year mortgage on this house.

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015

engage^{ny}

Exit Ticket Sample Solutions

2.

1. Recall the present value of an annuity formula, where A_p is the present value, R is the monthly payment, i is the monthly interest rate, and n is the number of monthly payments:

$$A_p = R\left(\frac{1-(1+i)^{-n}}{i}\right).$$

Rewrite this formula to isolate R.

$$R = \frac{A_p}{1 - (1 + i)^{-n}}$$

$$R = \frac{A_p \cdot i}{1 - (1 + i)^{-n}}$$
Suppose that you want to buy a house that costs \$175,000. You can make a 10% down payment, and 1.2% of the house's value is paid into the escrow account each month.
a. Find the total monthly payment for a 30-year mortgage at 4.25% interest on this house.
We have $A_p = 0.9(175000) = 157500$, and the monthly escrow payment is
 $\frac{1}{12}(0.012)(\$175000) = \175 . The monthly interest rate *i* is given by $i = \frac{0.045}{12} = 0.00375$, and $n = 12 \cdot 30 = 360$. Then the formula from Problem 1 gives
$$R = \frac{A_p \cdot i}{1 - (1 + i)^{-n}}$$

$$= \frac{(157500)(0.00375)}{(1 - (1.00375)^{-360}}$$

$$\approx 798.03$$
Thus, the payment to the loan is \$798.03 each month. Then the total monthly payment is \$798.03 + \$175 = \$973.03.
b. Find the total monthly payment for a 15-year mortgage at 3.75% interest on this house.
We have $A_p = 0.9(175000) = 157500$, and the monthly escrow payment is
 $\frac{1}{12}(0.012)(\$175000) = \175 . The monthly interest rate *i* is given by $i = \frac{0.0375}{12} = 0.003125$, and $n = 12 \cdot 15 = 180$. Then the formula from Problem 1 gives
$$R = \frac{A_p \cdot i}{1 - (1 + i)^{-n}}$$

$$= \frac{(1.57500)(0.003125)}{(1 - (1.003125))}$$

$$= 1145.38$$

Thus, the payment to the loan is 1,145.38 each month. Then the total monthly payment is **\$1, 145. 38 + \$175 = \$1, 320. 38**.

Lesson 32:

EUREKA

Buying a House

Lesson 32

ALGEBRA II

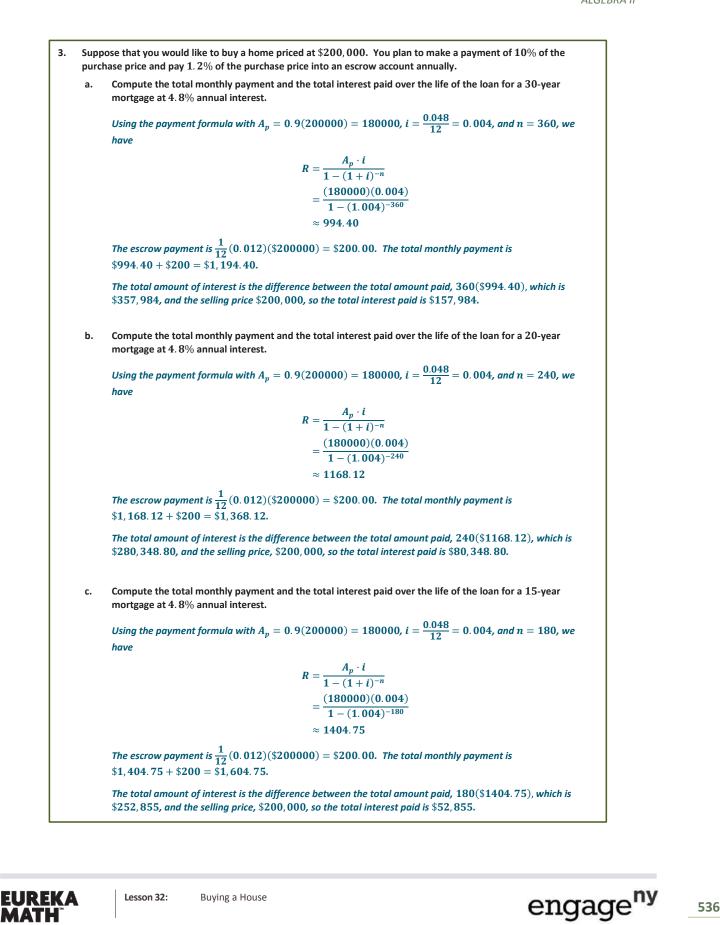
NYS COMMON CORE MATHEMATICS CURRICULUM

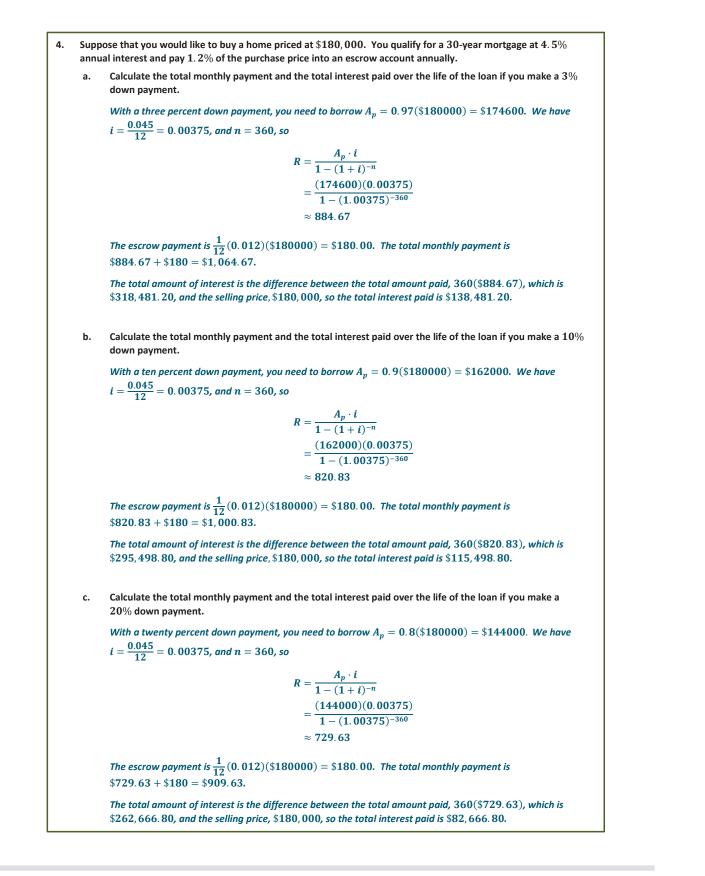
The results of Exercise 1 are needed for the modeling exercise in Lesson 33, in which students make a plan to save up \$1,000,000 in assets in 15 years, including paying off their home in that time.

1. Use the house you selected to purchase in the Problem Set from Lesson 31 for this problem. а. What was the selling price of this house? Student responses will vary. The sample response will continue to use a house that sold for \$190,000. Calculate the total monthly payment, R, for a 15-year mortgage at 5% annual interest, paying 10% as a b. down payment and an annual escrow payment that is 1.2% of the full price of the house. Using the payment formula with $A_p = 0.9(190000) = 171000$, $i = \frac{0.05}{12} \approx 0.004167$, and $n = 15 \cdot 12 = 180$, we have $R = \frac{A_p \cdot i}{1 - (1 + i)^{-n}}$ $=\frac{(171000)(0.004167)}{1-(1.004167)^{-180}}$ ≈ 1352.29 The escrow payment is $\frac{1}{12}(0.012)(\$190000) = \190.00 . The total monthly payment is \$1,352.29 + \$190.00 = \$1,542.29.In the summer of 2014, the average listing price for homes for sale in the Hollywood Hills was \$2,663,995. 2. Suppose you want to buy a home at that price with a 30-year mortgage at 5.25% annual interest, paying a. 10% as a down payment and with an annual escrow payment that is 1.2% of the full price of the home. What is your total monthly payment on this house? Using the payment formula with $A_p = 0.9(2663995) = 2397595.50$, $i = \frac{0.0525}{12} \approx 0.004375$, and n = 360, we have $R = \frac{A_p \cdot i}{1 - (1 + i)^{-n}}$ $=\frac{(2397595.50)(0.004375)}{1-(1.004375)^{-360}}$ = 13239.61 The escrow payment is $\frac{1}{12}(0.012)(\$2663995) = \2664.00 . The total monthly payment is \$13,239.61 + \$2,664 = \$15,903.61.How much is paid in interest over the life of the loan? b. The total amount paid is \$13239.61(360) = \$4766259.60, and the purchase price was \$2,663,995. The amount of interest is the difference: \$4,766,259.60 - \$2,663,995 = \$2,102,264.60.

M3

Lesson 32





Lesson 32: Buying a House

d. Summarize the results of parts (a), (b), and (c) in the chart below.

Percent Down Payment	Amount of Down Payment	Total Interest Paid
3%	\$ 5, 400	\$138, 481. 20
10%	\$18,000	\$115, 498. 80
20%	\$36,000	\$82,666.80

5. The following amortization table shows the amount of payments to principal and interest on a \$100,000 mortgage at the beginning and the end of a 30-year loan. These payments do not include payments to the escrow account.

Month/ Year	Payment	Principal Paid	Interest Paid	Total Interest	Balance
Sept. 2014	\$ 477.42	\$ 144.08	\$ 333.33	\$ 333.33	\$ 99,855.92
Oct. 2014	\$ 477.42	\$ 144.56	\$ 332.85	\$ 666.19	\$ 99,711.36
Nov. 2014	\$ 477.42	\$ 145.04	\$ 332.37	\$ 998.56	\$ 99,566.31
Dec. 2014	\$ 477.42	\$ 145.53	\$ 331.89	\$ 1,330.45	\$ 99,420.78
Jan. 2015	\$ 477.42	\$ 146.01	\$ 331.40	\$ 1,661.85	\$ 99,274.77
Mar. 2044	\$ 477.42	\$ 467.98	\$ 9.44	\$ 71,845.82	\$ 2,363.39
April 2044	\$ 477.42	\$ 469.54	\$ 7.88	\$ 71,853.70	\$ 1,893.85
May 2044	\$ 477.42	\$ 471.10	\$ 6.31	\$ 71,860.01	\$ 1,422.75
June 2044	\$ 477.42	\$ 472.67	\$ 4.74	\$ 71,864.75	\$ 950.08
July 2044	\$ 477.42	\$ 474.25	\$ 3.17	\$ 71,867.92	\$ 475.83
Aug. 2044	\$ 477.42	\$ 475.83	\$ 1.59	\$ 71,869.51	\$ 0.00

a. What is the annual interest rate for this loan? Explain how you know.

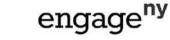
Since the first interest payment is $i \cdot \$100000 = \333.33 , the monthly interest rate is i = 0.0033333, and the annual interest rate is then $12i \approx 0.0399996$, so i = 4.0%.

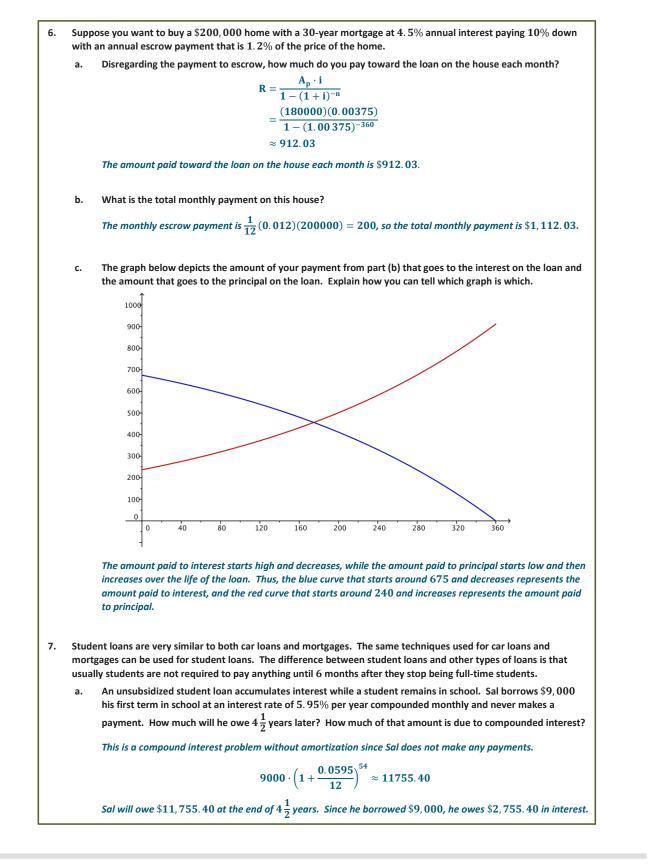
b. Describe the changes in the amount of principal paid each month as the month *n* gets closer to 360.

As n gets closer to 360, the amount of the payment that is allocated to principal increases to nearly the amount of the entire payment.

c. Describe the changes in the amount of interest paid each month as the month *n* gets closer to 360.

As n gets closer to 360, the amount of the payment that is allocated to interest decreases to nearly zero.





Lesson 32: Buying a House

Lesson 32

M3

b. If Sal pays the interest on his student loan every month while he is in school, how much money has he paid? Since Sal pays the interest on his loan every month, the principal never grows. Every month, the interest is calculated by

$$9000 \cdot \frac{0.0595}{12} \approx $44.63.$$

If Sal pays \$44.63 every month for $4\frac{1}{2}$ years, he will have paid \$2,410.02.

Explain why the answer to part (a) is different than the answer to part (b). c.

If Sal pays the interest each month, as in part (b), then no interest ever compounds. If he skips the interest payments while he is in school, then the compounding process charges interest on top of interest, increasing the total amount of interest owed on the loan.

8. Consider the sequence
$$a_0=10000$$
 , $a_n=a_{n-1}\cdot rac{1}{10}$ for $n\geq 1$.

Write the explicit form for the n^{th} term of the sequence. a.

$$a_{1} = 10000 \left(\frac{1}{10}\right) = 1000$$

$$a_{2} = \frac{1}{10} (a_{1}) = 10000 \left(\frac{1}{10}\right)^{2}$$

$$a_{3} = \frac{1}{10} (a_{2}) = 10000 \left(\frac{1}{10}\right)^{3}$$

$$\vdots$$

$$a_{n} = 10000 \left(\frac{1}{10}\right)^{n}$$

Evaluate $\sum_{k=0}^{4} a_k$. b.

$$\sum_{k=0}^{4} a_k = 10000 + 1000 + 100 + 10 + 1 = 11111$$

Evaluate $\sum_{k=0}^{6} a_k$. c.

$$\sum_{k=0}^{6} a_k = 10000 + 1000 + 100 + 10 + 1 + 0.1 + 0.01 = 11111.11$$

Evaluate $\sum_{k=0}^{8} a_k$ using the sum of a geometric series formula. d.

$$\sum_{k=0}^{8} a_k = 10000 \frac{(1-r^9)}{1-r}$$
$$= 10000 \frac{\left(1 - \left(\frac{1}{10}\right)^9\right)}{1 - \frac{1}{10}}$$
$$= 11, 111. 1111$$

EUREKA матн

Lesson 32: Buying a House



e. Evaluate $\sum_{k=0}^{10} a_k$ using the sum of a geometric series formula. $\sum_{k=0}^{10} a_k = 10000 \frac{(1-r^{11})}{1-r}$ $= 10000 \frac{\left(1-\left(\frac{1}{10}\right)^{11}\right)}{1-\frac{1}{10}}$ = 11111.111111f. Describe the value of $\sum_{k=0}^{n} a_k$ for any value of $n \ge 4$. The value of $\sum_{k=0}^{n} a_k$ for any $n \ge 4$ is 11111.1111...1. n-4 ones

engage^{ny}

Student Outcomes

Students use geometric series to calculate how much money should be saved each month to have 1 million in assets within a specified amount of time.

Lesson Notes

Amortization calculators and other online calculators are not advanced enough to easily develop a savings plan that results in earning \$1 million in assets by the time a student reaches the age of 40. Students continue their exploration of the formula for the future value of a structured savings plan from Lesson 29 (A-SSE.B.4).

We continue to use the future value of an annuity formula $A_f = R\left(\frac{(1+i)^n - 1}{i}\right)$ developed in Lesson 29. The formula is

discussed more extensively in Lesson 29, but it is always good to remember: The finance formulas in these lessons are direct applications of the sum for a geometric series and the compound interest formula. Throughout these lessons, we have re-derived these formulas in different contexts for two reasons: firstly, so that students recognize the usefulness of geometric series, and secondly, so that students can make the realization that the types of financial activities (savings plans, car loans, credit cards, etc.) initially appear to be different, but in the end all require the same calculation. The goal is for students to continue to build the formulas from geometric series until they are proficient with the meaning and uses of the formulas.

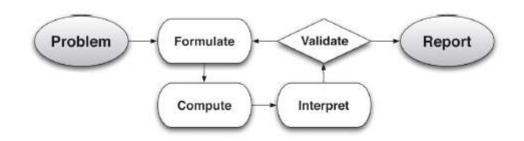
In the future value of an annuity formula stated above, the amount of money that somebody wants to have in the future is A_f . The amount deposited (which is generically called the payment) per compounding period is R, and the interest per compounding period is i. The total number of compounding periods is n. The amount of money it will take the person to save this amount A_f is the monthly payment times the number of payments, nR. When the annuity represents a loan, the monthly payment times the number of payments is called the total cost of a loan.

For loans, we rewrite the basic compound interest formula as $A_f = A_p(1+i)^n$, set it equal to the formula above from Lesson 29, and solve for the annuity's principal A_p . In this context, the present value of the annuity is the same as the principal of the loan (i.e., the loan amount). The present value of an annuity can be thought of as the lump sum amount one would need to invest now in order to earn the future value of an annuity through compound interest alone.

In this modeling lesson, you have the option of including the appreciation (or depreciation) rate of the property value. Look online for sources such as an interactive map of appreciation rates that can provide the statewide average rate of appreciation (or depreciation) in your region. We use the rate of 2.95% in the sample answers throughout the lesson. The example house used in this lesson continues to be the \$190,000 house from Lesson 32.

Some fundamental budgeting is included to provide the framework for the house purchase. The material students developed in Lesson 31 is used to provide flexibility to budgets and to discuss paying off debts in the context of budgets. Students develop and combine functions for the appreciation of their home, the balance in a savings account, and the value of their car to answer the question of the lesson: How can I accumulate \$1,000,000 in assets (F-BF.A.1b)?

A copy of the modeling cycle flowchart is included below to assist with the modeling portions of these lessons. Whenever students consider a modeling problem, they need first to identify variables representing essential features in the situation, formulate a model to describe the relationships between the variables, analyze and perform operations on the relationships, interpret their results in terms of the original situation, validate their conclusions, and either improve the model or report their conclusions and their reasoning. The exercises provided in this lesson suggest and provide a road map for you to structure the lesson around the modeling cycle flowchart, but they are only a road map: How much you use the exercises is left to your discretion and as time permits. For example, you may wish to start the class with just the opening question on saving \$1 million in 15 years and let the students decide how to move through the modeling cycle on their own without using the exercise questions as prompts. Regardless, each student's report should take into consideration the ideas discussed in the exercises.



Classwork

Opening (4 minutes)

- Now that you are in your mid-twenties, own a car, a house, and have a career, the question remains: What savings plan would you need to generate \$1,000,000 in assets over the next 15 years?
- What assets do we have that we can include?
 - House, car, and savings
- Over the long run, property values generally appreciate, but most cars depreciate. Assume the used car you bought back in Lesson 30 is depreciating and not an asset. But the house you bought does hold value (called equity), and that equity is an asset. Let's focus specifically on the value of your house from Lesson 32. What formula can we use to calculate the value of your house in 15 years?
 - ^D The formula is $F = P(1 + r)^{15}$, where r is the appreciation rate per year (this can be researched on the internet to find your local appreciation rate).

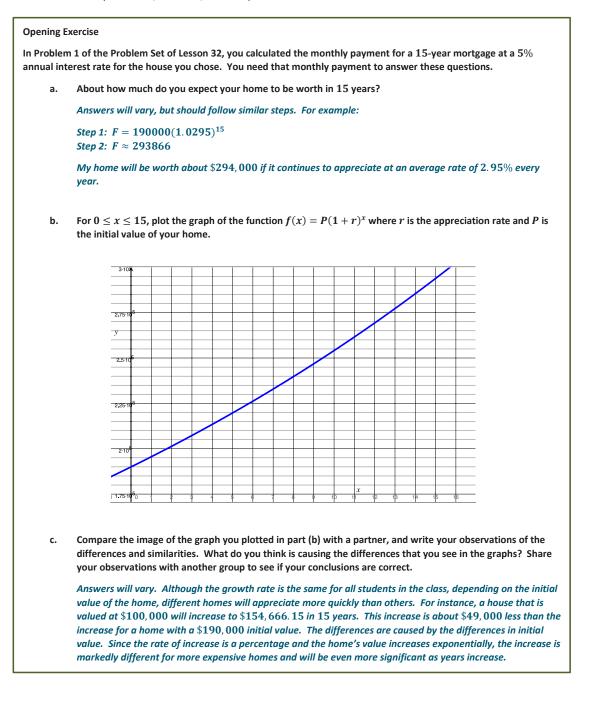
Inform students what appreciation rate they should use for their house.

- After finding this value, the problem then becomes, "How much do you need to deposit monthly to add up to \$1,000,000 after 15 years?" What type of problem does this sound like?
 - This sounds like a structured savings plan like we studied in Lesson 29.

engage^{ny}

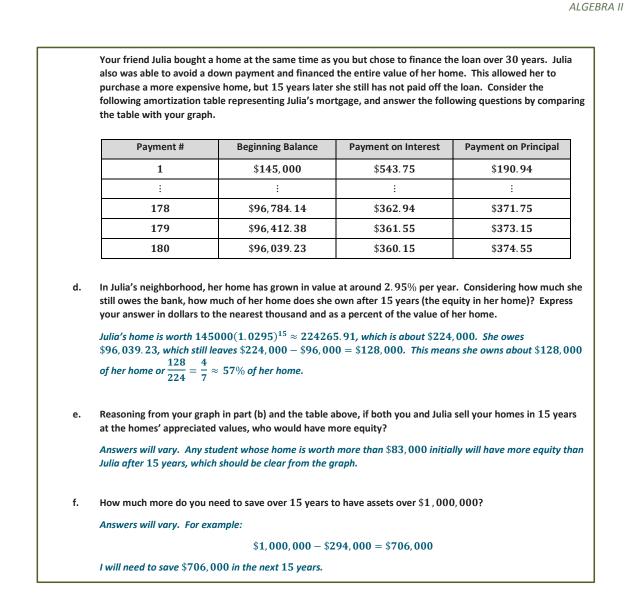
Opening Exercise (15 minutes)

Take the time for students to calculate the estimated value of their home and record the results. Have students plot their appreciation curve over 15 years and compare both the appreciated values of their homes and the graphs they produce with each other (F-IF.C.7e, F-IF.C.8, F-IF.C.9).



MP.3

Lesson 33: The Million Dollar Problem

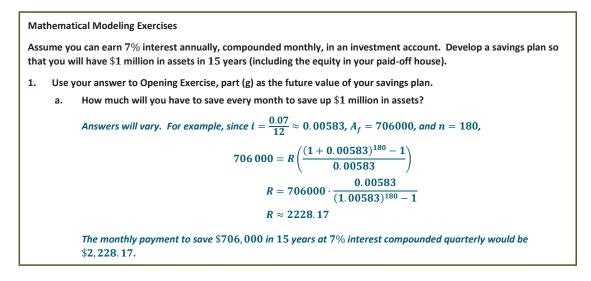


Mathematical Modeling Exercises (17 minutes)

Have students work individually or in pairs to figure out the monthly payment they need to save up to \$1 million in assets over 15 years. Although 7% compounded quarterly is used as the interest rate on the account, if time permits or with more advanced students, multiple interest rates may be given to different groups of students and the differences between the accounts analyzed and discussed.

The question of what type of account is being used for savings is left to the discretion of the teacher and may be omitted from the discussion. Possibilities include bonds, CDs, and stocks. Bonds and CDs are relatively secure and safe investments but have maximum interest rates around 2–3% annually. The stock market may seem like a risky place to invest, but mutual funds based upon stocks over the long run can provide relatively stable growth. For a list of stock market annual growth rates as well as a compound annual growth rate (CAGR) calculator, please visit http://www.moneychimp.com/features/market_cagr.htm. The data suggests that the CAGR is around 6.86% per year adjusted for inflation, which we have rounded to 7% to give the most optimistic calculations—an annual interest rate of 7% compounded quarterly will double about every 10 years.

Throughout these exercises the modeling cycle should be emphasized so that students use the process correctly. If necessary, draw on the board the modeling flowchart included at the beginning of the lesson to keep students on task.



You should not expect students to answer this problem as easily as the answer above implies. Walk around the room encouraging students to try a simpler problem first—maybe one where they earn \$5,000 after making four payments. Also, the answer above is the shortest answer possible. Many of your students may need to write out a geometric series inductively to get what the deposits and interest earned will look like. Above all, these last few modeling lessons are meant to let students figure out the solution on their own, so please give them the time to do so. Challenge students who get the answer quickly with the following questions: How is the formula derived? What does it mean?

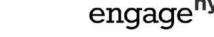
Recall the monthly payment to pay off your home in 15 years (from Problem 1 of the Problem Set of Lesson 32). How much are the two together? What percentage of your monthly income is this for the profession you chose?

The monthly payment on a 15-year loan was about \$1,352 (a 5% annual interest loan on \$171,000 for a \$190,000 house with \$19,000 down for 15 years). The savings payment coupled with the monthly mortgage comes to about \$3,579.

Answers will vary on the percentage of monthly income.

It is very likely that the total amount of the two may exceed 50% of the monthly income. If so, you can lead your students to recalculate a more reasonable scenario like taking 20 years to generate \$1 million in assets. Have them come up with the plan.

 Write a report supported by the calculations you did above on how to save \$1 million (or more) in your lifetime. Answers will vary. You may wish to assign this as homework so students can type up their plan, make a slide presentation, blog about it, write it in their journal, etc.



Closing (4 minutes)

Debrief students on their understanding of the mathematics of finance. Suggested questions are listed below with likely responses. Have students answer on their own or with a partner in writing.

- What formula made all of our work with structured savings plans, credit cards, and loans possible?
 - The formula for the sum of a finite geometric sequence is $S_n = a \cdot \left(\frac{1-r^n}{1-r}\right)$.
- What does each part of the formula for the sum of a finite geometric sequence represent?
 - The n^{th} partial sum is S_n , a is the first term, r is the common ratio, and n is the number of terms.
- How does this translate to the formula for the future value of a structured savings plan?
 - Structured savings plans are geometric series with initial terms R standing for recurring payment, 1 + i is the common ratio, and n is the total number of payments. The sum of all the payments and the interest they earn is the future value of the structured savings plan, A_{f} . We get

$$A_f = R \cdot \left(\frac{1 - (1 + i)^n}{1 - (1 + i)}\right) \text{ which simplifies to } A_f = R \cdot \left(\frac{(1 + i)^n - 1}{i}\right).$$

The next question is included as a reminder to students to reconnect the work they did in Lessons 30, 31, and 32 with Lesson 33.

- For loans and credit cards, we set the future value of a savings plan equal to the future value of a compound interest account to find the present value, or balance of the loan. State the formula for the present value of a loan, and identify its parts.
 - The present value of a loan is derived from $A_p(1+i)^n = R \cdot \left(\frac{(1+i)^n 1}{i}\right)$ which simplifies to

 $A_p = R \cdot \left(\frac{1 - (1 + i)^{-n}}{i}\right)$. The present value or balance of the loan is A_p , R is the recurring payment, i is the interest rate, and n is the number of payments.

Exit Ticket (5 minutes)

Name

Date _____

Lesson 33: The Million Dollar Problem

Exit Ticket

1. At age 25, you begin planning for retirement at 65. Knowing that you have 40 years to save up for retirement and expecting an interest rate of 4% per year compounded monthly throughout the 40 years, how much do you need to deposit every month to save up \$2 million for retirement?

2. Currently, your savings for each month is capped at \$400. If you start investing all of this into a savings plan earning 1% interest annually, compounded monthly, then how long will it take to save \$160,000? (Hint: Use logarithms.)

Exit Ticket Sample Solutions

1. At age 25, you begin planning for retirement at 65. Knowing that you have 40 years to save up for retirement and expecting an interest rate of 4% per year, compounded monthly, throughout the 40 years, how much do you need to deposit every month to save up \$2 million for retirement?

$$A_f = R\left(\frac{(1+i)^n - 1}{i}\right)$$

$$2 \times 10^6 = R\left(\frac{\left(1 + \frac{0.04}{12}\right)^{12.40} - 1}{\frac{0.04}{12}}\right)$$

$$R = 2 \times 10^6 \cdot \left(\frac{0.04}{12}\right) \div \left(\left(1 + \frac{0.04}{12}\right)^{480} - 1\right)$$

$$R \approx 1692.10$$

You need to deposit \$1,692.10 every month for 40 years to save \$2 million at 4% interest.

2. Currently, your savings for each month is capped at \$400. If you start investing all of this into a savings plan earning 1% interest annually, compounded monthly, then how long should it take to save \$160,000? (Hint: Use logarithms.)

$$160000 = 400 \left(\frac{\left(1 + \frac{0.01}{12}\right)^{12t} - 1}{\frac{0.01}{12}} \right)$$

$$400 = \frac{\left(1 + \frac{0.01}{12}\right)^{12t} - 1}{\frac{0.01}{12}}$$

$$400 \cdot \left(\frac{0.01}{12}\right) = \left(1 + \frac{0.01}{12}\right)^{12t} - 1$$

$$\frac{4}{12} + 1 = \left(1 + \frac{0.01}{12}\right)^{12t}$$

$$\frac{4}{3} = \left(1 + \frac{0.01}{12}\right)^{12t}$$

$$\ln\left(\frac{4}{3}\right) = \ln\left(\left(1 + \frac{0.01}{12}\right)^{12t}\right)$$

$$\ln\left(\frac{4}{3}\right) = 12t \cdot \ln\left(1 + \frac{0.01}{12}\right)$$

$$t = \frac{\ln\left(\frac{4}{3}\right)}{12\ln\left(1 + \frac{0.01}{12}\right)}$$

$$\approx 28.7802$$
28 years and 10 months to save up \$160,000 with only \$400 deposited every month.

EUREKA MATH

It would take

Problem Set Sample Solutions

- Consider the following scenario: You would like to save up \$50,000 after 10 years and plan to set up a structured 1. savings plan to make monthly payments at 4. 125% interest annually, compounded monthly.
 - What lump sum amount would you need to invest at this interest rate in order to have \$50,000 after 10 a. years?

 $50000 = P\left(1 + \frac{0.04\,125}{12}\right)^{120}$ $P = 50000 \div \left(1 + \frac{0.04\,125}{12}\right)^{120}$ $P \approx 33123.08$

You would need to deposit \$33, 123.08 now to save up to \$50,000.

Use an online amortization calculator to find the monthly payment necessary to take a loan for the amount in b. part (a) at this interest rate and for this time period.

\$337.33

c. Use
$$A_f = R\left(rac{\left(1+i
ight)^n-1}{i}
ight)$$
 to solve for $R.$

$$50000 = R\left(\frac{\left(1 + \frac{0.04125}{12}\right)^{120} - 1}{\frac{0.04125}{12}}\right)$$
$$R \approx 337.33$$

The monthly payment would be \$337.33.

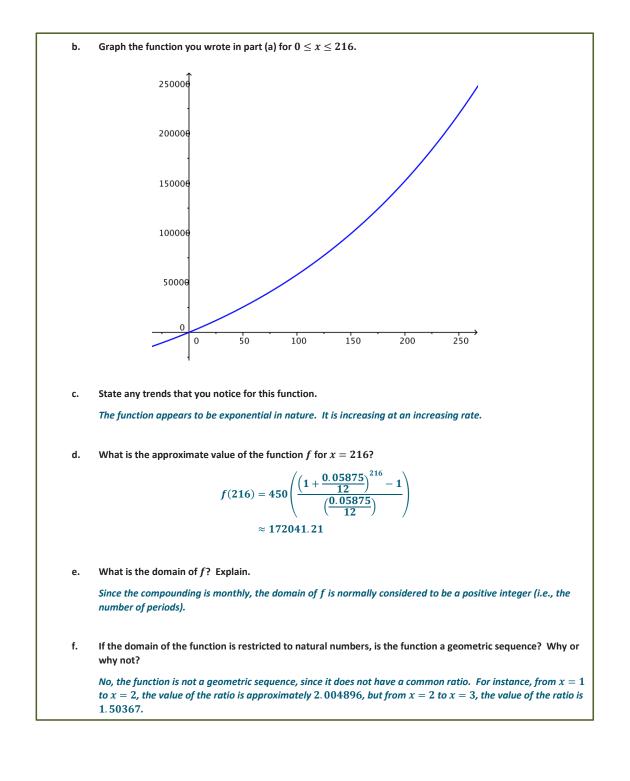
d. Compare your answers to part (b) and part (c). What do you notice? Why did this happen?

The answers are the same. The present value of an annuity is the cost of a loan and can be found by setting the loan equal to the compound interest formula, which is what we did originally. Once we had the cost of a loan, the amortization calculator was able to find the monthly payment. In part (c) we used the future value of an annuity to find the same quantity.

- 2. For structured savings plans, the future value of the savings plan as a function of the number of payments made at that point is an interesting function to examine. Consider a structured savings plan with a recurring payment of \$450 made monthly and an annual interest rate of 5.875% compounded monthly.
 - State the formula for the future value of this structured savings plan as a function of the number of payments a. made. Use *f* for the function name.

$$f(x) = 450 \left(\frac{\left(1 + \frac{0.05875}{12}\right)^x - 1}{\left(\frac{0.05875}{12}\right)} \right)$$

ALGEBRA II



Recall that the n^{th} partial sums of a geometric sequence can be represented with S_{n^*} . It is true that $f(x) = S_x$ g. for positive integers x, since it is a geometric sequence; that is, $S_x = \sum_{i=1}^{x} ar^i$. State the geometric sequence whose sums of the first *x* terms are represented by this function.

The geometric sequence has first term 450 and common ratio $\left(1+rac{0.05875}{12}
ight)$. It can be written as

 $a_n = 450 \cdot \left(1 + \frac{0.05875}{12}\right)^{n-1}.$

April has been following this structured savings plan for 18 years. April says that taking out the money and h. starting over should not affect the total money earned because the interest rate does not change. Explain why April is incorrect in her reasoning.

The function is increasing exponentially, so the larger the balance, the more it grows. If the money is taken out, then the growth would be reset back to the beginning, although you would have that money.

Henry plans to have \$195,000 in property in 14 years and would like to save up to \$1 million by depositing 3. \$3,068.95 each month at 6% interest per year, compounded monthly. Tina's structured savings plan over the same time span is described in the following table:

Deposit #	Amount Saved
30	\$110, 574. 77
31	\$114, 466. 39
32	\$118, 371. 79
33	\$122, 291. 02
34	\$126, 224. 14
:	:
167	\$795, 266. 92
168	\$801, 583. 49

Who has the higher interest rate? Who pays more every month? a.

From the table it looks like Tina pays more every month, but Henry has the higher interest rate. Henry would have about \$99,000 after 30 payments, but Tina has more at that point. After 168 payments, Henry will save up \$805,000, while Tina has only saved \$801,583. Over long periods of time, a higher interest rate will eventually beat larger payments.

At the end of 14 years, who has more money from their structured savings plan? Does this agree with what b. you expected? Why or why not?

Henry has more, but just barely. The larger payment Tina was making was not enough to stay ahead of Henry for 14 years, but he looks to have just passed her recently.

At the end of 40 years, who has more money from their structured savings plan? c.

Henry has extended his lead significantly by this point. Once he overtakes Tina, his savings continues to grow at a faster rate than Tina's savings.

552

Lesson 33

ALGEBRA II

- 4. Edgar and Paul are two brothers that each get an inheritance of \$150,000. Both plan to save up over \$1,000,000 in 25 years. Edgar takes his inheritance and deposits the money into an investment account earning 8% interest annually, compounded monthly, payable at the end of 25 years. Paul spends his inheritance but uses a structured savings plan that is represented by the sequence $b_n = 1275 + b_{n-1} \cdot \left(1 + \frac{0.0775}{12}\right)$ with $b_0 = 1275$ in order to save up more than \$1,000,000.
 - a. Which of the two has more money at the end of 25 years?

Let E(x) represent Edgar's savings and P(x) represent Paul's savings.

Then $E(x) = 150000 \left(1 + \frac{0.08}{12}\right)^{300} \approx 1101026.40.$

$$P(x) = \sum_{i=0}^{299} 1275 \left(1 + \frac{0.0775}{12}\right)^{i}$$
$$= 1275 \left(\frac{1 - \left(1 + \frac{0.0775}{12}\right)^{300}}{1 - \left(1 + \frac{0.0775}{12}\right)}\right)$$
$$= 1275 \left(\frac{\left(1 + \frac{0.0775}{12}\right)^{300} - 1}{\frac{0.0775}{12}}\right)$$
$$\approx 1164432.17$$

Paul has \$63,405.78 more than Edgar at the end of 25 years.

b. What are the pros and cons of both brothers' plans? Which would you rather do? Why?

Answers will vary between the two plans and may include a combination of both.

Edgar only has to make a single payment, and he inherited the money, so it does not come out of his normal budget. He does not have to worry about the account again, but he makes less money than Paul overall and cannot access the money until the end of the 25 years. Edgar also pays much less than Paul does.

Paul ends up paying \$382,500 in order to save up his million, but he does this slowly over the 25 years, so he does not have a huge pinch at any point in time. Paul ends up saving more money in the long run.

Lesson 33

M3

ALGEBRA II