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Algebra II • Module 1 

Polynomial, Rational, and Radical 

Relationships 

 

OVERVIEW 
In this module, students draw on their foundation of the analogies between polynomial arithmetic and base-
ten computation, focusing on properties of operations, particularly the distributive property (A-SSE.B.2,  
A-APR.A.1).  Students connect multiplication of polynomials with multiplication of multi-digit integers and 
division of polynomials with long division of integers (A-APR.A.1, A-APR.D.6).  Students identify zeros of 
polynomials, including complex zeros of quadratic polynomials, and make connections between zeros of 
polynomials and solutions of polynomial equations (A-APR.B.3).  Students explore the role of factoring, as 
both an aid to the algebra and to the graphing of polynomials (A-SSE.2, A-APR.B.2, A-APR.B.3, F-IF.C.7c).  
Students continue to build upon the reasoning process of solving equations as they solve polynomial, rational, 
and radical equations, as well as linear and non-linear systems of equations (A-REI.A.1, A-REI.A.2, A-REI.C.6, 
A-REI.C.7).  The module culminates with the fundamental theorem of algebra as the ultimate result in 
factoring.  Students pursue connections to applications in prime numbers in encryption theory, Pythagorean 
triples, and modeling problems.   

An additional theme of this module is that the arithmetic of rational expressions is governed by the same 
rules as the arithmetic of rational numbers.  Students use appropriate tools to analyze the key features of a 
graph or table of a polynomial function and relate those features back to the two quantities that the function 
is modeling in the problem (F-IF.C.7c). 

 

Focus Standards 

Reason quantitatively and use units to solve problems. 

N-Q.A.22 Define appropriate quantities for the purpose of descriptive modeling.★ 

Perform arithmetic operations with complex numbers.  

N-CN.A.1 Know there is a complex number 𝑖 such that 𝑖2 = – 1, and every complex number has the 
form 𝑎 + 𝑏𝑖 with a and b real. 

                                                           
2
This standard is assessed in Algebra II by ensuring that some modeling tasks (involving Algebra II content or securely held content 

from previous grades and courses) require the student to create a quantity of interest in the situation being described (i.e., this is not 
provided in the task). For example, in a situation involving periodic phenomena, the student might autonomously decide that 
amplitude is a key variable in a situation and then choose to work with peak amplitude. 
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N-CN.A.2 Use the relation 𝑖2 = – 1 and the commutative, associative, and distributive properties to 
add, subtract, and multiply complex numbers. 

Use complex numbers in polynomial identities and equations.  

N-CN.C.7    Solve quadratic equations with real coefficients that have complex solutions. 

Interpret the structure of expressions. 

A-SSE.A.23 Use the structure of an expression to identify ways to rewrite it.  For example, see 𝑥4 − 𝑦4 
as (𝑥2)2 − (𝑦2)2, thus recognizing it as a difference of squares that can be factored as 
(𝑥2 − 𝑦2)(𝑥2 + 𝑦2). 

Understand the relationship between zeros and factors of polynomials. 

A-APR.B.24 Know and apply the Remainder Theorem:  For a polynomial 𝑝(𝑥) and a number a, the 
remainder on division by 𝑥 − 𝑎 is 𝑝(𝑎), so 𝑝(𝑎) = 0 if and only if (𝑥 − 𝑎) is a factor of 𝑝(𝑥). 

A-APR.B.35   Identify zeros of polynomials when suitable factorizations are available, and use the zeros to 
construct a rough graph of the function defined by the polynomial. 

Use polynomial identities to solve problems. 

A-APR.C.4  Prove polynomial identities and use them to describe numerical relationships.  For example, 
the polynomial identity (𝑥2 + 𝑦2)2 = (𝑥2 − 𝑦2)2 + (2𝑥𝑦)2 can be used to generate 
Pythagorean triples. 

Rewrite rational expressions. 

A-APR.D.66   Rewrite simple rational expressions in different forms; write 𝑎(𝑥)/𝑏(𝑥) in the form  
𝑞(𝑥) + 𝑟(𝑥)/𝑏(𝑥), where 𝑎(𝑥), 𝑏(𝑥), 𝑞(𝑥), and 𝑟(𝑥) are polynomials with the degree of 
𝑟(𝑥) less than the degree of 𝑏(𝑥), using inspection, long division, or, for the more 
complicated examples, a computer algebra system.   

Understand solving equations as a process of reasoning and explain the reasoning. 

A-REI.A.17 Explain each step in solving a simple equation as following from the equality of numbers 
asserted at the previous step, starting from the assumption that the original equation has a 
solution.  Construct a viable argument to justify a solution method. 

                                                           
3
In Algebra II, tasks are limited to polynomial, rational, or exponential expressions.  Examples:  see 𝑥4 − 𝑦4 as (𝑥2)2 − (𝑦2)2, thus 

recognizing it as a difference of squares that can be factored as (𝑥2 − 𝑦2)(𝑥2 + 𝑦2).  In the equation 𝑥2 + 2𝑥 + 1 + 𝑦2 = 9, see an 
opportunity to rewrite the first three terms as (𝑥 + 1)2, thus recognizing the equation of a circle with radius 3 and center (−1, 0).  
See (𝑥2 + 4)/(𝑥2 + 3) as ((𝑥2 + 3) + 1)/(𝑥2 + 3), thus recognizing an opportunity to write it as 1 + 1/(𝑥2 + 3).  
4
Include problems that involve interpreting the remainder theorem from graphs and in problems that require long division. 

5
 In Algebra II, tasks include quadratic, cubic, and quadratic polynomials and polynomials for which factors are not provided.  For 

example, find the zeros of (𝑥2 − 1)(𝑥2 + 1). 
6
Include rewriting rational expressions that are in the form of a complex fraction. 

7
In Algebra II, tasks are limited to simple rational or radical equations.  
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A-REI.A.2    Solve simple rational and radical equations in one variable, and give examples showing how 
extraneous solutions may arise. 

Solve equations and inequalities in one variable. 

A-REI.B.48    Solve quadratic equations in one variable. 

b. Solve quadratic equations by inspection (e.g., for 𝑥2 = 49), taking square roots, 
completing the square, the quadratic formula and factoring, as appropriate to the initial 
form of the equation.  Recognize when the quadratic formula gives complex solutions 
and write them as 𝑎 ± 𝑏𝑖 for real numbers a and b. 

Solve systems of equations. 

A-REI.C.69   Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on 
pairs of linear equations in two variables.    

A-REI.C.7   Solve a simple system consisting of a linear equation and a quadratic equation in two 
variables algebraically and graphically.  For example, find the points of intersection between 
the line 𝑦 = −3𝑥 and the circle 𝑥2 + 𝑦2 = 3. 

Analyze functions using different representations. 

F-IF.C.7    Graph functions expressed symbolically and show key features of the graph (by hand in 
simple cases and using technology for more complicated cases).★ 

c. Graph polynomial functions, identifying zeros when suitable factorizations are available 
and showing end behavior. 

Translate between the geometric description and the equation for a conic section. 

G-GPE.A.2  Derive the equation of a parabola given a focus and directrix. 

 

Extension Standards 
The (+) standards below are provided as an extension to Module 1 of the Algebra II course to provide 
coherence to the curriculum.  They are used to introduce themes and concepts that are fully covered in the 
Precalculus course.   

Use complex numbers in polynomial identities and equations. 

N-CN.C.8    (+) Extend polynomial identities to the complex numbers.  For example, rewrite 𝑥2 + 4 as  
(𝑥 + 2𝑖)(𝑥 − 2𝑖).  

 

                                                           
8
In Algebra II, in the case of equations having roots with nonzero imaginary parts, students write the solutions as 𝑎 ± 𝑏𝑖, where 𝑎 and 

𝑏 are real numbers.  
9
In Algebra II, tasks are limited to 3 × 3 systems.  
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N-CN.C.9    (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic 
polynomials. 

Rewrite rational expressions.  

A-APR.C.7    (+) Understand that rational expressions form a system analogous to the rational numbers, 
closed under addition, subtraction, multiplication, and division by a nonzero rational 
expression; add, subtract, multiply, and divide rational expressions. 

 

Foundational Standards 

Use properties of rational and irrational numbers. 

N-RN.B.3    Explain why the sum or product of two rational numbers is rational; that the sum of a 
rational number and an irrational number is irrational; and that the product of a nonzero 
rational number and an irrational number is irrational. 

Reason quantitatively and use units to solve problems. 

N-Q.A.1    Use units as a way to understand problems and to guide the solution of multi-step 
problems; choose and interpret units consistently in formulas; choose and interpret the 
scale and the origin in graphs and data displays.★ 

Interpret the structure of expressions. 

A-SSE.A.1   Interpret expressions that represent a quantity in terms of its context.★ 

a. Interpret parts of an expression, such as terms, factors, and coefficients.  

b. Interpret complicated expressions by viewing one or more of their parts as a single 
entity. For example, interpret 𝑃(1 + 𝑟)𝑛 as the product of 𝑃 and a factor not depending 
on 𝑃. 

Write expressions in equivalent forms to solve problems. 

A-SSE.B.3    Choose and produce an equivalent form of an expression to reveal and explain properties of 
the quantity represented by the expression.★ 

a. Factor a quadratic expression to reveal the zeros of the function it defines. 

Perform arithmetic operations on polynomials. 

A-APR.A.1    Understand that polynomials form a system analogous to the integers, namely, they are 
closed under the operations of addition, subtraction, and multiplication; add, subtract, and 
multiply polynomials. 
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Create equations that describe numbers or relationships. 

A-CED.A.1    Create equations and inequalities in one variable and use them to solve problems.  Include 
equations arising from linear and quadratic functions, and simple rational and exponential 
functions.

★ 

A-CED.A.2    Create equations in two or more variables to represent relationships between quantities; 
graph equations on coordinate axes with labels and scales.★ 

A-CED.A.3    Represent constraints by equations or inequalities and by systems of equations and/or 
inequalities, and interpret solutions as viable or non-viable options in a modeling context.  
For example, represent inequalities describing nutritional and cost constraints on 
combinations of different foods.

★
 

A-CED.A.4    Rearrange formulas to highlight a quantity of interest, using the same reasoning used in 
solving equations.  For example, rearrange Ohm’s law 𝑉 = 𝐼𝑅 to highlight resistance 𝑅.

★
 

Solve equations and inequalities in one variable. 

A-REI.B.3    Solve linear equations and inequalities in one variable, including equations with coefficients 
represented by letters.  

A-REI.B.4    Solve quadratic equations in one variable. 

a. Use the method of completing the square to transform any quadratic equation in 𝑥 into 
an equation of the form (𝑥 − 𝑝)2 = 𝑞 that has the same solutions.  Derive the 
quadratic formula from this form. 

Solve systems of equations. 

A-REI.C.5    Prove that, given a system of two equations in two variables, replacing one equation by the 
sum of that equation and a multiple of the other produces a system with the same 
solutions. 

Represent and solve equations and inequalities graphically. 

A-REI.D.10    Understand that the graph of an equation in two variables is the set of all its solutions 
plotted in the coordinate plane, often forming a curve (which could be a line). 

A-REI.D.11   Explain why the x-coordinates of the points where the graphs of the equations 𝑦 = 𝑓(𝑥)  
and 𝑦 = 𝑔(𝑥) intersect are the solutions of the equation 𝑓(𝑥) = 𝑔(𝑥); find the solutions 
approximately, e.g., using technology to graph the functions, make tables of values, or find 
successive approximations. Include cases where 𝑓(𝑥) and/or 𝑔(𝑥) are linear, polynomial, 
rational, absolute value, exponential, and logarithmic functions.★ 

Translate between the geometric description and the equation for a conic section. 

G-GPE.A.1    Derive the equation of a circle of given center and radius using the Pythagorean Theorem; 
complete the square to find the center and radius of a circle given by an equation. 
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Focus Standards for Mathematical Practice 
MP.1 Make sense of problems and persevere in solving them.  Students discover the value of 

equating factored terms of a polynomial to zero as a means of solving equations involving 
polynomials.  Students solve rational equations and simple radical equations, while 
considering the possibility of extraneous solutions and verifying each solution before 
drawing conclusions about the problem.  Students solve systems of linear equations and 
linear and quadratic pairs in two variables.  Further, students come to understand that the 
complex number system provides solutions to the equation 𝑥2 + 1 = 0 and higher-degree 
equations.   

MP.2 Reason abstractly and quantitatively.  Students apply polynomial identities to detect prime 
numbers and discover Pythagorean triples.  Students also learn to make sense of remainders 
in polynomial long division problems. 

MP.4 Model with mathematics.  Students use primes to model encryption.  Students transition 
between verbal, numerical, algebraic, and graphical thinking in analyzing applied polynomial 
problems.  Students model a cross-section of a riverbed with a polynomial, estimate fluid 
flow with their algebraic model, and fit polynomials to data.  Students model the locus of 
points at equal distance between a point (focus) and a line (directrix) discovering the 
parabola. 

MP.7 Look for and make use of structure.  Students connect long division of polynomials with the 
long-division algorithm of arithmetic and perform polynomial division in an abstract setting 
to derive the standard polynomial identities.  Students recognize structure in the graphs of 
polynomials in factored form and develop refined techniques for graphing.  Students discern 
the structure of rational expressions by comparing to analogous arithmetic problems.  
Students perform geometric operations on parabolas to discover congruence and similarity. 

MP.8 Look for and express regularity in repeated reasoning.  Students understand that 
polynomials form a system analogous to the integers.  Students apply polynomial identities 
to detect prime numbers and discover Pythagorean triples.  Students recognize factors of 
expressions and develop factoring techniques.  Further, students understand that all 
quadratics can be written as a product of linear factors in the complex realm.   

 

Terminology 

New or Recently Introduced Terms  

 Axis of Symmetry (The axis of symmetry of a parabola given by a focus point and a directrix is the 
perpendicular line to the directrix that passes through the focus.) 

 Dilation at the Origin (A dilation at the origin 𝐷𝑘 is a horizontal scaling by 𝑘 > 0 followed by a 
vertical scaling by the same factor 𝑘.  In other words, this dilation of the graph of 𝑦 = 𝑓(𝑥) is the 

graph of the equation 𝑦 = 𝑘𝑓 (
1

𝑘
𝑥).  A dilation at the origin is a special type of a dilation.) 
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 End Behavior (Let 𝑓 be a function whose domain and range are subsets of the real numbers.  The 
end behavior of a function 𝑓 is a description of what happens to the values of the function  

 as 𝑥 approaches positive infinity and 

 as 𝑥 approaches negative infinity.) 

 Even Function (Let 𝑓 be a function whose domain and range is a subset of the real numbers.  The 
function 𝑓 is called even if the equation 𝑓(𝑥) = 𝑓(−𝑥) is true for every number 𝑥 in the domain.  
Even-degree polynomial functions are sometimes even functions, such as 𝑓(𝑥) = 𝑥10, and 
sometimes not, such as 𝑔(𝑥) = 𝑥2 − 𝑥.) 

 Odd Function (Let 𝑓 be a function whose domain and range is a subset of the real numbers.  The 
function 𝑓 is called odd if the equation 𝑓(−𝑥) = −𝑓(𝑥) is true for every number 𝑥 in the domain.  
Odd-degree polynomial functions are sometimes odd functions, such as 𝑓(𝑥) = 𝑥11, and sometimes 
not, such as ℎ(𝑥) = 𝑥3 − 𝑥2.) 

 Parabola (A parabola with directrix line 𝐿 and focus point 𝐹 is the set of all points in the plane that 
are equidistant from the point 𝐹 and line 𝐿.) 

 Pythagorean Triple (A Pythagorean triple is a triplet of positive integers (𝑎, 𝑏, 𝑐) such that  
𝑎2 + 𝑏2 = 𝑐2.  The triple (3, 4, 5) is a Pythagorean triple, but (1, 1, √2) is not, even though the 
numbers are side lengths of an isosceles right triangle.) 

 Rational Expression (A rational expression is either a numerical expression or a variable symbol or 
the result of placing two previously generated rational expressions into the blanks of the addition 
operator (__+__), the subtraction operator (__−__), the multiplication operator (__×__), or the 
division operator (__÷__).) 

 A Square Root of a Number (A square root of a number 𝑥 is a number whose square is 𝑥.  In 
symbols, a square root of 𝑥 is a number 𝑎 such that 𝑎2 = 𝑥.  Negative numbers do not have any real 
square roots, zero has exactly one real square root, and positive numbers have two real square 
roots.) 

 The Square Root of a Number (Every positive real number 𝑥 has a unique positive square root called 
the square root or principal square root of 𝑥; it is denoted √𝑥.  The square root of zero is zero.) 

 Vertex of a Parabola (The vertex of a parabola is the point where the axis of symmetry intersects the 
parabola.) 

 

Familiar Terms and Symbols10  

 Algebraic Expression 

 Arithmetic Sequence  

 Binomial 

 Coefficient of a Monomial 

 Constant Function 

 Cubic Function  

 Degree of a Monomial 

                                                           
10

 These are terms and symbols students have seen previously. 
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 Degree of a Polynomial Function 

 Degree of a Polynomial in One Variable 

 Discriminant of a Quadratic Function  

 Equivalent Polynomial Expressions 

 Function 

 Graph of 𝑓 

 Graph of 𝑦 = 𝑓(𝑥) 

 Increasing/Decreasing  

 Like Terms of a Polynomial 

 Linear Function 

 Monomial 

 Numerical Expression 

 Numerical Symbol  

 Polynomial Expression 

 Polynomial Function 

 Polynomial Identity 

 Quadratic Function 

 Relative Maximum 

 Relative Minimum  

 Sequence  

 Standard Form of a Polynomial in One Variable  

 Terms of a Polynomial 

 Trinomial 

 Variable Symbol 

 Zeros or Roots of a Function 

 

Suggested Tools and Representations 
 Graphing Calculator 

 Wolfram Alpha Software 

 GeoGebra Software 

 

  

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
 
 
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Module Overview 
ALGEBRA II 

Module 1: Polynomial, Rational, and Radical Relationships 
 
 

 

11 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Preparing to Teach a Module 
Preparation of lessons will be more effective and efficient if there has been an adequate analysis of the 
module first.  Each module in A Story of Functions can be compared to a chapter in a book.  How is the 
module moving the plot, the mathematics, forward?  What new learning is taking place?  How are the topics 
and objectives building on one another?  The following is a suggested process for preparing to teach a 
module.  

  
Step 1:  Get a preview of the plot. 

A: Read the Table of Contents.  At a high level, what is the plot of the module?  How does the story 
develop across the topics? 

B: Preview the module’s Exit Tickets to see the trajectory of the module’s mathematics and the nature 
of the work students are expected to be able to do.  

Note:  When studying a PDF file, enter “Exit Ticket” into the search feature to navigate from one Exit 
Ticket to the next. 

  
Step 2:  Dig into the details. 

A: Dig into a careful reading of the Module Overview.  While reading the narrative, liberally reference 
the lessons and Topic Overviews to clarify the meaning of the text—the lessons demonstrate the 
strategies, show how to use the models, clarify vocabulary, and build understanding of concepts.     

B:  Having thoroughly investigated the Module Overview, read through the Student Outcomes of each 
lesson (in order) to further discern the plot of the module.  How do the topics flow and tell a 
coherent story?  How do the outcomes move students to new understandings? 

 
Step 3:  Summarize the story. 

Complete the Mid- and End-of-Module Assessments.  Use the strategies and models presented in the 
module to explain the thinking involved.  Again, liberally reference the lessons to anticipate how students 
who are learning with the curriculum might respond. 
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Preparing to Teach a Lesson 
A three-step process is suggested to prepare a lesson.  It is understood that at times teachers may need to 
make adjustments (customizations) to lessons to fit the time constraints and unique needs of their students.  
The recommended planning process is outlined below.  Note:  The ladder of Step 2 is a metaphor for the 
teaching sequence.  The sequence can be seen not only at the macro level in the role that this lesson plays in 
the overall story, but also at the lesson level, where each rung in the ladder represents the next step in 
understanding or the next skill needed to reach the objective.  To reach the objective, or the top of the 
ladder, all students must be able to access the first rung and each successive rung. 

 
Step 1:  Discern the plot. 

A:  Briefly review the module’s Table of Contents, recalling the overall story of the module and analyzing 
the role of this lesson in the module.   

B:  Read the Topic Overview related to the lesson, and then review the Student Outcome(s) and Exit 
Ticket of each lesson in the topic.  

C: Review the assessment following the topic, keeping in mind that assessments can be found midway 
through the module and at the end of the module. 

   
Step 2:  Find the ladder. 

A:  Work through the lesson, answering and completing 
each question, example, exercise, and challenge. 

B: Analyze and write notes on the new complexities or 
new concepts introduced with each question or 
problem posed; these notes on the sequence of new 
complexities and concepts are the rungs of the ladder.  

C: Anticipate where students might struggle, and write a 
note about the potential cause of the struggle. 

D:  Answer the Closing questions, always anticipating how 
students will respond. 

 
Step 3:  Hone the lesson. 

Lessons may need to be customized if the class period is not long enough to do all of what is presented 
and/or if students lack prerequisite skills and understanding to move through the entire lesson in the 
time allotted.  A suggestion for customizing the lesson is to first decide upon and designate each 
question, example, exercise, or challenge as either “Must Do” or “Could Do.”  

A:  Select “Must Do” dialogue, questions, and problems that meet the Student Outcome(s) while still 
providing a coherent experience for students; reference the ladder.  The expectation should be that 
the majority of the class will be able to complete the “Must Do” portions of the lesson within the 
allocated time.  While choosing the “Must Do” portions of the lesson, keep in mind the need for a 
balance of dialogue and conceptual questioning, application problems, and abstract problems, and a 
balance between students using pictorial/graphical representations and abstract representations.  
Highlight dialogue to be included in the delivery of instruction so that students have a chance to 
articulate and consolidate understanding as they move through the lesson.   
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B:  “Must Do” portions might also include remedial work as necessary for the whole class, a small group, 
or individual students.  Depending on the anticipated difficulties, the remedial work might take on 
different forms as suggested in the chart below. 

 

Anticipated Difficulty “Must Do” Remedial Problem Suggestion 

The first problem of the lesson is 
too challenging. 

Write a short sequence of problems on the board that 
provides a ladder to Problem 1.  Direct students to 
complete those first problems to empower them to begin 
the lesson.  

There is too big of a jump in 
complexity between two problems.  

Provide a problem or set of problems that bridge student 
understanding from one problem to the next.  

Students lack fluency or 
foundational skills necessary for 
the lesson. 

Before beginning the lesson, do a quick, engaging fluency 
exercise11.  Before beginning any fluency activity for the first 
time, assess that students have conceptual understanding 
of the problems in the set and that they are poised for 
success with the easiest problem in the set. 

More work is needed at the 
concrete or pictorial level. 

Provide manipulatives or the opportunity to draw solution 
strategies.  

More work is needed at the 
abstract level. 

Add a set of abstract problems to be completed toward the 
end of the lesson. 

 

C:  “Could Do” problems are for students who work with greater fluency and understanding and can, 
therefore, complete more work within a given time frame. 

D:  At times, a particularly complex problem might be designated as a “Challenge!” problem to provide 
to advanced students.  Consider creating the opportunity for students to share their “Challenge!” 
solutions with the class at a weekly session or on video. 

E:  If the lesson is customized, be sure to carefully select Closing questions that reflect such decisions, 
and adjust the Exit Ticket if necessary. 

  

                                                           
11

Look for fluency suggestions at www.eureka-math.org. 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://www.eureka-math.org/


 
 
 
 
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Module Overview 
ALGEBRA II 

Module 1: Polynomial, Rational, and Radical Relationships 
 
 

 

14 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Assessment Summary 

Assessment Type Administered Format Standards Addressed 

Mid-Module 
Assessment Task 

After Topic B Constructed response with rubric 

N-Q.A.2, A-SSE.A.2,  
A-APR.B.2, A-APR.B.3, 
A-APR.C.4, A-REI.A.1,  
A-REI.B.4b, F-IF.C.7c 

End-of-Module 
Assessment Task 

After Topic D Constructed response with rubric 

N-Q.A.2, A.SSE.A.2, 
A.APR.B.2, A-APR.B.3,  
A-APR.C.4, A-APR.D.6,  
A-REI.A.1, A-REI.A.2,  
A-REI.B.4b, A-REI.C.6,  
A-REI.C.7, F-IF.C.7c,  
G-GPE.A.2 
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Lesson 1:  Successive Differences in Polynomials 

 
Student Outcomes 

 Students write explicit polynomial expressions for sequences by investigating successive differences of those 

sequences. 

 
Lesson Notes  

This first lesson of the year tells students that this course is about thinking and reasoning with mathematics.  It 

reintroduces the study of polynomials in a surprising new way involving sequences.  This offers a chance to evaluate how 

much students recall from Algebra I.  The lesson starts with discussions of expressions, polynomials, sequences, and 

equations.  In this lesson, students continue the theme that began in Grade 6 of evaluating and building expressions.  

Explore ways to test students’ recall of the vocabulary terms listed at the end of this lesson.   

Throughout this lesson, listen carefully to students’ discussions.  Their reactions will indicate how to best approach the 

rest of the module.  The homework set to this lesson should also offer insight into how much they remember from 

previous grades and how well they can read instructions.  In particular, if they have trouble with evaluating or simplifying 

expressions or solving equations, then consider revisiting Lessons 6–9 in Algebra I, Module 1, and Lesson 2 in Algebra I, 

Module 4.  If they are having trouble solving equations, use Lessons 10–12, 15–16, and 19 in Algebra I, Module 1 to give 

them extra practice. 

Finally, the use of the term constant may need a bit of extra discussion.  It is used throughout this PK–12 curriculum in 

two ways:  either as a constant number (e.g., the 𝑎 in 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is a number chosen once-and-for-all at the beginning 

of a problem) or as a constant rate (e.g., a copier that reproduces at a constant rate of 40 copies/minute).  Both uses are 

offered in this lesson. 

 

Classwork  

Opening Exercise  (7 minutes) 

This exercise provides an opportunity to think about and generalize the main concept of today’s lesson:  that the second 

differences of a quadratic polynomial are constant.  This generalizes to the 𝑛
th

 differences of a degree 𝑛 polynomial.  The 

goal is to help students investigate, discuss, and generalize the second and higher 

differences in this exercise. 

Present the exercise to students and ask them (in groups of two) to study the table and 

explain to their partner how to calculate each line in the table.  If they get stuck, help 

them find entry points into this question, possibly by drawing segments connecting the 

successive differences on their papers (e.g., connect 5.76 and 11.56 to 5.8 and ask, “How 

are these three numbers related?”).  This initial problem of the school year is designed to 

encourage students to persevere and look for and express regularity in repeated 

reasoning. 

Teachers may also use the Opening Exercise to informally assess students’ pattern-finding 

abilities and fluency with rational numbers. 

 

MP.1 
& 

MP.8 

Scaffolding: 

Before presenting the problem 
below, consider starting by 
displaying the first two rows of 
the table on the board and 
asking students to investigate 
the relationship between them, 
including making a conjecture 
about the nature of the 
relationship. 
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Opening Exercise 

John noticed patterns in the arrangement of numbers in the table below. 

Number 𝟐. 𝟒 𝟑. 𝟒 𝟒. 𝟒 𝟓. 𝟒 𝟔. 𝟒 

Square 𝟓. 𝟕𝟔 𝟏𝟏. 𝟓𝟔 𝟏𝟗. 𝟑𝟔 𝟐𝟗. 𝟏𝟔 𝟒𝟎. 𝟗𝟔 

First Differences 𝟓. 𝟖 𝟕. 𝟖 𝟗. 𝟖 𝟏𝟏. 𝟖 

Second Differences 𝟐 𝟐 𝟐 

 

Assuming that the pattern would continue, he used it to find the value of 𝟕. 𝟒𝟐.  Explain how he used the pattern to find 

𝟕. 𝟒𝟐, and then use the pattern to find 𝟖. 𝟒𝟐.   

To find 𝟕. 𝟒𝟐, John assumed the next term in the first differences would have to be 𝟏𝟑. 𝟖 since 𝟏𝟑. 𝟖 is 𝟐 more than 𝟏𝟏. 𝟖.  

Therefore, the next term in the square numbers would have to be 𝟒𝟎. 𝟗𝟔 + 𝟏𝟑. 𝟖, which is 𝟓𝟒. 𝟕𝟔.  Checking with a 

calculator, we also find 𝟕. 𝟒𝟐 = 𝟓𝟒. 𝟕𝟔. 

To find 𝟖. 𝟒𝟐, we follow the same process:  The next term in the first differences would have to be 

𝟏𝟓. 𝟖, so the next term in the square numbers would be 𝟓𝟒. 𝟕𝟔 + 𝟏𝟓. 𝟖, which is 𝟕𝟎. 𝟓𝟔.   

Check:  𝟖. 𝟒𝟐 = 𝟕𝟎. 𝟓𝟔. 

 

How would you label each row of numbers in the table? 

Number, Square, First Differences, Second Differences 

 

Discuss with students the relationship between each row and the row above it and how to label the rows based upon 

that relationship.  Feel free to have this discussion before or after they find 7.42 and 8.42.  They are likely to come up 

with labels such as subtract or difference for the third and fourth row.  However, guide them to call the third and fourth 

rows First Differences and Second Differences, respectively.  

 

Discussion  (3 minutes) 

The pattern illustrated in the Opening Exercise is a particular case of a general phenomenon about polynomials.  In 

Algebra I, Module 3, students saw how to recognize linear functions and exponential functions by recognizing similar 

growth patterns; that is, linear functions grow by a constant difference over successive intervals of equal length, and 

exponential functions grow by a constant factor over successive intervals of equal length. This lesson sees the 

generalization of the linear growth pattern to polynomials of second degree (quadratic expressions) and third degree 

(cubic expressions). 

 

Discussion 

Let the sequence {𝒂𝟎, 𝒂𝟏, 𝒂𝟐, 𝒂𝟑, … } be generated by evaluating a polynomial expression at the values 𝟎, 𝟏, 𝟐, 𝟑, …  The 

numbers found by evaluating 𝒂𝟏 − 𝒂𝟎, 𝒂𝟐 − 𝒂𝟏, 𝒂𝟑 − 𝒂𝟐, … form a new sequence, which we will call the first differences 

of the polynomial.  The differences between successive terms of the first differences sequence are called the second 

differences and so on. 

 

It is a good idea to use an actual sequence of numbers such as the square numbers {1, 4, 9, 16, … } to help explain the 

meaning of the terms first differences and second differences. 

 

MP.8 

Scaffolding: 

For students working below 
grade level, consider using 
positive integers {1, 2, 3, … } 
and corresponding squares 
{1, 4, 9, … } instead of using 
{2.4, 3.4, 4.4, … }. 
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Example 1  (4 minutes)  

Although it may be tempting to work through Example 1 using numbers instead of 𝑎 and 𝑏, using symbols 𝑎 and 𝑏 

actually makes the structure of the first differences sequence obvious, whereas numbers could hide that structure.  Also, 

working with constant coefficients gives the generalization all at once.   

Note:  Consider using Example 1 to informally assess students’ fluency with algebraic manipulations.  

 

Example 1 

What is the sequence of first differences for the linear polynomial given by 𝒂𝒙 + 𝒃, where 𝒂 and 𝒃 are constant 

coefficients? 

The terms of the first differences sequence are found by subtracting consecutive terms in the 

sequence generated by the polynomial expression 𝒂𝒙 + 𝒃, namely,  
{𝒃, 𝒂 + 𝒃, 𝟐𝒂 + 𝒃, 𝟑𝒂 + 𝒃, 𝟒𝒂 + 𝒃, … }. 

1st term:  (𝒂 + 𝒃) − 𝒃 = 𝒂, 

2nd term:  (𝟐𝒂 + 𝒃) − (𝒂 + 𝒃) = 𝒂, 

3rd term:  (𝟑𝒂 + 𝒃) − (𝟐𝒂 + 𝒃) = 𝒂, 

4th term:  (𝟒𝒂 + 𝒃) − (𝟑𝒂 + 𝒃) = 𝒂. 

The first differences sequence is {𝒂, 𝒂, 𝒂, 𝒂, … }.  For first-degree polynomial expressions, the first 

differences are constant and equal to 𝒂. 

 

What is the sequence of second differences for 𝒂𝒙 + 𝒃? 

Since 𝒂 − 𝒂 = 𝟎, the second differences are all 𝟎.  Thus, the sequence of second differences is 
{𝟎, 𝟎, 𝟎, 𝟎, … }. 

 

 How is this calculation similar to the arithmetic sequences you studied in Algebra I, Module 3? 

 The constant derived from the first differences of a linear polynomial is the same constant addend used 

to define the arithmetic sequence generated by the polynomial.  That is, the 𝑎 in 𝐴(𝑛) = 𝑎𝑛 + 𝑏 for 

𝑛 ≥ 0.  Written recursively this is 𝐴(0) = 𝑏 and 𝐴(𝑛 + 1) = 𝐴(𝑛) + 𝑎 for 𝑛 ≥ 0.  

For Examples 2 and 3, let students work in groups of two to fill in the blanks of the tables (3 minute maximum for each 

table).  Walk around the room, checking student work for understanding.  Afterward, discuss the paragraphs below each 

table as a whole class. 

  

Scaffolding: 

Try starting the example by 

first asking students to 

generate sequences of first 

differences for 2𝑥 + 3, 3𝑥 − 1, 

and 4𝑥 + 2.  For example, the 

sequence generated by 2𝑥 + 3 

is {3, 5, 7, 9, … }, and its 

sequence of first differences is 
{2, 2, 2, 2 … }. 

These three sequences can 

then be used as a source of 

examples from which to make 

and verify conjectures.  
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Example 2  (5 minutes)  

 

Example 2 

Find the first, second, and third differences of the polynomial 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 by filling in the blanks in the following table. 

𝒙 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 First Differences Second Differences Third Differences 

𝟎 𝒄    

  𝒂 + 𝒃   

𝟏 𝒂 + 𝒃 + 𝒄  𝟐𝒂  

  𝟑𝒂 + 𝒃  𝟎 

𝟐 𝟒𝒂 + 𝟐𝒃 + 𝒄  𝟐𝒂  

  𝟓𝒂 + 𝒃  𝟎 

𝟑 𝟗𝒂 + 𝟑𝒃 + 𝒄  𝟐𝒂  

  𝟕𝒂 + 𝒃  𝟎 

𝟒 𝟏𝟔𝒂 + 𝟒𝒃 + 𝒄  𝟐𝒂  

  𝟗𝒂 + 𝒃   

𝟓 𝟐𝟓𝒂 + 𝟓𝒃 + 𝒄    

 

The table shows that the second differences of the polynomial 𝑎𝑥2 + 𝑏𝑥 + 𝑐 all have the constant value 2𝑎.  The second 

differences hold for any sequence of values of 𝑥 where the values in the sequence differ by 1, as the Opening Exercise 

shows.  For example, if we studied the second differences for 𝑥-values 𝜋, 𝜋 + 1, 𝜋 + 2, 𝜋 + 3, …, we would find that the 

second differences would also be 2𝑎.  In your homework, you will show that this fact is indeed true by finding the second 

differences for the values 𝑛 + 0, 𝑛 + 1, 𝑛 + 2, 𝑛 + 3, 𝑛 + 4. 

Ask students to describe what they notice in the sequences of first, second, and third differences.  Have them make a 

conjecture about the third and fourth differences of a sequence generated by a third degree polynomial. 

Students are likely to say that the third differences have the constant value 3𝑎 (which is incorrect).  Have them work 

through the next example to help them discover what the third differences really are.  This is a good example of why it is 

necessary to follow up conjecture based on observation with proof. 

 

Example 3  (7 minutes)  

 

Example 3 

Find the second, third, and fourth differences of the polynomial 𝒂𝒙𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅 by filling in the blanks in the 

following table.  

𝒙 𝒂𝒙𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅 First Differences Second Differences Third Differences Fourth Differences 

𝟎 𝒅     

  𝒂 + 𝒃 + 𝒄    

𝟏 𝒂 + 𝒃 + 𝒄 + 𝒅  𝟔𝒂 + 𝟐𝒃   

  𝟕𝒂 + 𝟑𝒃 + 𝒄  𝟔𝒂  

𝟐 𝟖𝒂 + 𝟒𝒃 + 𝟐𝒄 + 𝒅  𝟏𝟐𝒂 + 𝟐𝒃  𝟎 

  𝟏𝟗𝒂 + 𝟓𝒃 + 𝒄  𝟔𝒂  

𝟑 𝟐𝟕𝒂 + 𝟗𝒃 + 𝟑𝒄 + 𝒅  𝟏𝟖𝒂 + 𝟐𝒃  𝟎 

  𝟑𝟕𝒂 + 𝟕𝒃 + 𝒄  𝟔𝒂  

𝟒 𝟔𝟒𝒂 + 𝟏𝟔𝒃 + 𝟒𝒄 + 𝒅  𝟐𝟒𝒂 + 𝟐𝒃   

  𝟔𝟏𝒂 + 𝟗𝒃 + 𝒄    

𝟓 𝟏𝟐𝟓𝒂 + 𝟐𝟓𝒃 + 𝟓𝒄 + 𝒅     

 

MP.7 
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The third differences of 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 all have the constant value 6𝑎.  Also, if a different sequence of values for 𝑥 

that differed by 1 was used instead, the third differences would still have the value 6𝑎. 

 Ask students to make a conjecture about the fourth differences of a sequence generated by a degree 4 

polynomial.  Students who were paying attention to their (likely wrong) conjecture of the third differences 

before doing this example may guess that the fourth differences are constant and equal to (1 ⋅ 2 ⋅ 3 ⋅ 4)𝑎, 

which is 24𝑎.  This pattern continues:  the 𝑛
th

 differences of any sequence generated by an 𝑛
th

 degree 

polynomial with leading coefficient 𝑎 will be constant and have the value 𝑎 ∙ (𝑛!). 

 Ask students to make a conjecture about the (𝑛 + 1)
st

 differences of a degree 𝑛 polynomial, for example, the 

5
th

 differences of a fourth-degree polynomial.  

Students are now ready to tackle the main goal of this lesson—using differences to recognize polynomial relationships 

and build polynomial expressions.  

 

Example 4  (7 minutes)  

When collecting bivariate data on an event or experiment, the data does not announce, “I satisfy a quadratic 

relationship,” or “I satisfy an exponential relationship.”  There need to be ways to recognize these relationships in order 

to model them with functions.  In Algebra I, Module 3, students studied the conditions upon which they could conclude 

that the data satisfied a linear or exponential relationship.  Either the first differences were constant, or first factors 

were constant.  By checking that the second or third differences of the data are constant, students now have a way to 

recognize a quadratic or cubic relationship and can write an equation to describe that relationship (A-CED.A.3,  

F-BF.A.1a). 

Give students an opportunity to attempt this problem in groups of two.  Walk around the room helping them find the 

leading coefficient.   

 

Example 4 

What type of relationship does the set of ordered pairs (𝒙, 𝒚) satisfy?  How do you know?  Fill in the blanks in the table 

below to help you decide.  (The first differences have already been computed for you.) 

𝒙 𝒚 First Differences Second Differences Third Differences 

𝟎 𝟐    

  −𝟏   

𝟏 𝟏  𝟔  

  𝟓  𝟔 

𝟐 𝟔  𝟏𝟐  

  𝟏𝟕  𝟔 

𝟑 𝟐𝟑  𝟏𝟖  

  𝟑𝟓  𝟔 

𝟒 𝟓𝟖  𝟐𝟒  

  𝟓𝟗   

𝟓 𝟏𝟏𝟕    

Since the third differences are constant, the pairs could represent a cubic relationship between 𝒙 and 𝒚. 
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.66 

Find the equation of the form 𝒚 = 𝒂𝒙𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅 that all ordered pairs (𝒙, 𝒚) above satisfy.  Give evidence that 

your equation is correct. 

Since third differences of a cubic polynomial are equal to 𝟔𝒂, using the table above, we get 𝟔𝒂 = 𝟔, so that 𝒂 = 𝟏.  Also, 

since (𝟎, 𝟐) satisfies the equation, we see that 𝒅 = 𝟐.  Thus, we need only find 𝒃 and 𝒄.  Substituting (𝟏, 𝟏) and (𝟐, 𝟔) into 

the equation, we get 

𝟏 = 𝟏 + 𝒃 + 𝒄 + 𝟐 
𝟔 = 𝟖 + 𝟒𝒃 + 𝟐𝒄 + 𝟐. 

Subtracting two times the first equation from the second, we get 𝟒 = 𝟔 + 𝟐𝒃 − 𝟐, so that 𝒃 = 𝟎.  Substituting 𝟎 in for 𝒃 in 

the first equation gives 𝒄 = −𝟐.  Thus, the equation is 𝒚 = 𝒙𝟑 − 𝟐𝒙 + 𝟐.   

 

 After finding the equation, have students check that the pairs (3, 23) and (4, 58) satisfy the equation.  

Help students to persevere in finding the coefficients.  They will most likely try to plug three ordered pairs into the 

equation, which gives a 3 × 3 system of linear equations in 𝑎, 𝑏, and 𝑐 after they find that 𝑑 = 2.  Using the fact that the 

third differences of a cubic polynomial are 6𝑎 will greatly simplify the problem.  (It implies 𝑎 = 1 immediately, which 

reduces the system to the easy 2 × 2 system above.)  Walk around the room as they work, and ask questions that lead 

them to realize that they can use the third differences fact if they get too stuck.  Alternatively, find a student who used 

the fact, and then have the class discuss and understand his or her approach. 

 

Closing  (7 minutes) 

 What are some of the key ideas that we learned today? 

 Sequences whose second differences are constant satisfy a quadratic relationship. 

 Sequences whose third differences are constant satisfy a cubic relationship. 

The following terms were introduced and taught in Module 1 of Algebra I.  The terms are listed here for completeness 

and reference.  

 

Relevant Vocabulary 

NUMERICAL SYMBOL:  A numerical symbol is a symbol that represents a specific number.  Examples:  𝟏, 𝟐, 𝟑, 𝟒, 𝝅, −𝟑. 𝟐. 

VARIABLE SYMBOL:  A variable symbol is a symbol that is a placeholder for a number from a specified set of numbers.  The 

set of numbers is called the domain of the variable.  Examples:  𝒙, 𝒚, 𝒛. 

ALGEBRAIC EXPRESSION:  An algebraic expression is either 

1. a numerical symbol or a variable symbol or  

2. the result of placing previously generated algebraic expressions into the two blanks of one of the four operators 

((__) + (__),  (__) − (__),  (__) × (__),  (__) ÷ (__)) or into the base blank of an exponentiation with an exponent that 

is a rational number. 

Following the definition above, (((𝒙) × (𝒙)) × (𝒙)) + ((𝟑) × (𝒙)) is an algebraic expression, but it is generally written 

more simply as 𝒙𝟑 + 𝟑𝒙. 

NUMERICAL EXPRESSION:  A numerical expression is an algebraic expression that contains only numerical symbols (no variable 

symbols) that evaluates to a single number.  Example:  The numerical expression 
(𝟑⋅𝟐)𝟐

𝟏𝟐
 evaluates to 𝟑. 

MONOMIAL:  A monomial is an algebraic expression generated using only the multiplication operator (__ × __).  The 

expressions 𝒙𝟑 and 𝟑𝒙 are both monomials. 

BINOMIAL:  A binomial is the sum of two monomials.  The expression 𝒙𝟑 + 𝟑𝒙 is a binomial. 

MP.1 
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POLYNOMIAL EXPRESSION:  A polynomial expression is a monomial or sum of two or more monomials. 

SEQUENCE:  A sequence can be thought of as an ordered list of elements.  The elements of the list are called the terms of 

the sequence.   

ARITHMETIC SEQUENCE:  A sequence is called arithmetic if there is a real number 𝒅 such that each term in the sequence is the 

sum of the previous term and 𝒅. 

 

 

Exit Ticket  (5 minutes)  

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
  
  
 

 

    

 

 

NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 1 
ALGEBRA II 

Lesson 1: Successive Differences in Polynomials 
 
 

 

24 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Name                                   Date                          

Lesson 1:  Successive Differences in Polynomials 

 
Exit Ticket 
 

1. What type of relationship is indicated by the following set of ordered pairs?  Explain how you know.  

 

𝒙 𝒚 

0 0 

  

1 2 

  

2 10 

  

3 24 

  

4 44 

 

 

 

 

 

 

 

 

2. Find an equation that all ordered pairs above satisfy. 
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Exit Ticket Sample Solutions 

  

1. What type of relationship is indicated by the following set of ordered pairs?  Explain how you know. 

𝒙 𝒚 First Differences Second Differences 

𝟎 𝟎   

  𝟐  

𝟏 𝟐  𝟔 

  𝟖  

𝟐 𝟏𝟎  𝟔 

  𝟏𝟒  

𝟑 𝟐𝟒  𝟔 

  𝟐𝟎  

𝟒 𝟒𝟒   

Since the second differences are constant, there is a quadratic relationship between 𝒙 and 𝒚. 

 

2. Find an equation that all ordered pairs above satisfy. 

Since (𝟎, 𝟎) satisfies an equation of the form 𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄, we have that 𝒄 = 𝟎.  Using the points (𝟏, 𝟐) and 

(𝟐, 𝟏𝟎), we have   

𝟐 = 𝒂 + 𝒃  

𝟏𝟎 = 𝟒𝒂 + 𝟐𝒃 

Subtracting twice the first equation from the second gives 𝟔 = 𝟐𝒂, which means 𝒂 = 𝟑.  Substituting 𝟑 into the first 

equation gives 𝒃 = −𝟏.  Thus, 𝒚 = 𝟑𝒙𝟐 − 𝒙 is the equation. 

OR 

Since the pairs satisfy a quadratic relationship, the second differences must be equal to 𝟐𝒂.  Therefore, 𝟔 = 𝟐𝒂,  

so 𝒂 = 𝟑.  Since (𝟎, 𝟎) satisfies the equation, 𝒄 = 𝟎.  Using the point (𝟏, 𝟐), we have that 𝟐 = 𝟑 + 𝒃 + 𝟎, so 𝒃 = −𝟏. 

Thus, 𝒚 = 𝟑𝒙𝟐 − 𝒙 is the equation that is satisfied by these points. 

 

 
Problem Set Sample Solutions 

 

1. Create a table to find the second differences for the polynomial 𝟑𝟔 − 𝟏𝟔𝒕𝟐 for integer values of 𝒕 from 𝟎 to 𝟓.   

𝒕 𝟑𝟔 − 𝟏𝟔𝒕𝟐 First Differences Second Differences 

𝟎 𝟑𝟔   

  −𝟏𝟔  

𝟏 𝟐𝟎  −𝟑𝟐 

  −𝟒𝟖  

𝟐 −𝟐𝟖  −𝟑𝟐 

  −𝟖𝟎  

𝟑 −𝟏𝟎𝟖  −𝟑𝟐 

  −𝟏𝟏𝟐  

𝟒 −𝟐𝟐𝟎  −𝟑𝟐 

  −𝟏𝟒𝟒  

𝟓 −𝟑𝟔𝟒   
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2. Create a table to find the third differences for the polynomial 𝒔𝟑 − 𝒔𝟐 + 𝒔 for integer values of 𝒔 from −𝟑 to 𝟑. 

𝒔 𝒔𝟑 − 𝒔𝟐 + 𝒔 First Differences Second Differences Third Differences 

−𝟑 −𝟑𝟗    

  𝟐𝟓   

−𝟐 −𝟏𝟒  −𝟏𝟒  

  𝟏𝟏  𝟔 

−𝟏 −𝟑  −𝟖  

  𝟑  𝟔 

𝟎 𝟎  −𝟐  

  𝟏  𝟔 

𝟏 𝟏  𝟒  

  𝟓  𝟔 

𝟐 𝟔  𝟏𝟎  

  𝟏𝟓   

𝟑 𝟐𝟏    

 

3. Create a table of values for the polynomial 𝒙𝟐, using 𝒏, 𝒏 + 𝟏, 𝒏 + 𝟐, 𝒏 + 𝟑, 𝒏 + 𝟒 as values of 𝒙.  Show that the 

second differences are all equal to 𝟐.   

𝒙 𝒙𝟐 First Differences Second Differences 

𝒏 𝒏𝟐   

  𝟐𝒏 + 𝟏  

𝒏 + 𝟏 𝒏𝟐 + 𝟐𝒏 + 𝟏  𝟐 

  𝟐𝒏 + 𝟑  

𝒏 + 𝟐 𝒏𝟐 + 𝟒𝒏 + 𝟒  𝟐 

  𝟐𝒏 + 𝟓  

𝒏 + 𝟑 𝒏𝟐 + 𝟔𝒏 + 𝟗  𝟐 

  𝟐𝒏 + 𝟕  

𝒏 + 𝟒 𝒏𝟐 + 𝟖𝒏 + 𝟏𝟔   

 

4. Show that the set of ordered pairs (𝒙, 𝒚) in the table below satisfies a quadratic relationship.  (Hint:  Find second 

differences.)  Find the equation of the form 𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 that all of the ordered pairs satisfy. 

 

𝒙 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 

𝒚 𝟓 𝟒 −𝟏 −𝟏𝟎 −𝟐𝟑 −𝟒𝟎 

Students show that second differences are constant and equal to −𝟒.  The equation is 𝒚 = −𝟐𝒙𝟐 + 𝒙 + 𝟓. 

 

5. Show that the set of ordered pairs (𝒙, 𝒚) in the table below satisfies a cubic relationship.  (Hint:  Find third 

differences.)  Find the equation of the form 𝒚 = 𝒂𝒙𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅 that all of the ordered pairs satisfy. 

 

𝒙 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 

𝒚 𝟐𝟎 𝟒 𝟎 𝟐𝟎 𝟕𝟔 𝟏𝟖𝟎 

Students show that third differences are constant and equal to 𝟏𝟐.  The equation is 𝒚 = 𝟐𝒙𝟑 − 𝟏𝟖𝒙 + 𝟐𝟎. 
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6. The distance 𝒅 𝐟𝐭. required to stop a car traveling at 𝟏𝟎𝒗 𝐦𝐩𝐡 under dry asphalt conditions is given by the following 

table. 

𝒗 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 

𝒅 𝟎 𝟓 𝟏𝟗. 𝟓 𝟒𝟑. 𝟓 𝟕𝟕 𝟏𝟐𝟎 

 

a. What type of relationship is indicated by the set of ordered pairs?  

Students show that second differences are constant and equal to 𝟗. 𝟓.  Therefore, the relationship is 

quadratic. 

 

b. Assuming that the relationship continues to hold, find the distance required to stop the car when the speed 

reaches 𝟔𝟎 𝐦𝐩𝐡, when 𝒗 = 𝟔. 

𝟏𝟕𝟐. 𝟓 𝐟𝐭 

 

c. Extension:  Find an equation that describes the relationship between the speed of the car 𝒗 and its stopping 

distance 𝒅. 

𝐝 = 𝟒. 𝟕𝟓𝐯𝟐 + 𝟎. 𝟐𝟓𝐯  (Note:  Students do not need to find the equation to answer part (b).) 

 

7. Use the polynomial expressions 𝟓𝒙𝟐 + 𝒙 + 𝟏 and 𝟐𝒙 + 𝟑 to answer the questions below.  

a. Create a table of second differences for the polynomial 𝟓𝒙𝟐 + 𝒙 + 𝟏 for the integer values of 𝒙 from 𝟎 to 𝟓. 

𝒙 𝟓𝒙𝟐 + 𝒙 + 𝟏 First Differences Second Differences 

𝟎 𝟏   

  𝟔  

𝟏 𝟕  𝟏𝟎 

  𝟏𝟔  

𝟐 𝟐𝟑  𝟏𝟎 

  𝟐𝟔  

𝟑 𝟒𝟗  𝟏𝟎 

  𝟑𝟔  

𝟒 𝟖𝟓  𝟏𝟎 

  𝟒𝟔  

𝟓 𝟏𝟑𝟏   

 

b. Justin claims that for 𝒏 ≥ 𝟐, the 𝒏th differences of the sum of a degree 𝒏 polynomial and a linear polynomial 

are the same as the 𝒏th differences of just the degree 𝒏 polynomial.  Find the second differences for the sum 

(𝟓𝒙𝟐 + 𝒙 + 𝟏) + (𝟐𝒙 + 𝟑) of a degree 𝟐 and a degree 𝟏 polynomial, and use the calculation to explain why 

Justin might be correct in general.  

Students compute that the second differences are constant and equal to 𝟏𝟎, just as in part (a).  Justin is 

correct because the differences of the sum are the sum of the differences.  Since the second (and all other 

higher) differences of the degree 𝟏 polynomial are constant and equal to zero, only the 𝐧th differences of the 

degree 𝐧 polynomial contribute to the 𝐧th difference of the sum. 

 

c. Jason thinks he can generalize Justin’s claim to the product of two polynomials.  He claims that for 𝒏 ≥ 𝟐, the 

(𝒏 + 𝟏)st differences of the product of a degree 𝒏 polynomial and a linear polynomial are the same as the 𝒏th 

differences of the degree 𝒏 polynomial.  Use what you know about second and third differences (from 

Examples 2 and 3) and the polynomial (𝟓𝒙𝟐 + 𝒙 + 𝟏)(𝟐𝒙 + 𝟑) to show that Jason’s generalization is 

incorrect.  

The second differences of a quadratic polynomial are 𝟐𝒂, so the second differences of 𝟓𝒙𝟐 + 𝒙 + 𝟏 are always 

𝟏𝟎.  Since (𝟓𝒙𝟐 + 𝒙 + 𝟏)(𝟐𝒙 + 𝟑) = 𝟏𝟎𝒙𝟑 + 𝟏𝟕𝒙𝟐 + 𝟓𝒙 + 𝟑, and third differences are equal to 𝟔𝒂, we have 

that the third differences of (𝟓𝒙𝟐 + 𝒙 + 𝟏)(𝟐𝒙 + 𝟑) are always 𝟔𝟎, which is not 𝟏𝟎. 
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Lesson 2:  The Multiplication of Polynomials  

 

Student Outcomes 

 Students develop the distributive property for application to polynomial multiplication.  Students connect 

multiplication of polynomials with multiplication of multi-digit integers. 

 

Lesson Notes  

This lesson begins to address standards A-SSE.A.2 and A-APR.C.4 directly and provides opportunities for students to 

practice MP.7 and MP.8.  The work is scaffolded to allow students to discern patterns in repeated calculations, leading to 

some general polynomial identities that are explored further in the remaining lessons of this module. 

As in the last lesson, if students struggle with this lesson, they may need to review concepts covered in previous grades, 

such as: 

 The connection between area properties and the distributive property:  Grade 7, Module 6, Lesson 21. 

 Introduction to the table method of multiplying polynomials:  Algebra I, Module 1, Lesson 9. 

 Multiplying polynomials (in the context of quadratics):  Algebra I, Module 4, Lessons 1 and 2. 

Since division is the inverse operation of multiplication, it is important to make sure that your students understand how 

to multiply polynomials before moving on to division of polynomials in Lesson 3 of this module.  In Lesson 3, division is 

explored using the reverse tabular method, so it is important for students to work through the table diagrams in this 

lesson to prepare them for the upcoming work. 

There continues to be a sharp distinction in this curriculum between justification and proof, such as justifying the 

identity (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏 using area properties and proving the identity using the distributive property.  The key 

point is that the area of a figure is always a nonnegative quantity and so cannot be used to prove an algebraic identity 

where the letters can stand for negative numbers (there is no such thing as a geometric figure with negative area).  This 

is one of many reasons that manipulatives such as Algebra Tiles need to be handled with extreme care:  depictions of 

negative area actually teach incorrect mathematics.  (A correct way to model expressions involving the subtraction of 

two positive quantities using an area model is depicted in the last problem of the Problem Set.) 

The tabular diagram described in this lesson is purposely designed to look like an area model without actually being an 

area model.  It is a convenient way to keep track of the use of the distributive property, which is a basic property of the 

number system and is assumed to be true for all real numbers—regardless of whether they are positive or negative, 

fractional or irrational.  

 

Classwork 

Opening Exercise  (5 minutes) 

The Opening Exercise is a simple use of an area model to justify why the distributive property works when multiplying 

28 × 27.  When drawing the area model, remember that it really matters that the length of the side of the big square is 

about 2
1
2

 times the length of the top side of the upper right rectangle (20 units versus 8 units) in the picture below and 

similarly for the lengths going down the side of the large rectangle.  It should be an accurate representation of the area 

of a rectangular region that measures 28 units by 27 units.  
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(𝒙 + 𝟖)(𝒙+ 𝟕) = 𝒙𝟐 + 𝟏𝟓 𝒙 + 𝟓𝟔 

𝒙        +        𝟖 

𝒙 

+ 

𝟕 

𝒙𝟐 𝟖𝒙 

𝟕𝒙 𝟓𝟔 

 

𝒙𝟐 

𝟏𝟓𝒙 𝟓𝟔 

Scaffolding: 

For students working above 
grade level, consider asking 
them to prove that  
(𝑎 + 𝑏)(𝑐 + 𝑑) = 𝑎𝑐 + 𝑏𝑐 +
𝑎𝑑 + 𝑏𝑑, where 𝑎, 𝑏, 𝑐, and 𝑑 
are all positive real numbers. 

Opening Exercise 

Show that 𝟐𝟖 × 𝟐𝟕 = (𝟐𝟎 + 𝟖)(𝟐𝟎 + 𝟕) using an area model.  What do the numbers you placed inside the four 

rectangular regions you drew represent? 

The numbers placed into the blanks represent the number of unit squares (or square units) in each sub-rectangle.   

 

Example 1  (9 minutes)  

Explain that the goal today is to generalize the Opening Exercise to multiplying polynomials.  Start by asking students 

how the expression (𝑥 + 8)(𝑥 + 7) is similar to the expression 28 × 27.  Then suggest that students replace 20 with 𝑥 in 

the area model.  Since 𝑥 in (𝑥 + 8)(𝑥 + 7) can stand for a negative number, but lengths and areas are always positive, 

an area model cannot be used to represent the polynomial expression (𝑥 + 8)(𝑥 + 7) without also saying that 𝑥 > 0.  

So it is not correct to say that the area model above (with 20 replaced by 𝑥) represents the polynomial expression  

(𝑥 + 8)(𝑥 + 7) for all values of 𝑥.  The tabular method below is meant to remind students of the area model as a visual 

representation, but it is not an area model.  

 

Example 1 

Use the tabular method to multiply (𝒙 + 𝟖)(𝒙 + 𝟕) and combine like terms. 

 

 

 

 

 

 

 

 

 

 Explain how the result 𝑥2 + 15𝑥 + 56 is related to 756 determined in the Opening Exercise. 

 If 𝑥 is replaced with 20 in 𝑥2 + 15𝑥 + 56, then the calculation becomes the same as the one shown in 

the Opening Exercise:  (20)2 + 15(20) + 56 = 400 + 300 + 56 = 756. 

 

 

 

 

𝟐𝟎 𝟖 

𝟕 

𝟐𝟎 

𝟏𝟒𝟎 

𝟒𝟎𝟎 

𝟓𝟔 

𝟏𝟔𝟎 

𝟐𝟖 × 𝟐𝟕 = (𝟐𝟎 + 𝟖)(𝟐𝟎 + 𝟕) 

= 𝟒𝟎𝟎 + 𝟏𝟒𝟎 + 𝟏𝟔𝟎 + 𝟓𝟔 

= 𝟕𝟓𝟔 

MP.7 
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Scaffolding: 

If students need to work 
another problem, ask students 
to use an area model to find 
16 × 19 and then use the 
tabular method to find  
(𝑥 + 6)(𝑥 + 9).  

 

 How can we multiply these binomials without using a table? 

 Think of 𝑥 + 8 as a single number and distribute over 𝑥 + 7: 

Next, distribute the 𝑥 over 𝑥 + 8 and the 7 over 𝑥 + 8.  Combining like terms shows that  

(𝑥 + 8)(𝑥 + 7) = 𝑥2 + 15𝑥 + 56. 

 What property did we repeatedly use to multiply the binomials? 

 The distributive property 

 The table in the calculation above looks like the area model in the Opening Exercise.  What are the similarities?  

What are the differences? 

 The expressions placed in each table entry correspond to the expressions placed in each rectangle of the 

area model.  The sum of the table entries represents the product, just as the sum of the areas of the 

sub-rectangles is the total area of the large rectangle.   

 One difference is that we might have 𝑥 < 0 so that 7𝑥 and 8𝑥 are negative, which does not make sense 

in an area model.  

 How would you have to change the table so that it represents an area model? 

 First, all numbers and variables would have to represent positive lengths.  So, in the example above, we 

would have to assume that 𝑥 > 0.  Second, the lengths should be commensurate with each other; that 

is, the side length for the rectangle represented by 7 should be slightly shorter than the side length 

represented by 8. 

 How is the tabular method similar to the distributive property? 

 The sum of the table entries is equal to the result of repeatedly applying the distributive property to 

(𝑥 + 8)(𝑥 + 7).  The tabular method graphically organizes the results of using the distributive 

property. 

 Does the table work even when the binomials do not represent lengths?  Why? 

 Yes it does because the table is an easy way to summarize calculations 

done with the distributive property—a property that works for all 

polynomial expressions.  

 

Exercises 1–2  (6 minutes) 

Allow students to work in groups or pairs on these exercises.  While Exercise 1 is analogous to the previous example, in 

Exercise 2, students may need time to think about how to handle the zero coefficient of 𝑥 in 𝑥2 − 2.  Allow them to 

struggle and discuss possible solutions.  

 

 

𝑥 + 8 (𝑥 + 7) = 𝑥 + 8 ⋅ 𝑥 + 𝑥 + 8 ⋅ 7 

(𝑥 + 8)(𝑥 + 7) = (𝑥 + 8) ⋅ 𝑥 + (𝑥 + 8) ⋅ 7 = 𝑥2 + 8𝑥 + 7𝑥 + 56 

MP.7 
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Exercises 1–2 

1. Use the tabular method to multiply (𝒙𝟐 + 𝟑𝒙 + 𝟏)(𝒙𝟐 − 𝟓𝒙 + 𝟐) and combine like terms.   

Sample student work: 

 

 

 

 

 

 

 

 

2. Use the tabular method to multiply (𝒙𝟐 + 𝟑𝒙 + 𝟏)(𝒙𝟐 − 𝟐) and combine like terms.   

Sample student work: 

 

 

 

Example 2  (6 minutes)  

Prior to Example 2, consider asking students to find the products of each of these 

expressions.  

(𝑥 − 1)(𝑥 + 1) 

(𝑥 − 1)(𝑥2 + 𝑥 + 1) 

(𝑥 − 1)(𝑥3 + 𝑥2 + 𝑥 + 1) 

Students may work on this in mixed-ability groups and come to generalize the pattern. 

 

 

 

 

(𝒙𝟐 + 𝟑𝒙 + 𝟏)(𝒙𝟐 − 𝟓𝒙 + 𝟐) = 𝒙𝟒 − 𝟐𝒙𝟑 − 𝟏𝟐𝒙𝟐 + 𝒙 + 𝟐 

(𝒙𝟐 + 𝟑𝒙 + 𝟏)(𝒙𝟐 − 𝟐) = 𝒙𝟒 + 𝟑𝒙𝟑 − 𝒙𝟐 − 𝟔𝒙 − 𝟐 

(𝒙𝟐 + 𝟑𝒙 + 𝟏)(𝒙𝟐 − 𝟐) = 𝒙𝟒 + 𝟑𝒙𝟑 + 𝒙𝟐 − 𝟐𝒙𝟐 − 𝟔𝒙 − 𝟐 

= 𝒙𝟒 + 𝟑𝒙𝟑 − 𝒙𝟐 − 𝟔𝒙 − 𝟐 

Another solution method would be to omit the row for 𝟎𝒙 in the 

table and to manually add all table entries instead of adding along 

the diagonals: 

(2 − 1)(21 + 1) 

(2 − 1)(22 + 2 + 1) 

(2 − 1)(23 + 22 +  2 + 1). 

Scaffolding: 

For further scaffolding, 
consider asking students to see 
the pattern using numerical 
expressions, such as: 

Can they describe in words or 
symbols the meaning of these 
quantities? 
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Example 2 

Multiply the polynomials (𝒙 − 𝟏)(𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏) using a table.  Generalize the pattern that emerges by writing 

down an identity for (𝒙 − 𝟏)(𝒙𝒏 + 𝒙𝒏−𝟏 + ⋯ + 𝒙𝟐 + 𝒙 + 𝟏) for 𝒏 a positive integer. 

The pattern suggests (𝒙 − 𝟏)(𝒙𝒏 + 𝒙𝒏−𝟏 + ⋯ + 𝒙𝟐 + 𝒙 + 𝟏) = 𝒙𝒏+𝟏 − 𝟏. 

 

 What quadratic identity from Algebra I does the identity above generalize? 

 This generalizes (𝑥 − 1)(𝑥 + 1) = 𝑥2 − 1, or more generally, the difference of squares formula 

(𝑥 − 𝑦)(𝑥 + 𝑦) = 𝑥2 − 𝑦2 with 𝑦 = 1.  We will explore this last identity in more detail in Exercises 4 

and 5. 

 

Exercises 3–4  (10 minutes) 

Before moving on to Exercise 3, it may be helpful to scaffold the problem by asking students to multiply (𝑥 − 𝑦)(𝑥 + 𝑦) 

and (𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2).  Ask students to make conjectures about the form of the answer to Exercise 3. 

 

Exercises 3–4  

3. Multiply (𝒙 − 𝒚)(𝒙𝟑 + 𝒙𝟐𝒚 + 𝒙𝒚𝟐 + 𝒚𝟑) using the distributive property and combine like terms.  How is this 

calculation similar to Example 2? 

Distribute the expression  𝒙𝟑 + 𝒙𝟐𝒚 + 𝒙𝒚𝟐 + 𝒚𝟑 through 𝒙 − 𝒚 to get 

(𝒙 − 𝒚)(𝒙𝟑 + 𝒙𝟐𝒚 + 𝒙𝒚𝟐 + 𝒚𝟑) = 𝒙𝟒 + 𝒙𝟑𝒚 + 𝒙𝟐𝒚𝟐 + 𝒙𝒚𝟑 − 𝒙𝟑𝒚 − 𝒙𝟐𝒚𝟐 − 𝒙𝒚𝟑 − 𝒚𝟒 = 𝒙𝟒 − 𝒚𝟒 

Substitute 𝟏 in for 𝒚 to get the identity for 𝒏 = 𝟑 in Example 2.  

This calculation is similar to Example 2 because it has the same structure.  Substituting 𝟏 for 𝒚 results in the same 

expression as Example 2. 

 

Exercise 3 shows why the mnemonic FOIL is not very helpful—and in this case does not make sense.  By now, students 

should have had enough practice multiplying to no longer require such mnemonics to help them.  They understand that 

the multiplications they are doing are really repeated use of the distributive property, an idea that started when they 

learned the multiplication algorithm in Grade 4.  However, it may still be necessary to summarize the process with a 

mnemonic.  If this is the case, try Each-With-Each, or EWE, which is short for the process of multiplying each term of one 

polynomial with each term of a second polynomial and combining like terms.   

 

MP.8 (𝒙 − 𝟏)(𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏) = 𝒙𝟓 − 𝟏 

𝒙             − 𝟏 

𝒙𝟓 −𝒙𝟒 

𝒙𝟒 −𝒙𝟑 

𝒙𝟑 −𝒙𝟐 

𝒙𝟐 −𝒙 

𝒙 −𝟏 

 

𝒙𝟒 

𝒙𝟑 

𝒙𝟐 

𝒙 

𝟏 

𝟎𝒙𝟒 

𝒙𝟓 

𝟎𝒙𝟑 

𝟎𝒙𝟐 

𝟎𝒙 −𝟏 

MP.1 
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To introduce Exercise 4, consider starting with a group activity to help illuminate the generalization.  For example, 

students could work in groups again to investigate the pattern found in expanding these expressions.  

(𝑥2 + 𝑦2)(𝑥2 − 𝑦2) 

(𝑥3 + 𝑦3)(𝑥3 − 𝑦3) 

(𝑥4 + 𝑦4)(𝑥4 − 𝑦4) 

(𝑥5 + 𝑦5)(𝑥5 − 𝑦5) 

 

4. Multiply (𝒙𝟐 − 𝒚𝟐)(𝒙𝟐 + 𝒚𝟐) using the distributive property and combine like terms.  

Generalize the pattern that emerges to write down an identity for (𝒙𝒏 − 𝒚𝒏)(𝒙𝒏 + 𝒚𝒏) for 

positive integers 𝒏. 

(𝒙𝟐 − 𝒚𝟐)(𝒙𝟐 + 𝒚𝟐) = (𝒙𝟐 − 𝒚𝟐) ⋅ 𝒙𝟐 + (𝒙𝟐 − 𝒚𝟐) ⋅ 𝒚𝟐 = 𝒙𝟒 − 𝒙𝟐𝒚𝟐 + 𝒙𝟐𝒚𝟐 − 𝒚𝟒 = 𝒙𝟒 − 𝒚𝟒. 

Generalization:  (𝒙𝒏 − 𝒚𝒏)(𝒙𝒏 + 𝒚𝒏) = 𝒙𝟐𝒏 − 𝒚𝟐𝒏.   

Sample student work: 

 

 The generalized identity 𝑥2𝑛 − 𝑦2𝑛 = (𝑥𝑛 − 𝑦𝑛)(𝑥𝑛 + 𝑦𝑛) is used several times in this module.  For example, 

it helps to recognize that 2130 − 1 is not a prime number because it can be written as (265 − 1)(265 + 1).  

Some of the problems in the Problem Set rely on this type of thinking. 

 

Closing  (4 minutes) 

Ask students to share two important ideas from the day’s lesson with their neighbor.  You can also use this opportunity 

to informally assess their understanding.  

 Multiplication of two polynomials is performed by repeatedly applying the distributive property and combining 

like terms.   

 There are several useful identities: 

- (𝑎 + 𝑏)(𝑐 + 𝑑) = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑  (an example of each-with-each) 

- (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 

- (𝑥𝑛 − 𝑦𝑛)(𝑥𝑛 + 𝑦𝑛) = 𝑥2𝑛 − 𝑦2𝑛, including (𝑥 − 𝑦)(𝑥 + 𝑦) = 𝑥2 − 𝑦2 and  
(𝑥2 − 𝑦2)(𝑥2 + 𝑦2) = 𝑥4 − 𝑦4 

- (𝑥 − 1)(𝑥𝑛 + 𝑥𝑛−1 + ⋯ 𝑥2 + 𝑥 + 1) = 𝑥𝑛+1 − 1 

(𝒙𝒏 − 𝒚𝒏)(𝒙𝒏 + 𝒚𝒏) = 𝒙𝟐𝒏 − 𝒚𝟐𝒏 

(32 + 22)(32 − 22) 

(33 + 23)(33 − 23) 

(34 + 24)(34 − 24). 

Scaffolding: 

For further scaffolding, 
consider asking students to see 
the pattern using numerical 
expressions, such as: 

How do 13 ⋅ 5 and 34 − 24 
relate to the first line?  How do 
35 ⋅ 19 and 36 − 26 relate to 
the second line?  Etc. 
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 (Optional) Consider a quick white board activity in which students build fluency with applying these identities. 

The vocabulary used in this lesson was introduced and taught in Algebra I.  The definitions included in this lesson are for 

reference.  To support students, consider creating a poster with these vocabulary words for the classroom wall. 

 

Relevant Vocabulary 

EQUIVALENT POLYNOMIAL EXPRESSIONS:  Two polynomial expressions in one variable are equivalent if, whenever a number is 

substituted into all instances of the variable symbol in both expressions, the numerical expressions created are equal.  

POLYNOMIAL IDENTITY:  A polynomial identity is a statement that two polynomial expressions are equivalent.  For example, 

(𝒙 + 𝟑)𝟐 = 𝒙𝟐 + 𝟔𝒙 + 𝟗 for any real number 𝒙 is a polynomial identity. 

COEFFICIENT OF A MONOMIAL:  The coefficient of a monomial is the value of the numerical expression found by substituting 

the number 𝟏 into all the variable symbols in the monomial.  The coefficient of 𝟑𝒙𝟐 is 𝟑, and the coefficient of the 

monomial (𝟑𝒙𝒚𝒛) ⋅ 𝟒 is 𝟏𝟐. 

TERMS OF A POLYNOMIAL:  When a polynomial is expressed as a monomial or a sum of monomials, each monomial in the sum 

is called a term of the polynomial. 

LIKE TERMS OF A POLYNOMIAL:  Two terms of a polynomial that have the same variable symbols each raised to the same 

power are called like terms. 

STANDARD FORM OF A POLYNOMIAL IN ONE VARIABLE:  A polynomial expression with one variable symbol, 𝒙, is in standard form if 

it is expressed as  

𝒂𝒏𝒙𝒏 + 𝒂𝒏−𝟏𝒙𝒏−𝟏 + ⋯ + 𝒂𝟏𝒙 + 𝒂𝟎, 

where 𝒏 is a non-negative integer, and 𝒂𝟎, 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 are constant coefficients with 𝒂𝒏 ≠ 𝟎.   

A polynomial expression in 𝒙 that is in standard form is often just called a polynomial in 𝒙 or a polynomial. 

The degree of the polynomial in standard form is the highest degree of the terms in the polynomial, namely 𝒏.  The term 

𝒂𝒏𝒙𝒏 is called the leading term and 𝒂𝒏 (thought of as a specific number) is called the leading coefficient.  The constant 

term is the value of the numerical expression found by substituting 𝟎 into all the variable symbols of the polynomial, 

namely 𝒂𝟎. 

 

 

Exit Ticket  (5 minutes)  
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Name                                   Date                          

Lesson 2:  The Multiplication of Polynomials 

 
Exit Ticket 
 

Multiply (𝑥 − 1)(𝑥3 + 4𝑥2 + 4𝑥 − 1) and combine like terms.  Explain how you reached your answer. 
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Exit Ticket Sample Solutions 

 

Multiply (𝒙 − 𝟏)(𝒙𝟑 + 𝟒𝒙𝟐 + 𝟒𝒙 − 𝟏) and combine like terms.  Explain how you reached your answer. 

Tabular method: 

Using the distributive property (Each-With-Each): 

(𝒙 − 𝟏)(𝒙𝟑 + 𝟒𝒙𝟐 + 𝟒𝒙 − 𝟏) = 𝒙𝟒 + 𝟒𝒙𝟑 + 𝟒𝒙𝟐 − 𝒙 − 𝒙𝟑 − 𝟒𝒙𝟐 − 𝟒𝒙 + 𝟏 = 𝒙𝟒 + 𝟑𝒙𝟑 − 𝟓𝒙 + 𝟏. 

 
 
Problem Set Sample Solutions 

 

1. Complete the following statements by filling in the blanks. 

a. (𝒂 + 𝒃)(𝒄 + 𝒅 + 𝒆) = 𝒂𝒄 + 𝒂𝒅 + 𝒂𝒆 + ____ + ____ + ____ 

 
𝒃𝒄, 𝒃𝒅, 𝒃𝒆 

 

b. (𝒓 − 𝒔)𝟐 = (           )
𝟐

− (          )𝒓𝒔 + 𝒔𝟐 

 

𝒓, 𝟐 

 

c. (𝟐𝒙 + 𝟑𝒚)𝟐 = (𝟐𝒙)𝟐 + 𝟐(𝟐𝒙)(𝟑𝒚) + (           )
𝟐
 

 

𝟑𝒚 

 

d. (𝒘 − 𝟏)(𝟏 + 𝒘 + 𝒘𝟐) =            − 𝟏 

 

𝒘𝟑 

 

e. 𝒂𝟐 − 𝟏𝟔 = (𝒂 +           )(𝒂 −           ) 

 

𝟒, 𝟒 

 

f. (𝟐𝒙 + 𝟓𝒚)(𝟐𝒙 − 𝟓𝒚) =            −            

 

𝟒𝒙𝟐, 𝟐𝟓𝒚𝟐 

 

g. (𝟐𝟐𝟏 − 𝟏)(𝟐𝟐𝟏 + 𝟏) =            −  𝟏 

 

𝟐𝟒𝟐 

 

h. [(𝒙 − 𝒚) − 𝟑][(𝒙 − 𝒚) + 𝟑]  = (          )
𝟐

−  𝟗 𝒙 − 𝒚 

 

  

𝒙             − 𝟏 

𝒙𝟒 −𝒙𝟑 

𝟒𝒙𝟑 −𝟒𝒙𝟐 

𝟒𝒙𝟐 −𝟒𝒙 

−𝒙 𝟏 

 

𝒙𝟑 

𝟒𝒙𝟐 

𝟒𝒙 

−𝟏 

𝟑𝒙𝟑 

𝒙𝟒 

𝟎𝒙𝟐 

−𝟓𝒙 

𝟏 

(𝒙 − 𝟏)(𝒙𝟑 + 𝟒𝒙𝟐 + 𝟒𝒙 − 𝟏) = 𝒙𝟒 + 𝟑𝒙𝟑 − 𝟓𝒙 + 𝟏 
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2. Use the tabular method to multiply and combine like terms. 

a. (𝒙𝟐 − 𝟒𝒙 + 𝟒)(𝒙 + 𝟑) 

Sample student work:  

 

b. (𝟏𝟏 − 𝟏𝟓𝒙 − 𝟕𝒙𝟐)(𝟐𝟓 − 𝟏𝟔𝒙𝟐) 

Sample student work: 

 

c. (𝟑𝒎𝟑 + 𝒎𝟐 − 𝟐𝒎 − 𝟓)(𝒎𝟐 − 𝟓𝒎 − 𝟔) 

Sample student work: 

 

d. (𝒙𝟐 − 𝟑𝒙 + 𝟗)(𝒙𝟐 + 𝟑𝒙 + 𝟗) 

Sample student work: 

 

(𝒙𝟐 − 𝟒𝒙 + 𝟒)(𝒙 + 𝟑) = 𝒙𝟑 − 𝒙𝟐 − 𝟖𝒙 + 𝟏𝟐 

(𝟏𝟏 − 𝟏𝟓𝒙 − 𝟕𝒙𝟐)(𝟐𝟓 − 𝟏𝟔𝒙𝟐)

= 𝟏𝟏𝟐𝒙𝟒 + 𝟐𝟒𝟎𝒙𝟑 − 𝟑𝟓𝟏𝒙𝟐 − 𝟑𝟕𝟓𝒙 + 𝟐𝟕𝟓 

(𝟑𝒎𝟑 + 𝒎𝟐 − 𝟐𝒎 − 𝟓)(𝒎𝟐 − 𝟓𝒎 − 𝟔)

= 𝟑𝒎𝟓 − 𝟏𝟒𝒎𝟒 − 𝟐𝟓𝒎𝟑 − 𝒎𝟐 + 𝟑𝟕𝒎 + 𝟑𝟎 

(𝒙𝟐 − 𝟑𝒙 + 𝟗)(𝒙𝟐 + 𝟑𝒙 + 𝟗) = 𝒙𝟒 + 𝟗𝒙𝟐 + 𝟖𝟏 
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3. Multiply and combine like terms to write as the sum or difference of monomials.  

a. 𝟐𝒂(𝟓 + 𝟒𝒂) 

𝟖𝒂𝟐 + 𝟏𝟎𝒂 

b. 𝒙𝟑(𝒙 + 𝟔) + 𝟗 

𝒙𝟒 + 𝟔𝒙𝟑 + 𝟗 

c. 
𝟏

𝟖
(𝟗𝟔𝒛 + 𝟐𝟒𝒛𝟐) 

𝟏𝟐𝒛 + 𝟑𝒛𝟐 

d. 𝟐𝟐𝟑(𝟐𝟖𝟒 − 𝟐𝟖𝟏) 

𝟐𝟏𝟎𝟕 − 𝟐𝟏𝟎𝟒 

e. (𝒙 − 𝟒)(𝒙 + 𝟓) 

𝒙𝟐 + 𝒙 − 𝟐𝟎 

f. (𝟏𝟎𝒘 − 𝟏)(𝟏𝟎𝒘 + 𝟏) 

𝟏𝟎𝟎𝒘𝟐 − 𝟏 

g. (𝟑𝒛𝟐 − 𝟖)(𝟑𝒛𝟐 + 𝟖) 

𝟗𝐳𝟒 − 𝟔𝟒 

h. (−𝟓𝒘 − 𝟑)𝒘𝟐 

−𝟓𝒘𝟑 − 𝟑𝒘𝟐 

i. 𝟖𝒚𝟏𝟎𝟎𝟎(𝒚𝟏𝟐𝟐𝟎𝟎 + 𝟎. 𝟏𝟐𝟓𝒚) 

𝟖𝒚𝟏𝟑𝟐𝟎𝟎 + 𝒚𝟏𝟎𝟎𝟏 

j. (𝟐𝒓 + 𝟏)(𝟐𝒓𝟐 + 𝟏) 

𝟒𝒓𝟑 + 𝟐𝒓𝟐 + 𝟐𝒓 + 𝟏 

k. (𝒕 − 𝟏)(𝒕 + 𝟏)(𝒕𝟐 + 𝟏) 

𝒕𝟒 − 𝟏 

l. (𝒘 − 𝟏)(𝒘𝟓 + 𝒘𝟒 + 𝒘𝟑 + 𝒘𝟐 + 𝒘 + 𝟏) 

𝒘𝟔 − 𝟏 

m. (𝒙 + 𝟐)(𝒙 + 𝟐)(𝒙 + 𝟐) 

𝒙𝟑 + 𝟔𝒙𝟐 + 𝟏𝟐𝒙 + 𝟖 

n. 𝒏(𝒏 + 𝟏)(𝒏 + 𝟐) 

𝒏𝟑 + 𝟑𝒏𝟐 + 𝟐𝒏  

o. 𝒏(𝒏 + 𝟏)(𝒏 + 𝟐)(𝒏 + 𝟑) 

𝒏𝟒 + 𝟔𝒏𝟑 + 𝟏𝟏𝒏𝟐 + 𝟔𝒏  

p. 𝒏(𝒏 + 𝟏)(𝒏 + 𝟐)(𝒏 + 𝟑)(𝒏 + 𝟒) 

𝒏𝟓 + 𝟏𝟎𝒏𝟒 + 𝟑𝟓𝒏𝟑 + 𝟓𝟎𝒏𝟐 + 𝟐𝟒𝒏 

q. (𝒙 + 𝟏)(𝒙𝟑 − 𝒙𝟐 + 𝒙 − 𝟏) 

𝒙𝟒 − 𝟏  

r. (𝒙 + 𝟏)(𝒙𝟓 − 𝒙𝟒 + 𝒙𝟑 − 𝒙𝟐 + 𝒙 − 𝟏) 

𝒙𝟔 − 𝟏  

s. (𝒙 + 𝟏)(𝒙𝟕 − 𝒙𝟔 + 𝒙𝟓 − 𝒙𝟒 + 𝒙𝟑 − 𝒙𝟐 + 𝒙 − 𝟏) 

𝒙𝟖 − 𝟏 

t. (𝒎𝟑 − 𝟐𝒎 + 𝟏)(𝒎𝟐 − 𝒎 + 𝟐) 

𝒎𝟓 − 𝒎𝟒 + 𝟑𝒎𝟐 − 𝟓𝒎 + 𝟐 

 

4. Polynomial expressions can be thought of as a generalization of place value.   

a. Multiply 𝟐𝟏𝟒 × 𝟏𝟏𝟐 using the standard paper-and-pencil algorithm. 

 

b. Multiply (𝟐𝒙𝟐 + 𝒙 + 𝟒)(𝒙𝟐 + 𝒙 + 𝟐) using the tabular method and combine like terms. 

(𝟐𝒙𝟐 + 𝒙 + 𝟒)(𝒙𝟐 + 𝒙 + 𝟐) = 𝟐𝒙𝟒 + 𝟑𝒙𝟑 + 𝟗𝒙𝟐 + 𝟔𝒙 + 𝟖 
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c. Substitute 𝒙 = 𝟏𝟎 into your answer from part (b). 

𝟐𝟑, 𝟗𝟔𝟖 

 

d. Is the answer to part (c) equal to the answer from part (a)?  Compare the digits you computed in the 

algorithm to the coefficients of the entries you computed in the table.  How do the place-value units of the 

digits compare to the powers of the variables in the entries? 

Yes.  The digits computed in the algorithm are the same as the coefficients computed in the table entries.  The 

zero-degree term in the table corresponds to the ones unit, the first-degree terms in the table correspond to 

the tens unit, the second-degree terms in the table correspond to the hundreds unit, and so on. 

 

5. Jeremy says (𝒙 − 𝟗)(𝒙𝟕 + 𝒙𝟔 + 𝒙𝟓 + 𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏) must equal 𝒙𝟕 + 𝒙𝟔 + 𝒙𝟓 + 𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏 

because when 𝒙 = 𝟏𝟎, multiplying by 𝒙 − 𝟗 is the same as multiplying by 𝟏.  

a. Multiply  (𝒙 − 𝟗)(𝒙𝟕 + 𝒙𝟔 + 𝒙𝟓 + 𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏). 

𝒙𝟖 − 𝟖𝒙𝟕 − 𝟖𝒙𝟔 − 𝟖𝒙𝟓 − 𝟖𝒙𝟒 − 𝟖𝒙𝟑 − 𝟖𝒙𝟐 − 𝟖𝒙 − 𝟗 

 

b. Substitute 𝒙 = 𝟏𝟎 into your answer.   

𝟏𝟎𝟎 𝟎𝟎𝟎 𝟎𝟎𝟎 − 𝟖𝟎 𝟎𝟎𝟎 𝟎𝟎𝟎 −  𝟖 𝟎𝟎𝟎 𝟎𝟎𝟎 − 𝟖𝟎𝟎 𝟎𝟎𝟎 − 𝟖𝟎𝟎𝟎𝟎 − 𝟖𝟎𝟎𝟎 −  𝟖𝟎𝟎 − 𝟖𝟎 − 𝟗 

𝟏𝟎𝟎 𝟎𝟎𝟎 𝟎𝟎𝟎 − 𝟖𝟖 𝟖𝟖𝟖 𝟖𝟖𝟗 =  𝟏𝟏 𝟏𝟏𝟏 𝟏𝟏𝟏 

 

c. Is the answer to part (b) the same as the value of 𝒙𝟕 + 𝒙𝟔 + 𝒙𝟓 + 𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏 when 𝒙 = 𝟏𝟎?  

Yes 

 

d. Was Jeremy right? 

No, just because it is true when 𝒙 is 𝟏𝟎 does not make it true for all real 𝒙.  The two expressions are not 

algebraically equivalent.  

 

6. In the diagram, the side of the larger square is 𝒙 units, and the side 

of the smaller square is 𝒚 units.  The area of the shaded region is 

(𝒙𝟐 − 𝒚𝟐) square units.  Show how the shaded area might be cut 

and rearranged to illustrate that the area is (𝒙 − 𝒚)(𝒙 + 𝒚) square 

units. 

 

 

Solution: 

𝒙 

𝒚 

𝒙 + 𝒚 

𝒙 − 𝒚 𝒙 − 𝒚 

𝒙 

𝒚 
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Lesson 3:  The Division of Polynomials  

 
Student Outcomes 

 Students develop a division algorithm for polynomials by recognizing that division is the inverse operation of 

multiplication. 

 

Lesson Notes  

This lesson begins to address standards A-SSE.A.2 and A-APR.C.4 and provides many opportunities for students to 

practice MP.7 and 8.  Students explore reversing the tabular method they learned in Lesson 2 as a means to divide two 

polynomials.  They develop a procedure for polynomial division using a table.  The problems are scaffolded to lead 

students to discover this method in small groups, allowing them to discern patterns in repeated calculations, reinforcing 

the work from Lessons 1 and 2.  Discussion questions and the lesson closure are key to guiding struggling students.  In 

this lesson it is critical to emphasize the relationships between the table entries and the position of the dividend and 

divisor and how the diagonals in the table sum to the terms of the dividend.  In the next lesson, students will connect 

this method to the traditional long division algorithm of polynomial division while reinforcing the relationship between 

polynomial division and integer arithmetic.  All of the problems in this lesson divide without a remainder; division with 

remainders is addressed in later lessons in this module.  General polynomial identities that are used heavily and explored 

further in the remaining lessons of this module are also touched on in this lesson. 

Since division is the inverse operation of multiplication, it is important to make sure that students understand how to 

multiply polynomials before moving on to division of polynomials found in this lesson.  If students are struggling with the 

content of this lesson, they may need to review problems from Lesson 2 in this module and the following lessons from 

previous grades: 

 Studying the connection between area properties and the distributive property:  

Grade 7, Module 6, Lesson 21. 

 Introduction to the tabular method of multiplying polynomials:  Algebra I,  

Module 1, Lesson 9. 

In the early lessons on division (Lessons 3–7), the issue of potential zeros in the 

denominator is not emphasized but becomes prominent in Lesson 21 when rational 

expressions are introduced.  When introducing polynomial division in this lesson, choose 

whether or not to emphasize that it is necessary to exclude certain values of 𝑥 that cause 

division by zero.   

 

Classwork 

Opening Exercise  (3 minutes) 

This exercise provides students with an opportunity to practice the tabular method of 

multiplication of polynomials.  This problem is continued in the Discussion and Exploratory 

Challenge that follow. 

 

 

(Factor)(Factor) = Product 

Dividend 

Divisor
= Quotient 

Scaffolding: 

For students who are 
unfamiliar with the vocabulary 
in this lesson (divisor, quotient, 
dividend, factor, product), take 
time to pre-teach these terms.  
Use a vocabulary journal or 
notebook to help them learn 
and use proper terminology 
throughout the lesson. 

A visual representation like the 
one below may be of 
assistance. 
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Opening Exercise 

a. Multiply these polynomials using the tabular method. 

(𝟐𝒙 + 𝟓)(𝒙𝟐 + 𝟓𝒙 + 𝟏) 

The product is 𝟐𝒙𝟑 + 𝟏𝟓𝒙𝟐 + 𝟐𝟕𝒙 + 𝟓. 

 

b. How can you use the expression in part (a) to quickly multiply 𝟐𝟓 ⋅ 𝟏𝟓𝟏? 

If you let 𝒙 = 𝟏𝟎, then the product is  

𝟐(𝟏𝟎)𝟑 + 𝟏𝟓(𝟏𝟎)𝟐 + 𝟐𝟕(𝟏𝟎) + 𝟓 = 𝟐𝟎𝟎𝟎 + 𝟏𝟓𝟎𝟎 + 𝟐𝟕𝟎 + 𝟓 

= 𝟑𝟕𝟕𝟓. 

 

Discussion  (5 minutes) 

Lead a discussion that connects multiplication and division.  Display the following problem on the board, and ask how it 

could be transformed into a division problem. 

25 ⋅ 151 = 3,775 

 How can a multiplication problem be rewritten as a division problem? 

 One of the factors is the divisor and the other is the quotient.  The product is the dividend.   

3775

25
= 151      OR      

3775

151
= 25 

 How can we rewrite the Opening Exercise as a division problem? 

(2𝑥 + 5)(𝑥2 + 5𝑥 + 1) = 2𝑥3 + 15𝑥2 + 27𝑥 + 5 

 It would be rewritten the same way.  One of the factors is the divisor and the other is the quotient.  The 

product is the dividend. 

2𝑥3 + 15𝑥2 + 27𝑥 + 5

2𝑥 + 5
= 𝑥2 + 5𝑥 + 1     OR     

2𝑥3 + 15𝑥2 + 27𝑥 + 5

𝑥2 + 5𝑥 + 1
= 2𝑥 + 5 

 Let 𝑥 = 10.  Substitute that value into each polynomial, and compare the results of multiplying and dividing 

the polynomials with the arithmetic problem.  How do polynomial multiplication and division compare to 

multiplication and division of integers? 

 When 𝑥 = 10, the polynomial problems result in the same values as the number problems.  This 

reinforces the fact that arithmetic operations with polynomials are similar to arithmetic operations with 

integers. 

 

Exploratory Challenge  (27 minutes):  Reverse the Tabular Method to Divide Polynomials  

Give students time to discuss how they would fill in the rows and columns in the table below.  Let them struggle to make 

sense of the problem and look for patterns.  If they are proficient with the tabular method of multiplication, they should 

quickly discover a method for populating the table and then verifying that the quotient is in the top row.  Read through 

this entire section before attempting this with students in order to clearly understand how the process works.  Start this 

challenge by asking students to consider how they might reverse the tabular method for multiplying to solve a 

polynomial division problem.   
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Encourage them to discuss where to position the polynomials now that they have the “answer” (the product) and one of 

the factors.  In the last lessons on multiplication, the factors positioned along the top and right side of the table and the 

product positioned along the left and bottom came from summing the like terms in each diagonal.  The student pages 

pose the problem and provide an empty two-row by three-column table.  If needed, use the scaffolded tables provided 

in the teacher notes that follow to provide more support for students. 

 

Exploratory Challenge 

1. Does  
𝟐𝒙𝟑+𝟏𝟓𝒙𝟐+𝟐𝟕𝒙+𝟓

𝟐𝒙+𝟓
= (𝒙𝟐 + 𝟓𝒙 + 𝟏)?  Justify your answer. 

 

     

     

     

 

 

The partially completed tables shown below provide some suggestions for scaffolding this lesson exploration (if needed).  

Encourage students to place the dividend where the product would result from multiplying and the quotient where one 

of the factors would be located.  Then, have them work backward to show that the top row of this table is the quotient, 

𝑥2 + 5𝑥 + 1.  Since the table is two by three, it would make sense that 2𝑥 + 5 is positioned along the vertical side on 

the right.  Notice that the terms of the quotient are located around the left and bottom side of the table.  This is where 

they would appear if these terms represented the result of multiplying two polynomials whose product was  

2𝑥3 + 15𝑥2 + 27𝑥 + 5.  Notice also that the divisor is positioned along the right side of the table (as was found with one 

of the factors in the earlier tabular method multiplication problems).  The arrows in the diagram indicate that the 

diagonal entries must sum to the term outside the table (e.g., 15𝑥2 = 5𝑥2 + 10𝑥2). 

 

 

 

 

 

 

 

 

 

 

  

     

  

 

 𝟐𝒙 

𝟐𝒙𝟑    +𝟓 

𝟏𝟓𝒙𝟐 𝟐𝟕𝒙 𝟓   

 

𝒙𝟐  + 𝟓𝒙 + 𝟏  

 𝟐𝒙𝟑 𝟏𝟎𝒙𝟐 𝟐𝒙 𝟐𝒙 

𝟐𝒙𝟑 𝟓𝒙𝟐 𝟐𝟓𝒙 𝟓 +𝟓 

𝟏𝟓𝒙𝟐 𝟐𝟕𝒙 𝟓   
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After students have had a few minutes to discuss their ideas in groups, lead a short discussion (as needed) if they appear 

to be stuck.  Use these questions to prompt groups while also circulating around the room. 

 The quotient will be the polynomial that would go along the top of the table.  Remember we know it should be 

𝑥2 + 5𝑥 + 1.  How can you get started to confirm this using the dividend and the divisor? 

 We need to think about how the divisor terms fill back into the table, and then we need to use the 

2𝑥 and the 5 terms to determine the other factor for each column at the top of the table. 

 Are there any cells in the table that we can fill in based on the information we have?  What must be in the top 

left cell?  Why? 

 The 2𝑥3 term will be the top left entry, and the 5 will be the bottom right entry.  Because the diagonals 

add to produce the terms of the product, we know that the top left and bottom right entries must be 

the first and last terms of the dividend since those terms do not involve combining any like terms when 

we compute the product. 

 What must the first term of the missing polynomial in the top row be? 

 It would have to be 𝑥2 since that term and 2𝑥 must multiply to be 2𝑥3. 

 What goes in the rest of the cells in the first column?  How can you continue this pattern? 

 Multiply 𝑥2 and 5 to get 5𝑥2.  Then the 2
nd

 column in the first row would need to be 10𝑥2 because 

15𝑥2 = 10𝑥2 + 5𝑥2.  Since the 2
nd

 column of the first row is now known, we can figure out the 

remaining term of the quotient since that term times 2𝑥 would have to equal 10𝑥2. 

 Compare your work on this problem with the Opening Exercise.  How could you verify that 𝑥2 + 5𝑥 + 1 really 

is the quotient?  Explain? 

 In the Opening Exercise, we multiplied the quotient and divisor and got the dividend.   

So (2𝑥 + 5)(𝑥2 + 5𝑥 + 1) must equal 2𝑥3 + 15𝑥2 + 27𝑥 + 5. 

 

2. Describe the process you used to determine your answer to Exercise 1. 

Student descriptions will vary but should be similar to the detailed directions provided on the following page. 

 

Check each group’s work before moving on to the next exercise.  Have a couple of groups present their solution methods 

to the Exercises 1 and 2 on the board, especially if other groups seem to be struggling.  Then, if needed, go over the 

steps outlined below in detail to clarify this process for all students.  Provide additional scaffolding if needed. 

Step 1—Draw a table with factors along the right sides and bottom corner, and fill in known entries along the top left 

and bottom right. 
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Step 2—Use the top left entry to find the second-degree term along the top.  It has to be 𝑥2 because 2𝑥 ∙ 𝑥2 = 2𝑥3. 

 

 

 

 

 

 

 

 

 

 

Step 3—Use 𝑥2 and 5 to find the bottom left entry, 5𝑥2, and then use that entry to find the top middle term.   

It has to be 10𝑥2 because 5𝑥2 + 10𝑥2 = 15𝑥2. 

 

 

 

 

 

 

 

 

 

 

Step 4—Repeat these steps to fill in the bottom entry in the 2
nd

 and last columns. 
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Students do not already know the quotient in Exercise 3, making this more challenging than the previous exercises.   

 

3. Reverse the tabular method of multiplication to find the quotient:  
𝟐𝒙𝟐+𝒙−𝟏𝟎

𝒙−𝟐
 

 

 

 

 

 

 

 

 

 

 

After these two exercises, lead a short discussion to help students learn how to reverse their thinking about the tabular 

method of multiplication to divide polynomials. 

 We will call this approach to dividing polynomials the reverse tabular method.  Let’s make a conjecture about 

the number of rows and columns you will need to perform the division.  How can you predict how many rows 

you will need in your table?  How can you predict how many columns you will need in your table?   

 The number of rows will be one more than the degree of the divisor.  The number of columns will be one 

more than the difference between the degree of the dividend and the degree of the divisor.  

 

4. Test your conjectures.  Create your own table, and use the reverse tabular method to find the quotient.  

𝒙𝟒 + 𝟒𝒙𝟑 + 𝟑𝒙𝟐 + 𝟒𝒙 + 𝟐

𝒙𝟐 + 𝟏
 

 

 

𝒙𝟐  +𝟒𝒙 + 𝟐  

 𝒙𝟒 𝟒𝒙𝟑 𝟐𝒙𝟐 𝒙𝟐 

𝒙𝟒 𝟎𝒙𝟑 𝟎𝒙𝟐 𝟎𝒙 𝟎𝒙 

𝟒𝒙𝟑 𝒙𝟐 𝟒𝒙 𝟐 +𝟏 

𝟑𝒙𝟐 𝟒𝒙 𝟐   

The quotient is 𝒙𝟐 + 𝟒𝒙 + 𝟐. 

 𝟐𝒙  + 𝟓  

 𝟐𝒙𝟐 𝟓𝒙 𝒙 

𝟐𝒙𝟐 −𝟒𝒙 −𝟏𝟎 −𝟐 

𝒙 −𝟏𝟎   

    

 

  𝒙 

𝟐𝒙𝟐   −𝟐 

𝒙 −𝟏𝟎   

MP.3 
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If necessary, remind groups to include a 0 coefficient term place holder when missing a 

needed term.  

 

5. Test your conjectures.  Use the reverse tabular method to find the quotient. 

𝟑𝒙𝟓 − 𝟐𝒙𝟒 + 𝟔𝒙𝟑 − 𝟒𝒙𝟐 − 𝟐𝟒𝒙 + 𝟏𝟔

𝒙𝟐 + 𝟒
 

The quotient is 𝟑𝒙𝟑 − 𝟐𝒙𝟐 − 𝟔𝒙 + 𝟒. 

 

6. What is the quotient of 
𝒙𝟓−𝟏

𝒙−𝟏
?  What is the quotient of 

𝒙𝟔−𝟏

𝒙−𝟏
? 

The quotients are 𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏 and 𝒙𝟓 + 𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏, respectively. 

 

After students complete Exercise 6, see if they can extend the patterns to make 

predictions about similar problems. 

 What is the result of dividing 
𝑥8−1

𝑥−1
?  

 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 

 What is the result of dividing 
𝑥𝑛−1

𝑥−1
?  

 𝑥𝑛−1 + 𝑥𝑛−2 + ⋯ + 𝑥 + 1 

 What is the result of dividing 
 𝑥5+1

𝑥+1
? 

 𝑥4 − 𝑥3 + 𝑥2 − 𝑥 + 1 

 

Wrap up this lesson by having groups present their solutions to Exercises 3–5 and discuss the strategies they used to 

solve the problems.  It is fine if two groups present the same problem since they may have had slightly different 

approaches to completing the table.  Students may notice that it is easier to fill in the table by columns.  Some may have 

started working from the lower right corner where the constant is located.  Students may realize that they do not need 

to fill in every cell to finish the problem but may wish to do so to check their work.  If time permits, have them verify 

their conjectures to the follow-up questions for Exercise 6. 

 

Closing  (5 minutes) 

These questions help to reinforce the relationship between multiplication and division and some of the patterns that 

emerge in using the reverse tabular method to divide polynomials with no remainder.  Have students respond to the 

questions below (either in writing or with a partner) to provide a summary and formative assessment information.  The 

questions that ask about the degree and leading coefficient help to reinforce the A.APR standards addressed in this 

lesson. 

  

MP.7 
& 

MP.8 

(𝑥2 − 1)

(𝑥 − 1)
= 𝑥 + 1 

𝑥3 − 1

𝑥 − 1
= 𝑥2 + 𝑥 + 1 

𝑥4 − 1

𝑥 − 1
= 𝑥3 + 𝑥2 + 𝑥 + 1. 

Scaffolding: 

If students are struggling to 

extend this pattern in Exercise 

6, begin with simpler problems 

such as: 

They should solve these 

simpler problems using the 

reverse tabular method.  

Perhaps have different groups 

each work a different problem, 

and then record the results on 

the board.  Conduct a class 

discussion so they can 

generalize the pattern. 
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 What strategies were helpful when you set up and solved these problems?  What patterns did you notice as 

you solved these problems? 

 The number of rows will be one more than the degree of the divisor.  The number of columns will be one 

more than the difference between the degree of the dividend and the degree of the divisor.  For 

example, when dividing 2𝑥4 − 𝑥3 + 4𝑥2 − 1 by 𝑥3 + 2𝑥 + 1, we will have four rows since the divisor 

has degree 3.  Then we will need 4 − 3 + 1 = 2 columns for the quotient.  

 You need to use a place holder for missing terms.  For example, 𝑥2 + 1 = 𝑥2 + 0𝑥 + 1.  

 The diagonals must add to the correct terms, and the cells in the table must be the product of the 

factors along the sides of the table. 

 What happens to the degree of the product when you multiply two polynomials? 

 When you multiply polynomials, the degree of the product will be the sum of the degrees of each factor. 

 What happens to the degree of the quotient when you divide two polynomials? 

 When you divide polynomials, the degree of the quotient will be the difference of the degrees of the 

dividend and divisor. 

 What happens to leading coefficients when you multiply or divide polynomials? 

 The leading coefficient of the result is the product or quotient of the leading coefficients of the original 

polynomials. 

 

Exit Ticket  (5 minutes) 
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Name                                   Date                          

Lesson 3:  The Division of Polynomials 

 
Exit Ticket 
 

Find the quotient.  Justify your answer. 

 

𝑥5 + 2𝑥4 − 7𝑥2 − 19𝑥 + 15

𝑥2 + 2𝑥 + 5
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Exit Ticket Sample Solutions 

 

Find the quotient.  Justify your answer. 

𝒙𝟓 + 𝟐𝒙𝟒 − 𝟕𝒙𝟐 − 𝟏𝟗𝒙 + 𝟏𝟓

𝒙𝟐 + 𝟐𝒙 + 𝟓
 

The quotient is 𝒙𝟑 − 𝟓𝒙 + 𝟑. 

 

 
Problem Set Sample Solutions 

 

Use the reverse tabular method to solve these division problems. 

1. 
𝟐𝒙𝟑+𝒙𝟐−𝟏𝟔𝒙+𝟏𝟓

𝟐𝒙−𝟑
 𝒙𝟐 + 𝟐𝒙 − 𝟓 

2. 
(𝟑𝒙𝟓+𝟏𝟐𝒙𝟒+𝟏𝟏𝒙𝟑+𝟐𝒙𝟐−𝟒𝒙−𝟐)

(𝟑𝒙𝟐−𝟏)
 𝒙𝟑 + 𝟒𝒙𝟐 + 𝟒𝒙 + 𝟐 

3. 
𝒙𝟑−𝟒𝒙𝟐+𝟕𝒙−𝟐𝟖

𝒙𝟐+𝟕
 𝒙 − 𝟒 

4. 
𝒙𝟒−𝟐𝒙𝟑−𝟐𝟗𝒙−𝟏𝟐

𝒙𝟑+𝟐𝒙𝟐+𝟖𝒙+𝟑
 𝒙 − 𝟒 

5. 
𝟔𝒙𝟓+𝟒𝒙𝟒−𝟔𝒙𝟑+𝟏𝟒𝒙𝟐−𝟖

𝟔𝒙+𝟒
 𝒙𝟒 − 𝒙𝟐 + 𝟑𝒙 − 𝟐 

6. 
(𝒙𝟑−𝟖)

(𝒙−𝟐)
 𝒙𝟐 + 𝟐𝒙 + 𝟒 

7. 
𝒙𝟑+𝟐𝒙𝟐+𝟐𝒙+𝟏

𝒙+𝟏
 𝒙𝟐 + 𝒙 + 𝟏 

8. 
𝒙𝟒+𝟐𝒙𝟑+𝟐𝒙𝟐+𝟐𝒙+𝟏

𝒙+𝟏
 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏 
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9. Use the results of Problems 7 and 8 to predict the quotient of   
𝒙𝟓+𝟐𝒙𝟒+𝟐𝒙𝟑+𝟐𝒙𝟐+𝟐𝒙+𝟏

𝒙+𝟏
.   

Explain your prediction.  Then check your prediction using the reverse tabular method. 

The quotient is 𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏.  In Problems 7 and 8, the result is a polynomial of degree one less than the 

dividend where all the coefficients were 𝟏.  The dividend in this problem has the same structure except it was  

degree 𝟓, and it is also divided by 𝒙 + 𝟏. 

 

10. Use the results of Problems 7–9 above to predict the quotient of  
𝒙𝟒−𝟐𝒙𝟑+𝟐𝒙𝟐−𝟐𝒙+𝟏

𝒙−𝟏
 .  Explain your prediction.  

Then check your prediction using the reverse tabular method. 

The quotient is 𝒙𝟑 − 𝒙𝟐 + 𝒙 − 𝟏. 

 

11. Make and test a conjecture about the quotient of   
𝒙𝟔+𝒙𝟓+𝟐𝒙𝟒+𝟐𝒙𝟑+𝟐𝒙𝟐+𝒙+𝟏

𝒙𝟐+𝟏
.  Explain your reasoning. 

The quotient is 𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏.  Since we are missing the 𝒙 term, there will not be two 𝒙𝟓 or two 𝒙 terms.  

Otherwise it will follow the same pattern as Problems 7–9. 

 

12. Consider the following quotients: 

𝟒𝒙𝟐 + 𝟖𝒙 + 𝟑

𝟐𝒙 + 𝟏
 and 

𝟒𝟖𝟑

𝟐𝟏
 

 

a. How are these expressions related? 

If we let 𝒙 = 𝟏𝟎, then 𝟒𝒙𝟐 + 𝟖𝒙 + 𝟑 = 𝟒(𝟏𝟎𝟐) + 𝟖(𝟏𝟎) + 𝟑 = 𝟒𝟖𝟑 and 𝟐𝒙 + 𝟏 = 𝟐(𝟏𝟎) + 𝟏 = 𝟐𝟏, so 

𝟒𝒙𝟐+𝟖𝒙+𝟑

𝟐𝒙+𝟏
=

𝟒𝟖𝟑

𝟐𝟏
. 

 

b. Find each quotient. 

𝟒𝒙𝟐+𝟖𝒙+𝟑

𝟐𝒙+𝟏
= 𝟐𝒙 + 𝟑 and 

𝟒𝟖𝟑

𝟐𝟏
= 𝟐𝟑 

 

c. Explain the connection between the quotients. 

If we let 𝒙 = 𝟏𝟎, then. 𝟐𝒙 + 𝟑 = 𝟐(𝟏𝟎) +  𝟑 = 𝟐𝟑. 
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Lesson 4:  Comparing Methods—Long Division, Again?  

 
Student Outcomes 

 Students connect long division of polynomials with the long division algorithm of arithmetic and use this 

algorithm to rewrite rational expressions that divide without a remainder. 

 

Lesson Notes 

This lesson reinforces the analogous relationship between arithmetic of numbers and the arithmetic of polynomials  

(A-APR.6, A-APR.7).  These standards address working with rational expressions and focus on using a long division 

algorithm to rewrite simple rational expressions.  In addition, it provides another method for students to fluently 

calculate the quotient of two polynomials after the Opening Exercises. 

 

Classwork 

Opening 

Have students work individually on the Opening Exercises to confirm their understanding of the previous lesson’s 

outcomes.  Circulate around the room to observe their progress, or have students check their work with a partner after a 

few minutes.  Today’s lesson will transition to another method for dividing polynomials. 

 

Opening Exercises  (5 minutes) 

 

Opening Exercises 

1. Use the reverse tabular method to determine the quotient  
𝟐𝒙𝟑+𝟏𝟏𝒙𝟐+𝟕𝒙+𝟏𝟎

𝒙+𝟓
. 

 𝟐𝒙𝟐 + 𝒙 + 𝟐  

 

𝟐𝒙𝟑 𝒙𝟐 𝟐𝒙 𝒙 

𝟐𝒙𝟑 𝟏𝟎𝒙𝟐 𝟓𝒙 𝟏𝟎 + 𝟓 

+ 𝟏𝟏𝒙𝟐 + 𝟕𝒙 + 𝟏𝟎   
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2. Use your work from Exercise 1 to write the polynomial 𝟐𝒙𝟑 + 𝟏𝟏𝒙𝟐 + 𝟕𝒙 + 𝟏𝟎 in factored form, and then multiply 

the factors to check your work above. 

(𝒙 + 𝟓)(𝟐𝒙𝟐 + 𝒙 + 𝟐) 

 𝟐𝒙𝟐 +𝒙 +𝟐  

 

𝟐𝒙𝟑 𝒙𝟐 𝟐𝒙 𝒙 

𝟐𝒙𝟑 𝟏𝟎𝒙𝟐 𝟓𝒙 𝟏𝟎 +𝟓 

𝟏𝟏𝒙𝟐 𝟕𝒙 𝟏𝟎   

The product is 𝟐𝒙𝟑 + 𝟏𝟏𝒙𝟐 + 𝟕𝒙 + 𝟏𝟎. 

 

Division and multiplication of polynomials are very similar to those operations with real numbers.  In these problems, if 

𝑥 = 10, the result would match an arithmetic problem.  Yesterday, students divided two polynomials using the reverse 

tabular method.  Today, the goal is to see how polynomial division is related to the long division algorithm learned in 

elementary school.  

 

Discussion  (5 minutes) 

We have seen how division of polynomials relates to multiplication and that both of these operations are similar to the 

arithmetic operations you learned in elementary school. 

 Can we relate division of polynomials to the long division algorithm? 

 We would need to use the fact that the terms of a polynomial expression represent place value when 

𝑥 = 10.  

Prompt students to consider the long division algorithm they learned in elementary school, and ask them to apply it to 

evaluate 1573 ÷ 13.  Have a student model the algorithm on the board as well.  The solution to this problem is included 

in the example below.   

 

Example 1  (5 minutes):  The Long Division Algorithm for Polynomial Division  

When solving the problem in Example 1, be sure to record the polynomial division problem next to the arithmetic 

problem already on the board.  Guide students through this example to demonstrate the parallels between the long 

division algorithm for numbers and this method.  Emphasize that the long division algorithm they learned in elementary 

school is a special case of polynomial long division.  They should record the steps on their handouts or in their 

notebooks.  Have students check their work by solving this problem using the reverse tabular method.  Use the 

questions below while working the example. 

See the sample problem written out after Example 1, and use the questions that follow as discussion points while 

modeling this algorithm. 

MP.7 
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 What expression multiplied by 𝑥 will result in 𝑥3?  

 𝑥2 

 When you do long division, you multiply the first digit of the quotient by the 

divisor and then subtract the result.  It works the same with polynomial division.  

How do we represent multiplication and subtraction of polynomials? 

 You apply the distributive property to multiply, and to subtract you add 

the opposite. 

 Then, we repeat the process to determine the next term in the quotient.  What 

do we need to bring down to complete the process? 

 You should bring down the next term. 

 

Example 1 

If 𝒙 = 𝟏𝟎, then the division 𝟏𝟓𝟕𝟑 ÷ 𝟏𝟑 can be represented using polynomial division. 

3753 23  xxxx
 

The quotient is 𝒙𝟐 + 𝟐𝒙 + 𝟏. 

The completed board work for this example should look something like this: 

 

Example 2  (5 minutes):  The Long Division Algorithm for Polynomial Division  

Any two numbers can be divided as long as the divisor is not equal to 0.  Similarly, any two 

polynomials can be divided as long as the divisor is not equal to 0.  Note:  The number 0 is also a polynomial.  Because 

the class is now dealing with a general case of polynomials and not simply numbers, it is possible to solve problems 

where the coefficients of the terms are any real numbers.  It would be difficult, but not impossible, if the coefficients of 

the terms of the polynomials were irrational.  In the next example, model again how this process works.  Be sure to point 

out that students must use a 0 coefficient place holder for the missing 𝑥 term.  

 

Example 2 

Use the long division algorithm for polynomials to evaluate  

𝟐𝒙𝟑 − 𝟒𝒙𝟐 + 𝟐

𝟐𝒙 − 𝟐
 

The quotient is 𝒙𝟐 − 𝒙 − 𝟏. 

Scaffolding: 

 For further scaffolding, 

consider starting with a 

simpler problem, such as 

126 ÷ 18.  Have students 

compare this problem to 

the polynomial division 

problem (𝑥2 + 2𝑥 + 6) ÷
(𝑥 + 8) by explaining the 

structural similarities.  

Have students consider 

this as the teacher places 

them side by side on the 

board.  This shows 

students that if 𝑥 = 10, 

the polynomial division 

problem is analogous to 

the integer division 

problem.  

 For advanced learners, 

challenge them to create 

two examples, a numerical 

one and a polynomial one, 

that illustrate the 

structural similarities.  

Note, however, that not 

every problem will work 

nicely.  For example, 

800 ÷ 32 = 25, but  

8𝑥2 ÷ (3𝑥 + 2) ≠ 2𝑥 + 5 
because there are many 

polynomials in 𝑥 that 

evaluate to 25 when  

𝑥 = 10. 
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Before beginning the next exercises, take the time to reinforce the idea that polynomial division is analogous to whole 

number division by posing a reflection question.  Students can discuss this with a partner or respond in writing. 

 Why are we able to do long division with polynomials? 

 Polynomials form a system analogous to the integers.  The same operations that hold for integers hold 

for polynomials. 

 

Exercises 1–8  (15 minutes)  

These problems start simple and become more complicated.  Monitor student progress as they work.  Have students 

work these problems independently or in pairs, and use this as an opportunity to informally assess their understanding.  

After students have completed the exercises, post the solutions on the board but not the work.  Have students with 

errors team up with a partner and trade papers.  Ask students to find the mistakes in their partner’s work.  Choose an 

incorrect solution to display on the board, and then lead a class discussion to point out where students are likely to make 

errors and how to prevent them.  Students typically make careless errors in multiplying or subtracting terms.  Other 

errors can occur if they forget to include the zero coefficient place holder terms when needed.  If students appear to be 

running short on time, have them check every other result using the reverse tabular method.  Alternately, students could 

check their work using multiplication. 

 

Exercises 1–8 

Use the long division algorithm to determine the quotient.  For each problem, check your work by using the reverse 

tabular method. 

1. 
𝒙𝟐+𝟔𝒙+𝟗

𝒙+𝟑
 

𝒙 + 𝟑 

 

2. 
𝟕𝒙𝟑−𝟖𝒙𝟐−𝟏𝟑𝒙+𝟐

𝟕𝒙−𝟏
 

𝒙𝟐 − 𝒙 − 𝟐 

 

3. 
𝒙𝟑−𝟐𝟕

𝒙−𝟑
 

𝒙𝟐 + 𝟑𝒙 + 𝟗 

 

4. 
𝟐𝒙𝟒+𝟏𝟒𝒙𝟑+𝒙𝟐−𝟐𝟏𝒙−𝟔

𝟐𝒙𝟐−𝟑
 

𝒙𝟐 + 𝟕𝒙 + 𝟐 

 

5. 
𝟓𝒙𝟒−𝟔𝒙𝟐+𝟏

𝒙𝟐−𝟏
 

𝟓𝒙𝟐 − 𝟏  
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6. 
𝒙𝟔+𝟒𝒙𝟒−𝟒𝒙−𝟏

𝒙𝟑−𝟏
 

𝒙𝟑 + 𝟒𝒙 + 𝟏 

 

7. 
𝟐𝒙𝟕+𝒙𝟓−𝟒𝒙𝟑+𝟏𝟒𝒙𝟐−𝟐𝒙+𝟕

𝟐𝒙𝟐+𝟏
  

𝒙𝟓 − 𝟐𝒙 + 𝟕 

 

8. 
𝒙𝟔−𝟔𝟒

𝒙+𝟐
 

𝒙𝟓 − 𝟐𝒙𝟒 + 𝟒𝒙𝟑 − 𝟖𝒙𝟐 + 𝟏𝟔𝒙 − 𝟑𝟐 

 

Closing  (5 minutes) 

Ask students to summarize the important parts of this lesson either in writing, to a partner, or as a class.  Use this 

opportunity to informally assess their understanding prior to starting the Exit Ticket.  Important elements are included in 

the Lesson Summary box below.  The questions that follow are recommended to guide the discussions with sample 

student responses included in italics.  Depending on the structure of the closure activity, the sample responses would be 

similar to student-written, partner, or whole-class summaries. 

 Which method do you prefer, long division or the reverse tabular method? 

 Student responses will vary.  The reverse tabular method may appeal to visual learners.  The long 

division algorithm works well as long as you avoid careless mistakes. 

 Is one method easier than another? 

 This will depend on student preferences, but some will like the connection to prior methods for dividing 

and multiplying.  Perhaps when many terms are missing (as in Exercise 8), the reverse tabular method 

can go more quickly than long division. 

 What advice would you give to a friend that is just learning how to do these problems quickly and accurately? 

 Be careful when multiplying terms and working with negative terms. 

 

 

 

Exit Ticket  (5 minutes)  

Lesson Summary 

The long division algorithm to divide polynomials is analogous to the long division algorithm for integers.  The long 

division algorithm to divide polynomials produces the same results as the reverse tabular method. 
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Name                                   Date                          

Lesson 4:  Comparing Methods—Long Division, Again? 

 
Exit Ticket 
 

Write a note to a friend explaining how to use long division to find the quotient. 

 

2𝑥2 − 3𝑥 − 5

𝑥 + 1
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Exit Ticket Sample Solutions 

 

Write a note to a friend explaining how to use long division to find the quotient. 

𝟐𝒙𝟐 − 𝟑𝒙 − 𝟓

𝒙 + 𝟏
 

Set up the divisor outside the division symbol and the dividend underneath it.  Then ask yourself what number multiplied 

by 𝒙 is 𝟐𝒙𝟐.  Then multiply that number by 𝒙 + 𝟏, and record the results underneath 𝟐𝒙𝟐 − 𝟑𝒙.  Subtract these terms and 

bring down the −𝟓.  Then repeat the process. 

 

 
Problem Set Sample Solutions 

 

Use the long division algorithm to determine the quotient in problems 1–5. 

1. 
𝟐𝒙𝟑−𝟏𝟑𝒙𝟐−𝒙+𝟑

𝟐𝒙+𝟏
 

𝒙𝟐 − 𝟕𝒙 + 𝟑  

 

2. 
𝟑𝒙𝟑+𝟒𝒙𝟐+𝟕𝒙+𝟐𝟐

𝒙+𝟐
 

𝟑𝒙𝟐 − 𝟐𝒙 + 𝟏𝟏 

 

3. 
𝒙𝟒+𝟔𝒙𝟑−𝟕𝒙𝟐−𝟐𝟒𝒙+𝟏𝟐

𝒙𝟐−𝟒
 

𝒙𝟐 + 𝟔𝒙 − 𝟑 

 

4. (𝟏𝟐𝒙𝟒 + 𝟐𝒙𝟑 + 𝒙 − 𝟑) ÷ (𝟐𝒙𝟐 + 𝟏) 

𝟔𝒙𝟐 + 𝒙 − 𝟑 

 

5. (𝟐𝒙𝟑 + 𝟐𝒙𝟐 + 𝟐𝒙) ÷ (𝒙𝟐 + 𝒙 + 𝟏) 

𝟐𝒙 

 

6. Use long division to find the polynomial, 𝒑, that satisfies the equation below. 

𝟐𝒙𝟒 − 𝟑𝒙𝟐 − 𝟐 = (𝟐𝒙𝟐 + 𝟏)(𝒑(𝒙)) 

𝒑(𝒙) = 𝒙𝟐 − 𝟐 

 

7. Given 𝒒(𝒙) = 𝟑𝒙𝟑 − 𝟒𝒙𝟐 + 𝟓𝒙 + 𝒌. 

a. Determine the value of 𝒌 so that 𝟑𝒙 − 𝟕 is a factor of the polynomial 𝒒. 

𝒌 = −𝟐𝟖 

 

b. What is the quotient when you divide the polynomial 𝒒 by 𝟑𝒙 − 𝟕? 

𝒙𝟐 + 𝒙 + 𝟒 
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8. In parts (a)–(b) and (d)–(e), use long division to evaluate each quotient.  Then, answer the remaining questions. 

a. 
𝒙𝟐−𝟗

𝒙+𝟑
 

𝒙 − 𝟑 

 

b. 
𝒙𝟒−𝟖𝟏

𝒙+𝟑
 

𝒙𝟑 − 𝟑𝒙𝟐 + 𝟗𝒙 − 𝟐𝟕 

 

c. Is 𝒙 + 𝟑 a factor of 𝒙𝟑 − 𝟐𝟕?  Explain your answer using the long division algorithm. 

No.  The remainder is not 𝟎 when you perform long division. 

 

d. 
𝒙𝟑+𝟐𝟕

𝒙+𝟑
 

𝒙𝟐 − 𝟑𝒙 + 𝟗  

 

e. 
𝒙𝟓+𝟐𝟒𝟑

𝒙+𝟑
 

𝒙𝟒 − 𝟑𝒙𝟑 + 𝟗𝒙𝟐 − 𝟐𝟕𝒙 + 𝟖𝟏 

 

f. Is 𝒙 + 𝟑 a factor of 𝒙𝟐 + 𝟗?  Explain your answer using the long division algorithm. 

No.  The remainder is not 𝟎 when you perform long division. 

 

g. For which positive integers 𝒏 is 𝒙 + 𝟑 a factor of 𝒙𝒏 + 𝟑𝒏?  Explain your reasoning. 

Only if 𝒏 is an odd number.  By extending the patterns in parts (a)–(c) and (e), we can generalize that 𝒙 + 𝟑 

divides evenly into 𝒙𝒏 + 𝟑𝒏 for odd powers of 𝒏 only. 

 

h. If 𝒏 is a positive integer, is 𝒙 + 𝟑 a factor of 𝒙𝒏 − 𝟑𝒏?  Explain your reasoning. 

Only for even numbers 𝒏.  By extending the patterns in parts (a)–(c), we can generalize that 𝒙 + 𝟑 will always 

divide evenly into the dividend.  

MP.2 
& 

MP.8 
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Lesson 5:  Putting It All Together 

 
Student Outcomes  

 Students perform arithmetic operations on polynomials and write them in standard form. 

 Students understand the structure of polynomial expressions by quickly determining the first and last terms if 

the polynomial were to be written in standard form.  

 

Lesson Notes  

In this lesson, students work with all four polynomial operations.  The first part of the lesson is a relay exercise designed 

to build fluency, and the second part of the lesson includes combining two or more operations to write a polynomial in 

standard form.  Prepare a set of notecards as described below for Exercises 1–15. 

The Algebra Progressions name three different forms for a quadratic expression:  standard, factored, and vertex.  

Examples of these forms are shown below. 

 Standard Form:  𝑥2 + 4𝑥 − 5 

 Factored Form:  (𝑥 + 5)(𝑥 − 1) 

 Vertex Form:  (𝑥 + 2)2 − 9 

It is possible to define a standard and factored form of a degree 𝑛 polynomial expression 

as well.  The final lessons in this module introduce the fundamental theorem of algebra, 

which states that a degree 𝑛 polynomial with real coefficients can be written as the 

product of 𝑛 linear factors.  Precise definitions of the following terms are provided for 

teacher reference at the end of this lesson:  monomial, polynomial expression, coefficient 

of a monomial, degree of a monomial, terms of a polynomial, standard form of a 

polynomial in one variable, and degree of a polynomial in one variable.  This lesson 

concludes by challenging students to quickly determine the first and last term of a 

polynomial expression if it were to be written in standard form.  Students who have this 

capacity can quickly analyze the end behavior of the graph of a polynomial function or 

compute key features such as a 𝑦-intercept without having to fully rewrite the expression 

in standard form.  This allows for quick analysis when applying properties of polynomials in 

future mathematics courses such as Precalculus and Advanced Topics or Calculus. 

 

Classwork  

Exercises 1–15  (20 minutes):  Polynomial Pass  

Prior to the lesson, write Exercises 1–15 on index cards, one exercise per card.  On the back of each card, write the 

solution to the previous exercise.  For example, on the back of the card for Exercise 2, write the answer to Exercise 1.  On 

the back of the index card for Exercise 1, write the answer to Exercise 15.  Students should be seated in a circle if 

possible.  If more than 15 different cards are needed, create additional exercises that require addition, subtraction, 

multiplication, or division without remainder of linear, quadratic, or cubic polynomial expressions. 

 

𝑥2 + 4𝑥 − 5 

(𝑥 + 5)(𝑥 − 1) 

(𝑥 + 2)2 − 9 

Scaffolding: 

Before beginning these 
exercises, it may be necessary 
to review the definition and/or 
post an example of a 
polynomial in standard form.  
Also consider reminding 
students of the vertex and 
factored forms of quadratic 
expressions using the examples 
in the Lesson Notes if needed. 

For example, 

 Standard Form:   

 Factored Form:   

 Vertex Form:   
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To complete the exercise, have students work in pairs.  Pass out cards to pairs in numerical order so that when the cards 

are passed, each pair gets a new exercise that contains the answer to the one they just worked on the back of the card.  

(Alternatively, have students work individually and make two sets of cards so that cards 16–30 are duplicates of 1–15.)  

Allow one minute for students to work each calculation on a separate sheet of paper, and then have them pass the card 

to the next pair and receive a card from the previous pair.  They should check their answers and begin the next exercise.  

After all the rounds are completed, have students complete the graphic organizer on their student handouts to model 

each operation. 

 

Exercises 1–15:  Polynomial Pass 

Perform the indicated operation to write each polynomial in standard form. 

1. (𝒙𝟐 − 𝟑)(𝒙𝟐 + 𝟑𝒙 − 𝟏) 𝒙𝟒 + 𝟑𝒙𝟑 − 𝟒𝒙𝟐 − 𝟗𝒙 + 𝟑 

 

2. (𝟓𝒙𝟐 − 𝟑𝒙 − 𝟕) − (𝒙𝟐 + 𝟐𝒙 − 𝟓) 𝟒𝒙𝟐 − 𝟓𝒙 − 𝟐 

 

3. 
𝒙𝟑−𝟖

𝒙−𝟐
 𝒙𝟐 + 𝟐𝒙 + 𝟒  

 

4. (𝒙 + 𝟏)(𝒙 − 𝟐)(𝒙 + 𝟑) 𝒙𝟑 + 𝟐𝒙𝟐 − 𝟓𝒙 − 𝟔 

 

5. (𝒙 + 𝟏) − (𝒙 − 𝟐) − (𝒙 + 𝟑) −𝒙 

 

6. (𝒙 + 𝟐)(𝟐𝒙𝟐 − 𝟓𝒙 + 𝟕) 𝟐𝒙𝟑 − 𝒙𝟐 − 𝟑𝒙 + 𝟏𝟒 

 

7. 
𝒙𝟑−𝟐𝒙𝟐−𝟔𝟓𝒙+𝟏𝟖

𝒙−𝟗
 𝒙𝟐 + 𝟕𝒙 − 𝟐 

 

8. (𝒙𝟐 − 𝟑𝒙 + 𝟐) − (𝟐 − 𝒙 + 𝟐𝒙𝟐) −𝒙𝟐 − 𝟐𝒙 

 

9. (𝒙𝟐 − 𝟑𝒙 + 𝟐)(𝟐 − 𝒙 + 𝟐𝒙𝟐) 𝟐𝒙𝟒 − 𝟕𝒙𝟑 + 𝟗𝒙𝟐 − 𝟖𝒙 + 𝟒 

 

10. 
𝒙𝟑−𝒙𝟐−𝟓𝒙−𝟑

𝒙−𝟑
 𝒙𝟐 + 𝟐𝒙 + 𝟏 

 

11. (𝒙𝟐 + 𝟕𝒙 − 𝟏𝟐)(𝒙𝟐 − 𝟗𝒙 + 𝟏) 𝒙𝟒 − 𝟐𝒙𝟑 − 𝟕𝟒𝒙𝟐 + 𝟏𝟏𝟓𝒙 − 𝟏𝟐 

 

12. (𝟐𝒙𝟑 − 𝟔𝒙𝟐 − 𝟕𝒙 − 𝟐) + (𝒙𝟑 + 𝒙𝟐 + 𝟔𝒙 − 𝟏𝟐) 𝟑𝒙𝟑 − 𝟓𝒙𝟐 − 𝒙 − 𝟏𝟒 

 

13. (𝒙𝟑 − 𝟖)(𝒙𝟐 − 𝟒𝒙 + 𝟒) 𝒙𝟓 − 𝟒𝒙𝟒 + 𝟒𝒙𝟑 − 𝟖𝒙𝟐 + 𝟑𝟐𝒙 − 𝟑𝟐 

 

14. 
𝒙𝟑−𝟐𝒙𝟐−𝟓𝒙+𝟔

𝒙+𝟐
 𝒙𝟐 − 𝟒𝒙 + 𝟑 

 

15. (𝒙𝟑 + 𝟐𝒙𝟐 − 𝟑𝒙 − 𝟏) + (𝟒 − 𝒙 − 𝒙𝟑) 𝟐𝒙𝟐 − 𝟒𝒙 + 𝟑 
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Exercise 16  (5 minutes) 

Use this exercise to help students see the structure of polynomial expressions and to create a graphic organizer of how 

to perform the four polynomial operations for future reference.  They should complete this exercise either with a 

partner or in groups of four. 

 

Exercises 16 

16. Review Exercises 1–15 and then select one exercise for each category and record the steps in the operation below as 

an example.  Be sure to show all your work. 

Addition Exercise 

 

 

 

 

 

 

Multiplication Exercise 

Subtraction Exercise 

 

 

 

 

 

 

Division Exercise 

 

Exercises 17–20  (5 minutes) 

Before starting the next exercises, lead a short discussion transitioning into the problems below that combine 

polynomial operations.  Say (or paraphrase) the following: 

 In the previous exercises, you applied one operation to two or three polynomials, but many times we work 

with expressions that contain more than one operation.  In the next exercises, more than one operation is 

indicated.  How do you determine which operation to perform first? 

 The parentheses and the use of the fraction bar for division tell us which operations to perform first.  

The order of operations also can be applied to polynomials.  For example, you have to multiply before 

you can add or subtract. 

After this discussion, have students work with the same partner (or group) that they worked with on Exercise 16.  Have 

different groups present their work to the class.  Students could use white boards or chart paper to present their 

solutions to the class. 

 

Exercises 17–20 

For Exercises 17–20, rewrite each polynomial in standard form by applying the operations in the appropriate order. 

17. 
(𝒙𝟐+𝟓𝒙+𝟐𝟎)+(𝒙𝟐+𝟔𝒙−𝟔)

𝒙+𝟐
 

𝟐𝒙 + 𝟕 

 

18. (𝒙𝟐 − 𝟒)(𝒙 + 𝟑) − (𝒙𝟐 + 𝟐𝒙 − 𝟓) 

𝒙𝟑 + 𝟐𝒙𝟐 − 𝟔𝒙 − 𝟕 
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19. 
(𝒙−𝟑)𝟑

𝒙𝟐−𝟔𝒙+𝟗
 

𝒙 − 𝟑 

 

20. (𝒙 + 𝟕)(𝟐𝒙 − 𝟑) − (𝒙𝟑 − 𝟐𝒙𝟐 + 𝒙 − 𝟐) ÷ (𝒙 − 𝟐) 

𝒙𝟐 + 𝟏𝟏𝒙 − 𝟐𝟐 

 

Exercise 21  (4 minutes) 

This exercise, along with Exercise 22, helps students understand that they can learn quite a bit about the nature of a 

polynomial expression without performing all the operations required to write it in standard form. 

 Sometimes we do not need to perform the entire operation to understand the structure of an expression.   

Can you think of a situation where we might only need to know the first term or the last term of a polynomial 

expression? 

 If we wanted to understand the shape of the graph of a polynomial, like 𝑝(𝑥) = 𝑥2 + 2𝑥 + 3, we would 

only need to know the coefficient and degree of the first term to get a general idea of its behavior.  

 The constant term of a polynomial expression indicates the 𝑦-intercept of the corresponding graph.   

 

Exercise 21 

21. What would be the first and last terms of the polynomial if it was rewritten in standard form?  Answer these quickly 

without performing all of the indicated operations. 

a. (𝟐𝒙𝟑 − 𝒙𝟐 − 𝟗𝒙 + 𝟕) + (𝟏𝟏𝒙𝟐 − 𝟔𝒙𝟑 + 𝟐𝒙 − 𝟗) 

First term:  −𝟒𝒙𝟑, Last term:  −𝟐 

 

b. (𝒙 − 𝟑)(𝟐𝒙 + 𝟑)(𝒙 − 𝟏) 

First term:  𝟐𝒙𝟑, Last term:  𝟗 

 

c. (𝟐𝒙 − 𝟑)(𝟑𝒙 + 𝟓) − (𝒙 + 𝟏)(𝟐𝒙𝟐 − 𝟔𝒙 + 𝟑) 

First term:  −𝟐𝒙𝟑, Last term:  −𝟏𝟖 

 

d. (𝒙 + 𝟓)(𝟑𝒙 − 𝟏) − (𝒙 − 𝟒)𝟐 

First term:  𝟐𝒙𝟐, Last term:  −𝟐𝟏 

 

After students complete this exercise, lead a short discussion. 

 How did you determine your answer quickly? 

 I knew that the first term would be the one with the highest degree, so I focused on that operation.   

I knew that the last term would be the constant term unless it turned out to equal 0. 

 Did any of the solutions surprise you? 

 In parts (a) and (c), I had to pay attention to the order of the terms and which operation would produce 

the largest degree term. 

 

MP.7 
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Exercise 22  (4 minutes) 

 

Exercise 22 

22. What would the first and last terms of the polynomial be if it was rewritten in standard form? 

a. (𝒏 + 𝟏)(𝒏 + 𝟐)(𝒏 + 𝟑) ⋮ (𝒏 + 𝟗)(𝒏 + 𝟏𝟎) 

 
First term:  𝒏𝟏𝟎, Last term:  𝟏𝟎! 

b. (𝒙 − 𝟐)𝟏𝟎 

 
First term:  𝒙𝟏𝟎, Last term:  (−𝟐)𝟏𝟎 

c. 
(𝒙−𝟐)𝟏𝟎

(𝒙−𝟐)
 

 

First term:  𝒙𝟗, Last term:  (−𝟐)𝟗 

d. 
𝒏(𝒏+𝟏)(𝟐𝒏+𝟏)

𝟔
 First term:  

𝟏

𝟑
𝒏𝟑,  

Last term:  
𝒏

𝟔
 

 

Closing  (2 minutes) 

Consider having students record their answers to these questions in writing or by sharing 

their thoughts with a partner. 

 How is polynomial arithmetic similar to integer arithmetic? 

 The four operations produce a new polynomial.  The four operations can 

be combined by following the order of operations conventions. 

 How can you quickly determine the first and last terms of a polynomial without 

performing all of the operations needed to rewrite it in standard form? 

 Analyze the problem to identify the highest degree terms and perform the 

indicated operation on only those terms.  Do the same with the lowest 

degree terms to determine the last term. 

Precise definitions of terms related to polynomials are presented here.  These definitions were first introduced in 

Algebra I, Modules 1 and 4.  These definitions are for teacher reference and can be shared with students at the teacher’s 

discretion.  Following these definitions are discussion questions for closing this lesson. 

 

Relevant Vocabulary  

POLYNOMIAL EXPRESSION:  A polynomial expression is either a numerical expression or a variable symbol or the result of 

placing two previously generated polynomial expressions into the blanks of the addition operator (__ + __) or the 

multiplication operator (__ × __). 

The definition of polynomial expression includes subtraction (𝑎 − 𝑏 =  𝑎 + (−1 ∙ 𝑏)), exponentiation by a nonnegative 

integer (𝑥3 = (𝑥 ∙ 𝑥) ⋅ 𝑥), and dividing by a nonzero number (multiplying by the multiplicative inverse).  Because 

subtraction, exponentiation, and division still apply, the regular notation for these operations is still used.  In other 

words, polynomials are still written simply as 
(𝑥3−3𝑥)

2
 instead of  

1

2
∙ (((𝑥 ∙ 𝑥) ⋅ 𝑥) + (−1 ∙ (3 ∙ 𝑥))) 

Scaffolding: 

For advanced learners or early 
finishers, increase the 
complexity of these exercises 
by posing the following 
problem (or one similar to it): 

 Generate three different 
polynomial expressions 
NOT already expressed in 
standard form that would 
have a first term of −3𝑥3 

and a last term of 
1

2
 if the 

polynomial expression was 
written in standard form. 
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Note, however, that the definition excludes dividing by 𝑥 or dividing by any polynomial in 𝑥.  

All polynomial expressions are algebraic expressions. 

MONOMIAL:  A monomial is a polynomial expression generated using only the multiplication operator (__ × __). 

Monomials are products whose factors are numerical expressions or variable symbols.   

COEFFICIENT OF A MONOMIAL:  The coefficient of a monomial is the value of the numerical expression found by substituting 

the number 1 into all the variable symbols in the monomial. 

Sometimes the coefficient is considered as a constant (like the constant 𝑎 in 𝑎𝑥2) instead of an actual number.  In those 

cases, when a monomial is expressed as a product of a constant and variables, then the constant is called a constant 

coefficient. 

DEGREE OF A MONOMIAL:  The degree of a nonzero monomial is the sum of the exponents of the variable symbols that 

appear in the monomial. 

For example, the degree of 7𝑥2𝑦4 is 6, the degree of 8𝑥 is 1, the degree of 8 is 0, and the degree of 9𝑥2𝑦3𝑥10 is 15. 

TERMS OF A POLYNOMIAL:  When a polynomial is expressed as a monomial or a sum of monomials, each monomial in the 

sum is called a term of the polynomial. 

A monomial can now be described as a polynomial with only one term.  But please realize that the word term means 

many, seemingly disparate things in mathematics (e.g., sin(𝑥) is often called a term of the expression sin(𝑥) + cos(𝑥)), 

whereas monomial is a specific object.  This is why monomial is defined first, and then used to define a term of a 

polynomial. 

STANDARD FORM OF A POLYNOMIAL IN ONE VARIABLE:  A polynomial expression with one variable symbol 𝑥 is in standard form if 

it is expressed as,  

𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0, 

where 𝑛 is a nonnegative integer, and 𝑎0, 𝑎1, 𝑎2,…, 𝑎𝑛 are constant coefficients with 𝑎𝑛 ≠ 0.   

A polynomial expression in 𝑥 that is in standard form is often called a polynomial in 𝑥. 

The degree of the polynomial in standard form is the highest degree of the terms in the polynomial, namely 𝑛.  The term 

𝑎𝑛𝑥𝑛 is called the leading term and 𝑎𝑛 is called the leading coefficient.  The constant term is the value of the numerical 

expression found by substituting 0 into all the variable symbols of the polynomial, namely 𝑎0. 

In general, one has to be careful about determining the degree of polynomials that are not in standard form:  For 

example, the degree of the polynomial, 

(𝑥 + 1)2 − (𝑥 − 1)2, 

is not 2 since its standard form is 4𝑥. 

DEGREE OF A POLYNOMIAL IN ONE VARIABLE:  The degree of a polynomial expression in one variable is the degree of the 

polynomial in standard form that is equivalent to it. 

 

Exit Ticket  (5 minutes)  
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Name                                   Date                          

Lesson 5:  Putting It All Together 

 
Exit Ticket 
 

Jenny thinks that the expression below is equal to 𝑥2 − 4.  If you agree, show that she is correct.  If you disagree, show 

that she is wrong by rewriting this expression as a polynomial in standard form. 

 

(𝑥 − 2)3

𝑥 − 2
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Exit Ticket Sample Solutions 

 

Jenny thinks that the expression below is equal to 𝒙𝟐 − 𝟒.  If you agree, show that she is correct.  If you disagree, show 

that she is wrong by rewriting this expression as a polynomial in standard form. 

(𝒙 − 𝟐)𝟑

𝒙 − 𝟐
 

Multiple approaches are possible to justify why Jenny is incorrect.  One possible solution is shown below. 

Jenny is incorrect.  To perform this operation, you can first divide by 𝒙 − 𝟐 and then expand the quotient. 

(𝒙 − 𝟐)𝟑

𝒙 − 𝟐
= (𝒙 − 𝟐)𝟐 

= 𝒙𝟐 − 𝟒𝒙 + 𝟒 

 
 
Problem Set Sample Solutions 

 

For Problems 1–7, rewrite each expression as a polynomial in standard form. 

1. (𝟑𝒙 − 𝟒)𝟑 

𝟐𝟕𝒙𝟑 − 𝟏𝟎𝟖𝒙𝟐 + 𝟏𝟒𝟒𝒙 − 𝟔𝟒 

 

2. (𝟐𝒙𝟐 − 𝒙𝟑 − 𝟗𝒙 + 𝟏) − (𝒙𝟑 + 𝟕𝒙 − 𝟑𝒙𝟐 + 𝟏) 

−𝟐𝒙𝟑 + 𝟓𝒙𝟐 − 𝟏𝟔𝒙 

 

3. (𝒙𝟐 − 𝟓𝒙 + 𝟐)(𝒙 − 𝟑) 

𝒙𝟑 − 𝟖𝒙𝟐 + 𝟏𝟕𝒙 − 𝟔 

 

4. 
𝒙𝟒−𝒙𝟑−𝟔𝒙𝟐−𝟗𝒙+𝟐𝟕

𝒙−𝟑
 

𝒙𝟑 + 𝟐𝒙𝟐 − 𝟗 

 

5. (𝒙 + 𝟑)(𝒙 − 𝟑) − (𝒙 + 𝟒)(𝒙 − 𝟒) 

𝟕 

 

6. (𝒙 + 𝟑)𝟐 − (𝒙 + 𝟒)𝟐 

−𝟐𝒙 − 𝟕 

 

7. 
𝒙𝟐−𝟓𝒙+𝟔

𝒙−𝟑
+

𝒙𝟑−𝟏

𝒙−𝟏
 

𝒙𝟐 + 𝟐𝒙 − 𝟏 

  

MP.3 
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For Problems 8–9:  Quick, what would be the first and last terms of the polynomial if it was written in standard form? 

8. 𝟐(𝒙𝟐 − 𝟓𝒙 + 𝟒) − (𝒙 + 𝟑)(𝒙 + 𝟐) 

The first and last term are 𝒙𝟐 and 𝟐. 

 

9. 
(𝒙−𝟐)𝟓 

𝒙−𝟐
 

The first and last terms are 𝒙𝟒 and 𝟏𝟔. 

 

10. The profit a business earns by selling 𝒙 items is given by the polynomial function  

𝒑(𝒙) = 𝒙(𝟏𝟔𝟎 − 𝒙) − (𝟏𝟎𝟎𝒙 + 𝟓𝟎𝟎). 

What is the last term in the standard form of this polynomial?  What does it mean in this situation? 

The last term is −𝟓𝟎𝟎, so that 𝒑(𝟎) = −𝟓𝟎𝟎.  This means that if no items are sold, the company would lose $𝟓𝟎𝟎. 

 

11. Explain why these two quotients are different.  Compute each one.  What do they have in common?  Why? 

(𝒙 − 𝟐)𝟒

𝒙 − 𝟐
 𝐚𝐧𝐝 

𝒙𝟒 − 𝟏𝟔

𝒙 − 𝟐
  

The quotients are 𝒙𝟑 − 𝟔𝒙𝟐 + 𝟏𝟐𝒙 − 𝟖 and 𝒙𝟑 + 𝟐𝒙𝟐 + 𝟒𝒙 + 𝟖. 

They are different because the dividends are not equivalent expressions.  The quotients have the first and last terms 

in common because division is going to reduce the degree by the difference of the degrees of the numerator and 

denominator, and their leading coefficients were both one.  When multiplying, the last term of a polynomial in 

standard form is the product of the lowest degree terms in each factor.  Therefore, when dividing, the last term of 

the quotient will be the quotient of the last term of the dividend and divisor. 

 

12. What are the area and perimeter of the figure?  Assume there is a right angle at each vertex. 

The missing horizontal side length is 𝟖𝒙 + 𝟏𝟓.  The missing vertical side length is 𝟗𝒙 + 𝟐.  I determined these lengths 

by subtracting the vertical lengths and by subtracting the horizontal lengths.  The perimeter is 𝟓𝟎𝒙 + 𝟖𝟎.  I got this 

by adding the lengths of all of the sides together.  The area can be found by splitting the shape either horizontally or 

vertically into two rectangles.  If split vertically, the areas of the rectangles are (𝟏𝟓𝒙 + 𝟏𝟎)(𝟐𝒙 + 𝟏𝟓) and  

(𝟔𝒙 + 𝟖)(𝟖𝒙 + 𝟏𝟓).  The total area of the figure is the sum of these two products, 𝟕𝟖𝒙𝟐 + 𝟑𝟗𝟗𝒙 + 𝟐𝟕𝟎.  

𝟏𝟓𝒙 + 𝟏𝟎 

𝟏𝟎𝒙 + 𝟑𝟎 

𝟔𝒙 + 𝟖 

𝟐𝒙 + 𝟏𝟓 
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Scaffolding: 

Provide support for struggling 
learners by asking them to recall 
the two methods for dividing 
polynomials:  the reverse tabular 
method and the long division 
algorithm.  Provide a table with the 
dividend and divisor in the proper 
location or a long division problem 
with the missing zero coefficient 
terms already in place. 

903 2  xxx  

27003 23  xxxx  

Or using the tabular method as 

shown. 

 

 
 
 
 

Ask advanced learners to generate 
a similar sequence of problems that 
have a quotient equal to 𝑥 − 4 and 
to then explain how they 
determined their expressions. 

Lesson 6:  Dividing by 𝒙 − 𝒂 and by 𝒙 + 𝒂  

 
Student Outcomes  

 Students work with polynomials with constant coefficients to derive and use polynomial identities. 

 

Lesson Notes  

Students extend their understanding of polynomial division to abstract situations that involve division by 𝑥 − 𝑎 and by 

𝑥 + 𝑎.  Through this work they derive the fundamental identities for the difference of two squares and the sum and 

difference of two cubes.  Further, they connect this work back to divisibility of integers.  This lesson bridges the first five 

lessons of Topic A of this module with the upcoming lessons in Topic B in which students extend work with division and 

polynomial identities to factoring.  In those lessons, they learn the usefulness of the factored form of a polynomial 

expression to solve polynomial equations and analyze the zeros of the graph of a polynomial function.  This lesson 

addresses aspects of several standards (most notably A.SSE.A.2 and A.APR.C.4) in a way that also emphasizes MP.7 and 

MP.8.  Students recognize and then generalize patterns and use them to fluently rewrite polynomial expressions and 

perform polynomial operations. 

 

Classwork 

Opening  (1 minute) 

Students may choose to solve the problems using either the reverse tabular method 

or long division.  Encourage and model both approaches throughout this lesson.  Have 

students work with a partner on these problems and then randomly select pairs to 

present each of the problems on the board.  Begin by paraphrasing the following 

statement as students start the Opening Exercise: 

 Today we want to observe patterns when we divide certain types of 

polynomials and make some generalizations to help us quickly compute 

quotients without having to do the work involved with the reverse tabular 

method or the long division algorithm. 

 

Opening Exercise  (4 minutes) 

 

Opening Exercise 

Find the following quotients, and write the quotient in standard form. 

a. 
𝒙𝟐−𝟗

𝒙−𝟑
 

𝒙 + 𝟑 

  

 

 𝑥 +3  

 𝑥2 3𝑥 𝑥 

𝑥2 −3𝑥  −9 −3 

0𝑥 −9 
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b. 
𝒙𝟑−𝟐𝟕

𝒙−𝟑
 

𝒙𝟐 + 𝟑𝒙 + 𝟗 

 

c. 
𝒙𝟒−𝟖𝟏

𝒙−𝟑
 

𝒙𝟑 + 𝟑𝒙𝟐 + 𝟗𝒙 + 𝟐𝟕 

 

Discussion  (5 minutes) 

Have students come to the board to present their solutions.  After students check and correct their work, discuss the 

patterns that they notice in these problems. 

 What patterns do you notice in the Opening Exercise? 

 The expression 𝑥 − 3 divides without a remainder into all three dividends, which means it is a factor of 

each dividend. 

 The dividends are differences of powers of 𝑥 and powers of 3.  For example, 𝑥3 − 27 = 𝑥3 − 33. 

 The degree of the quotient is 1 less than the degree of the dividend.  The terms of the quotient are 

products of powers of 𝑥 and powers of 3.  The exponents on 𝑥 decrease by one, and the exponents on 3 

increase by one.  Each term is positive. 

 Use the patterns you observed in the Opening Exercise to determine the quotient of 
𝑥5−243

𝑥−3
.  Explain your 

reasoning. 

 Since 243 = 35, we should be able to apply the same pattern, and the quotient should be  

𝑥4 + 3𝑥3 + 9𝑥2 + 27𝑥 + 81. 

 Test your conjecture by using long division or the reverse tabular method to compute the quotient. 

 The result is the same. 

 

Exercise 1  (5 minutes) 

Have students work in groups of two or three to complete these problems.  Have them make and test conjectures about 

the quotient that results in each problem.  Have the groups divide up the work so at least two students are working on 

each problem.  Then have them share their results in their small groups. 

 

Exercise 1 

1. Use patterns to predict each quotient.  Explain how you arrived at your prediction, and then test it by applying the 

reverse tabular method or long division.   

a. 
𝒙𝟐−𝟏𝟒𝟒

𝒙−𝟏𝟐
 

The quotient is 𝒙 + 𝟏𝟐.  I arrived at this conclusion by noting that 𝟏𝟒𝟒 = 𝟏𝟐𝟐, so I could apply the patterns in 

the previous problems to obtain the result. 
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b. 
𝒙𝟑−𝟖

𝒙−𝟐
 

The quotient is 𝒙𝟐 + 𝟐𝒙 + 𝟒.  The dividend is the difference of two perfect cubes, 𝒙𝟑 and 𝟐𝟑 = 𝟖.  Based on 

the patterns in the Opening Exercise, the quotient will be a quadratic polynomial with coefficients that are 

ascending powers of 𝟐 starting with 𝟐𝟎. 

 

c. 
𝒙𝟑−𝟏𝟐𝟓

𝒙−𝟓
 

The quotient is 𝒙𝟐 + 𝟓𝒙 + 𝟐𝟓.  As in part (b), the numerator is a difference of cubes, 𝒙𝟑 and 𝟓𝟑 = 𝟏𝟐𝟓.  Based 

on the patterns in the Opening Exercise, the quotient will be a quadratic polynomial with coefficients that are 

ascending powers of 𝟓 starting with 𝟓𝟎. 

 

d. 
𝒙𝟔−𝟏

𝒙−𝟏
 

The dividend is the difference of two values raised to the 6th power, 𝟏𝟔 = 𝟏 and 𝒙𝟔.  Extending the patterns 

we’ve seen in the Opening Exercise and the previous exercises, the quotient should be a 5th degree polynomial 

with coefficients that are ascending powers of 1, so all coefficients will be 1.  Thus, the quotient is  

𝒙𝟓 + 𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝟏. 

 

Once this exercise concludes and students have presented their work to the class, they should be ready to generalize a 

pattern for the quotient of 
𝑥𝑛−𝑎𝑛

𝑥−𝑎
.  The next example establishes this identity for the case where 𝑛 = 2. 

 

Example 1  (4 minutes)  

The reverse tabular method can be used to compute quotients like the ones in the 

Opening Exercise and Exercise 1 for any constant 𝑎.  In this way, it is possible to verify that 

the patterns noticed work for any value of 𝑎.  In this example and Exercises 1 and 2, 

students work with specific values for the exponents.  An interesting extension for 

advanced students would be to show that  

𝑥𝑛 − 𝑎𝑛

𝑥 − 𝑎
= 𝑥𝑛−1 + 𝑎𝑥𝑛−2 + 𝑎2𝑥𝑛−3 + ⋯ 𝑎𝑛−2𝑥 + 𝑎𝑛−1𝑥0 

using the reverse tabular method. 

 

 

 

 

 

 

 

 

𝑥3 − 8

𝑥 − 2
 

𝑥3 − 27

𝑥 − 3
 

𝑥3 − 64

𝑥 − 4
, 

Scaffolding: 

Provide additional support 
here by considering specific 
values of 𝑎 for each part.  For 
example, ask students to work 
with 

and then ask them to solve the 
problem using the tabular 
method for the variables  
𝑥 and 𝑎. 
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Example 1 

What is the quotient of  
𝒙𝟐−𝒂𝟐

𝒙−𝒂
?  Use the reverse tabular method or long division. 

 𝒙 +𝒂  

 

𝒙𝟐 𝒂𝒙 𝒙 

𝒙𝟐 −𝒂𝒙 −𝒂𝟐 −𝒂 

𝟎𝒙 −𝒂𝟐   

 

Exercise 2  (7 minutes)  

 

Exercise 2 

2. Work with your group to find the following quotients. 

a. 
𝒙𝟑−𝒂𝟑

𝒙−𝒂
 

𝒙𝟐 + 𝒂𝒙 + 𝒂𝟐 

 

b. 
𝒙𝟒−𝒂𝟒

𝒙−𝒂
 

𝒙𝟑 + 𝒂𝒙𝟐 + 𝒂𝟐𝒙 + 𝒂𝟑 

 

Before moving on, discuss these results as a whole class.  It may be necessary to model a solution to the third question 

below if students are still struggling with connecting division back to multiplication. 

 What patterns do you notice in the quotient? 

 The terms are always added, and each term is a product of a power of 𝑥 and a power of 𝑎.  As the 

powers of 𝑥 decrease by 1 for each consecutive term, the powers of 𝑎 increase by 1. 

 How do these patterns compare to the ones you observed in the opening exercises? 

 They support the patterns we discovered earlier.  This work shows that we can quickly compute the 

quotient for any problem that fits the pattern. 

 How can you rewrite these division problems as multiplication problems? 

 The dividend is equal to the product of the quotient and the divisor.  For example,  

𝑥3 − 𝑎3 = (𝑥 − 𝑎)(𝑥2 + 𝑎𝑥 + 𝑎2).  The other problems would be 𝑥2 − 𝑎2 = (𝑥 − 𝑎)(𝑥 + 𝑎) and  

𝑥4 − 𝑎4 = (𝑥 − 𝑎)(𝑥3 + 𝑎𝑥2 + 𝑎2𝑥 + 𝑎3). 

 

 

 

The result of dividing 𝒙𝟐 − 𝒂𝟐  

by 𝒙 − 𝒂 is 𝒙 + 𝒂. 

MP.7 
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Exercise 3  (6 minutes) 

The focus shifts to division by 𝑥 + 𝑎.  The expression 𝑥 + 𝑎 divides into the difference of two squares 𝑥2 − 𝑎2 without a 

remainder.  Some students may be surprised that it does not divide without a remainder into the difference of two 

cubes.  However, 𝑥 + 𝑎 does divide without a remainder into the sum of two cubes but not into the sum of two squares.  

Prior to this point, students have not worked with polynomial division problems that result in a remainder.  While 

discussing these results as a class, draw a parallel to division of integers.  Polynomial division with remainders is 

addressed in later lessons in this same module.  At this point, lead students to conclude that some of these quotients 

produce identities that may be helpful for quickly dividing polynomials and some do not.  

Ask students to think about how these problems would be different if dividing by 𝑥 + 𝑎.  Have students discuss their 

ideas with a partner before starting this exercise.  Students will most likely assume that there are similar patterns for 

dividing the sums of squares and cubes, but they may be surprised by their results to parts (b) and (c).  For groups that 

finish early, have them guess and check the results of dividing 𝑥4 + 𝑎4 and 𝑥4 − 𝑎4 by 𝑥 + 𝑎.  Provide additional 

concrete examples with numerical values of 𝑎 such as 𝑎 = 2, 3, 4,… if needed to reinforce this concept. 

The focus of this part of the lesson is to derive the three identities provided in the Lesson Summary and for students to 

realize that 𝑥 + 𝑎 and 𝑥 − 𝑎 do not divide into the sum of squares 𝑥2 + 𝑎2 without a remainder. 

 

3. Predict without performing division whether or not the divisor will divide into the dividend without a remainder for 

the following problems.  If so, find the quotient.  Then check your answer. 

a. 
𝒙𝟐−𝒂𝟐

𝒙+𝒂
 

The quotient is 𝒙 − 𝒂.  This makes sense because we already showed that the result when dividing by 𝒙 − 𝒂  

is 𝒙 + 𝒂. 

 

b. 
𝒙𝟑−𝒂𝟑

𝒙+𝒂
 

This problem does not divide without a remainder; therefore, 𝒙 + 𝒂 is not a factor of 𝒙𝟑 − 𝒂𝟑. 

 

c. 
𝒙𝟐+𝒂𝟐

𝒙+𝒂
 

This problem does not divide without a remainder; therefore, 𝒙 + 𝒂 is not a factor of 𝒙𝟐 + 𝒂𝟐. 

 

d. 
𝒙𝟑+𝒂𝟑

𝒙+𝒂
 

The quotient is 𝒙𝟐 − 𝒂𝒙 + 𝒂𝟐.  This result is similar to our work in Exercise 2 except the middle term is −𝒂𝒙 

instead of 𝒂𝒙. 

 

Exercise 4  (5 minutes) 

Students consider the special case when 𝑎 = 1 for different values of 𝑛.  They should be able to quickly generalize a 

pattern.  In part (b), introduce the use of the ellipsis (…) to indicate the missing powers of 𝑥 when displaying the general 

result since all of the terms cannot be written.  In this exercise, students are asked to look for patterns in the quotient 
𝑥𝑛−1

𝑥−1
 for integer exponents 𝑛 greater than 1. 
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4.  

a. Find the quotient  
𝒙𝒏−𝟏

𝒙−𝟏
 for 𝒏 = 𝟐, 𝟑, 𝟒, and 𝟖. 

For 𝒏 = 𝟐, the quotient is 𝒙 + 𝟏.  

For 𝒏 = 𝟑, the quotient is 𝒙𝟐 + 𝒙 + 𝟏. 

For 𝒏 = 𝟒, the quotient is 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏. 

For 𝒏 = 𝟖, the quotient is 𝒙𝟕 + 𝒙𝟔 + 𝒙𝟓 + ⋯ + 𝒙 + 𝟏. 

 

b. What patterns do you notice? 

The degree of the quotient is 𝟏 less than the degree of the dividend.  The degree of each term is 𝟏 less than 

the degree of the previous term.  The last term is 𝟏.  The number of terms will be equal to the degree of the 

dividend. 

 

c. Use your work in part (a) to write an expression equivalent to 
𝒙𝒏−𝟏

𝒙−𝟏
  for any integer 𝒏 > 𝟏. 

𝒙𝒏−𝟏 + 𝒙𝒏−𝟐 + 𝒙𝒏−𝟑 + ⋯ + 𝒙𝟏 + 𝟏 

 

Closing  (5 minutes) 

The summary details the identities derived in this lesson.  Ask students to summarize the important results of this lesson 

either in writing, to a partner, or as a class.  Take the opportunity to informally assess their understanding of this lesson 

before moving on to the Exit Ticket.  Note that the last identity has not been formally derived; inductive reasoning was 

used to generalize the pattern based on the work done in Exercise 4. 

 

 

 

Exit Ticket  (3 minutes) 

In this Exit Ticket, students actually apply the identities they worked with to determine quotients.  This Exit Ticket allows 

the teacher to test their fluency in working with these new relationships.  The Lesson Summary is reinforced by having 

them rewrite each quotient as a product.  

𝒙𝟐 − 𝒂𝟐 = (𝒙 − 𝒂)(𝒙 + 𝒂) 
𝒙𝟑 − 𝒂𝟑 = (𝒙 − 𝒂)(𝒙𝟐 + 𝒂𝒙 + 𝒂𝟐) 

𝒙𝟑 + 𝒂𝟑 = (𝒙 + 𝒂)(𝒙𝟐 − 𝒂𝒙 + 𝒂𝟐), 

Lesson Summary 

Based on the work in this lesson, it can be concluded that the following statements are true for all real values of 𝒙 

and 𝒂: 

and it seems that the following statement is also an identity for all real values of 𝒙 and 𝒂: 

𝒙𝒏 − 𝟏 = (𝒙 − 𝟏)(𝒙𝒏−𝟏 + 𝒙𝒏−𝟐 + 𝒙𝒏−𝟑 + ⋯ + 𝒙𝟏 + 𝟏), for integers 𝒏 > 𝟏. 
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Name                                   Date                          

Lesson 6:  Dividing by 𝒙 − 𝒂 and by 𝒙 + 𝒂 

 
Exit Ticket 
 

Compute each quotient using the identities you discovered in this lesson. 

 

 

1. 
𝑥4−16

𝑥−2
 

 

 

 

 

 

 

2. 
𝑥3+1000

𝑥+10
 

 

 

 

 

 

 

3. 
𝑥5−1

𝑥−1
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Exit Ticket Sample Solutions 

 

Compute each quotient using the identities you discovered in this lesson.   

1. 
𝒙𝟒−𝟏𝟔

𝒙−𝟐
 

𝒙𝟒−𝟏𝟔

𝒙−𝟐
= 𝒙𝟑 + 𝟐𝒙𝟐 + 𝟒𝒙 + 𝟖  

 

2. 
𝒙𝟑+𝟏𝟎𝟎𝟎

𝒙+𝟏𝟎
 

𝒙𝟑+𝟏𝟎𝟎𝟎

𝒙+𝟏𝟎
= 𝒙𝟐 − 𝟏𝟎𝒙 + 𝟏𝟎𝟎  

 

3. 
𝒙𝟓−𝟏

𝒙−𝟏
 

𝒙𝟓−𝟏

𝒙−𝟏
= 𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏  

 

 
Problem Set Sample Solutions 

 

1. Compute each quotient. 

a. 
𝒙𝟐−𝟔𝟐𝟓

𝒙−𝟐𝟓
 

𝒙 + 𝟐𝟓   

 

b. 
𝒙𝟑+𝟏

𝒙+𝟏
 

𝒙𝟐 − 𝒙 + 𝟏 

 

c. 
𝒙𝟑−

𝟏

𝟖

𝒙−
𝟏

𝟐

 

𝒙𝟐 +
𝟏

𝟐
𝒙 +

𝟏

𝟒
 

 

d. 
𝒙𝟐−𝟎.𝟎𝟏

𝒙−𝟎.𝟏
 

𝒙 + 𝟎. 𝟏 
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2. In the next exercises, you can use the same identities you applied in the previous problem.  Fill in the blanks in the 

problems below to help you get started.  Check your work by using the reverse tabular method or long division to 

make sure you are applying the identities correctly. 

a. 
𝟏𝟔𝒙𝟐−𝟏𝟐𝟏

𝟒𝒙−𝟏𝟏
=

(___)𝟐−(___)𝟐

𝟒𝒙−𝟏𝟏
= (___) + 𝟏𝟏 

𝟒𝒙, 𝟏𝟏, 𝟒𝒙 

 

b. 
𝟐𝟓𝒙𝟐−𝟒𝟗

𝟓𝒙+𝟕
=

(___)𝟐−(___)𝟐

𝟓𝒙+𝟕
= (___) − (___) =  ___________________ 

𝟓𝒙, 𝟕, 𝟓𝒙, 𝟕, 𝟓𝒙 − 𝟕 

 

c. 
𝟖𝒙𝟑−𝟐𝟕

𝟐𝒙−𝟑
=

(___)𝟑−(___)𝟑

𝟐𝒙−𝟑
= (___)𝟐 + (___)(___) + (___)𝟐 = _______________________________ 

𝟐𝒙, 𝟑, 𝟐𝒙, 𝟐𝒙, 𝟑, 𝟑, 𝟒𝒙𝟐 + 𝟔𝒙 + 𝟗 

 

3. Show how the patterns and relationships learned in this lesson could be applied to solve the following arithmetic 

problems by filling in the blanks. 

a. 
𝟔𝟐𝟓−𝟖𝟏

𝟏𝟔
=

(___)𝟐−(𝟗)𝟐

𝟐𝟓−(___)
= (___) + (___) = 𝟑𝟒 

𝟐𝟓𝟐 − 𝟗𝟐

𝟐𝟓 − 𝟗
= 𝟐𝟓 + 𝟗 = 𝟑𝟒 

 

b. 
𝟏𝟎𝟎𝟎−𝟐𝟕

𝟕
=

(___)𝟑−(___)𝟑

(___)−𝟑
= (___)𝟐 + (𝟏𝟎)(___) + (___)𝟐 = __________ 

𝟏𝟎𝟑 − 𝟑𝟑

𝟏𝟎 − 𝟑
= 𝟏𝟎𝟐 + 𝟏𝟎(𝟑) + 𝟑𝟐 = 𝟏𝟑𝟗 

 

c. 
𝟏𝟎𝟎−𝟗

𝟕
=

(___)𝟐−(___)𝟐

(___)−𝟑
= __________ 

𝟏𝟎𝟐 − 𝟑𝟐

𝟏𝟎 − 𝟑
= 𝟏𝟎 + 𝟑 = 𝟏𝟑 

 

d. 
𝟏𝟎𝟎𝟎+𝟔𝟒

𝟏𝟒
=

(___)𝟑+(___)𝟑

(___)+(___)
= (___)𝟐 − (___)(___) + (___)𝟐 = __________ 

𝟏𝟎𝟑 + 𝟒𝟑

𝟏𝟎 + 𝟒
= 𝟏𝟎𝟐 − 𝟏𝟎(𝟒) + 𝟒𝟐 = 𝟕𝟔 

 

4. Apply the identities from this lesson to compute each quotient.  Check your work using the reverse tabular method 

or long division. 

a. 
𝟏𝟔𝒙𝟐−𝟗

𝟒𝒙+𝟑
 

𝟒𝒙 − 𝟑  

 

b. 
𝟖𝟏𝒙𝟐−𝟐𝟓

𝟏𝟖𝒙−𝟏𝟎
 

𝟗

𝟐
𝒙 +

𝟓

𝟐
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c. 
𝟐𝟕𝒙𝟑−𝟖

𝟑𝒙−𝟐
 

𝟗𝒙𝟐 + 𝟔𝒙 + 𝟒  

 

5. Extend the patterns and relationships you learned in this lesson to compute the following quotients.  Explain your 

reasoning, and then check your answer by using long division or the tabular method. 

a. 
𝟖+𝒙𝟑

𝟐+𝒙
 

The quotient is 𝟒 − 𝟐𝒙 + 𝒙𝟐.  This problem has the variable and constant terms reversed using the 

commutative property, so it is the same as computing (𝒙𝟑 + 𝟖) ÷ (𝒙 + 𝟐). 

 

b. 
𝒙𝟒−𝒚𝟒

𝒙−𝒚
 

The quotient is 𝒙𝟑 + 𝒙𝟐𝒚 + 𝒙𝒚𝟐 + 𝒚𝟑.  This problem is similar to Opening Exercise part (c), except that instead 

of 𝟖𝟏 and 𝟑 in the dividend and quotient, we have a power of 𝒚.  You can also extend the patterns for  
𝒙𝟑−𝒂𝟑

𝒙−𝒂
= 𝒙𝟐 + 𝒂𝒙𝟐 + 𝒂𝟐 using the variable 𝒚 instead of the variable 𝒂. 

 

c. 
𝟐𝟕𝒙𝟑+𝟖𝒚𝟑

𝟑𝒙+𝟐𝒚
 

The quotient is 𝟗𝒙𝟐 − 𝟔𝒙𝒚 + 𝟒𝒚𝟐.  In this example, 𝟑𝒙 is in the 𝒙 position, and 𝟐𝒚 is in the 𝒂 position.  Then, 

the divisor fits the pattern of 𝒙𝟑 + 𝒂𝟑. 

 

d. 
𝒙𝟕−𝒚𝟕

𝒙−𝒚
 

The quotient is 𝒙𝟔 + 𝒙𝟓𝒚 + 𝒙𝟒𝒚𝟐 + 𝒙𝟑𝒚𝟑 + 𝒙𝟐𝒚𝟒 + 𝒙𝒚𝟓 + 𝒚𝟔.  In this problem, replace 𝟏 with 𝒚 and extend 

the powers of 𝒚 pattern using the identities in the Lesson Summary. 
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Lesson 7:  Mental Math 

 
Student Outcomes  

 Students perform arithmetic by using polynomial identities to describe numerical relationships. 

 

Lesson Notes 

Students continue exploring the usefulness of polynomial identities to perform arithmetic calculations.  This work 

reinforces the essential understanding of standards A-APR and A-SEE.  The lesson concludes by discussing prime and 

composite numbers and using polynomial identities to check whether a number is prime or composite.  This lesson ties 

into the work in the next lesson, which further investigates prime numbers.  

The tree diagram analysis, touched upon later in the lesson, offers a connection to some of the probability work from 

later in this course. 

 

Classwork  

Opening  (1 minute) 

Students perform arithmetic that they might not have thought possible without the assistance of a calculator or 

computer.  To motivate this lesson, mention a multiplication problem of the form (𝑎 − 𝑏)(𝑎 + 𝑏) that is difficult to 

calculate without pencil and paper, such as 87 ⋅ 93.  Perhaps even time students to see how long it takes them to do this 

calculation without a calculator. 

 Today we use the polynomial identities derived in Lesson 6 to perform a variety of calculations quickly using 

mental arithmetic. 

 

Opening Exercise  (3 minutes) 

Have students complete the following exercises.  Ask students to discuss their ideas with a partner, and then have them 

summarize their thoughts on the lesson handout.  These two exercises build upon the concept of division of polynomials 

developed in previous lessons by addressing both multiplication and division. 

 

Opening Exercise 

a. How are these two equations related? 

𝒙𝟐−𝟏

𝒙+𝟏
= 𝒙 − 𝟏 and 𝒙𝟐 − 𝟏 = (𝒙 + 𝟏)(𝒙 − 𝟏)   

They represent the same relationship between the expressions 𝒙𝟐 − 𝟏, 𝒙 − 𝟏, and 𝒙 + 𝟏 as long as 𝒙 ≠ −𝟏.  

One shows the relationship as division and the other as multiplication.   

 

b. Explain the relationship between the polynomial identities  

𝒙𝟐 − 𝟏 = (𝒙 + 𝟏)(𝒙 − 𝟏) and 𝒙𝟐 − 𝒂𝟐 = (𝒙 − 𝒂)(𝒙 + 𝒂). 

The expression 𝒙𝟐 − 𝟏 is of the form 𝒙𝟐 − 𝒂𝟐, with 𝒂 = 𝟏.  Note that this works with 𝒂 = −𝟏 as well.  
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Discussion  (8 minutes) 

Call on a student to share his or her solutions to the Opening Exercise.  Then invite other students to add their thoughts 

to the discussion.  This discussion should show students how to apply the difference of two squares identity to quickly 

find the product of two numbers.  Use the questions below to prompt a discussion. 

 Consider (𝑥 − 1)(𝑥 + 1) = 𝑥2 − 1.  If 𝑥 = 100, what number sentence is represented by this identity?  Which 

side of the equation is easier to compute? 

 This is 99 ⋅ 101 = 1002 − 1.   

 Computing 1002 − 1 is far easier than the original multiplication. 

 Now let’s consider the more general 𝑥2 − 𝑎2 = (𝑥 − 𝑎)(𝑥 + 𝑎).  Keep 𝑥 = 100, and test some small positive 

integer values for 𝑎.  What multiplication problem does each one represent? 

 How does the identity (𝑥 − 𝑎)(𝑥 + 𝑎) = 𝑥2 − 𝑎2 make these multiplication problems easier? 

 Let 𝑥 = 100 and 𝑎 = 5. 

(𝑥 − 𝑎)(𝑥 + 𝑎) = 𝑥2 − 𝑎2 

95 ⋅ 105 = (100 − 5)(100 + 5) = 1002 − 52 

Therefore, 95 ⋅ 105 = 1002 − 52 = 10000 − 25 = 9975. 

 

Let 𝑥 = 100 and 𝑎 = 7. 

(𝑥 − 𝑎)(𝑥 + 𝑎) = 𝑥2 − 𝑎2 

93 ⋅ 107 = (100 − 7)(100 + 7) = 1002 − 72 

Therefore, 93 ⋅ 107 = 1002 − 72 = 10000 − 49 = 9951. 

 Do you notice any patterns? 

 The products in these examples are differences of squares. 

 The factors in the product are exactly ‘𝑎’ above and ‘𝑎’ below 100. 

 How could you use the difference of two squares identity to multiply 92 ∙ 108?  How did you determine the 

values of 𝑥 and 𝑎? 

 You could let 𝑥 = 100 and 𝑎 = 8.  We must figure out each number’s distance from 100 on the number 

line. 

 How would you use the difference of two squares identity to multiply 87 ∙ 93?  What values should you select 

for 𝑥 and 𝑎?  How did you determine them? 

 We cannot use 100, but these two numbers are 3 above and 3 below 90.  So we can use 

(90 − 3)(90 + 3) = 902 − 32 = 8100 − 9 = 8091. 

 In general, 𝑥 is the mean of the factors, and 𝑎 is half of the absolute value of the difference between 

the factors. 

Depending on the level of students, it may be appropriate to wait until after Exercise 1 to make a generalized statement 

about how to determine the 𝑥 and 𝑎 values used to solve these problems.  They may need to experiment with some 

additional problems before they are ready to generalize a pattern. 
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Exercise 1  (4 minutes) 

Have students work individually and then check their answers with a partner.  Make sure they write out their steps as in 

the sample solutions.  After a few minutes, invite students to share one or two solutions on the board. 

 

Exercise 1 

1. Compute the following products using the identity 𝒙𝟐 − 𝒂𝟐 = (𝒙 − 𝒂)(𝒙 + 𝒂).  Show your steps. 

a. 𝟔 ⋅ 𝟖 

 

𝟔 ⋅ 𝟖 = (𝟕 − 𝟏)(𝟕 + 𝟏) 

= 𝟕𝟐 − 𝟏𝟐 

= 𝟒𝟗 − 𝟏 

= 𝟒𝟖 

 

b. 𝟏𝟏 ⋅ 𝟏𝟗 

 

𝟏𝟏 ⋅ 𝟏𝟗 = (𝟏𝟓 − 𝟒)(𝟏𝟓 + 𝟒) 

= 𝟏𝟓𝟐 − 𝟒𝟐 

= 𝟐𝟐𝟓 − 𝟏𝟔 

= 𝟐𝟎𝟗 

 

c. 𝟐𝟑 ⋅ 𝟏𝟕 

 

𝟐𝟑 ⋅ 𝟏𝟕 = (𝟐𝟎 + 𝟑)(𝟐𝟎 − 𝟑) 

= 𝟐𝟎𝟐 − 𝟑𝟐 

= 𝟒𝟎𝟎 − 𝟗 

= 𝟑𝟗𝟏 

 

d. 𝟑𝟒 ⋅ 𝟐𝟔 

 

𝟑𝟒 ⋅ 𝟐𝟔 = (𝟑𝟎 + 𝟒)(𝟑𝟎 − 𝟒) 

= 𝟑𝟎𝟐 − 𝟒𝟐 

= 𝟗𝟎𝟎 − 𝟏𝟔 

= 𝟖𝟖𝟒 

 

Discussion  (5 minutes) 

At this point, make sure students have a clear way to determine how to write a product as the difference of two squares.  

Then put these problems on the board. 

56 ∙ 63  24 ∙ 76  998 ∙ 1002 

Give them a few minutes to struggle with these problems.  While it is possible to use the identity to rewrite each 

expression, the first two problems do not make for an easy calculation when written as the difference of two squares.  

The third problem is easy even though the numbers are large. 

 Which product is easier to compute using mental math?  Explain your reasoning. 

 The last one is the easiest.  In the first one, the numbers have a mean of 59.5, which is not easy to 

square mentally.  The second example would be 502 − 262, which is not so easy to calculate mentally. 

 Can the product of any two positive integers be written as the difference of two squares? 

 Yes, but not all of them will be rewritten in a form that makes computation easy. 

 If you wanted to impress your friends with your mental math abilities, and they gave you these three problems 

to choose from, which one would you pick and why? 

509 ∙ 493 511 ∙ 489 545 ∙ 455 

 This middle one is the easiest since the numbers are 11 above and below the number 500. 

MP.3 
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Discussion  (10 minutes) 

At this point, it is possible to introduce the power of algebra over the calculator. 

 The identity 𝑥2 − 𝑎2 is just the 𝑛 = 2 case of the identity  

 𝑥𝑛 − 𝑎𝑛 = (𝑥 − 𝑎)(𝑥𝑛−1 + 𝑎𝑥𝑛−2 + 𝑎2𝑥𝑛−2 + ⋯ 𝑎𝑛−1).   

 How might we use this general identity to quickly count mentally? 

To see how, let’s doodle.  A tree is a figure made of points called vertices and segments called branches.  My 

tree splits into two branches at each vertex.   

 

 

 

 How many vertices does my tree have?   

Allow students to count the vertices for a short while, but don’t dwell on the answer. 

 It is difficult to count the vertices of this tree, so let’s draw it in a more organized way. 

 

Present the following drawing of the tree, with vertices aligned in rows corresponding to their levels. 
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For the following question, give students time to write or share their thinking with a neighbor.   

 How many vertices are in each level?  Find a formula to describe the number of vertices in level 𝑛. 

 The number of vertices in each level follows this sequence:  {1, 2, 4, 8, 16, … }, so in level 𝑛 there are 

2𝑛−1 vertices. 

 How many vertices are there in all 5 levels?  Explain how you know. 

 The number of vertices in our tree, which has five levels, is 24 + 23 + 22 + 2 + 1.  First, we recognize 

that 2 − 1 = 1, so we can rewrite our expression as (2 − 1)(24 + 23 + 22 + 2 + 1).  If we let 𝑥 = 2, 

this numerical expression becomes a polynomial expression. 

24 + 23 + 22 + 2 + 1 = (2 − 1)(24 + 23 + 22 + 2 + 1) 

= (𝑥 − 1)(𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1) 

= 𝑥5 − 1 

= 25 − 1 

= 31 

 How could you find the total number of vertices in a tree like this one with 𝑛 levels?  Explain.  

 Repeating what we did with 𝑛 = 5 in the previous step, we have  

2𝑛−1 + 2𝑛−2 + ⋯ + 2 + 1 = (2 − 1)(2𝑛−1 + 2𝑛−2 + ⋯ + 2 + 1) 

= (𝑥 − 1)(𝑥𝑛−1 + 𝑥𝑛−2 + ⋯ + 𝑥 + 1) 

= 𝑥𝑛 − 1 

= 2𝑛 − 1. 

Thus, a tree like this one with 𝑛 levels has 2𝑛 − 1 vertices.   

 

 Now, suppose I drew a tree with 30 levels: 

 

 

 How many vertices would a tree with 30 levels have?  

 According to the formula we developed in the last step, the number of vertices is  

 2𝑛 − 1 = 230 − 1. 

MP.3 
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 Would you prefer to count all 1,073,741,823 vertices? 

 No 

 

Discussion  (5 minutes) 

This discussion is designed to setup the general identity for 𝑥𝑛 − 𝑎𝑛 to identify some composite numbers in the next 

lesson. 

 Recall that a prime number is a positive integer greater than 1 whose only 

positive integer factors are 1 and itself.  A composite number can be written as 

the product of positive integers with at least one factor that is not 1 or itself. 

 Suppose that 𝑎, 𝑏, and 𝑛 are positive integers with 𝑏 > 𝑎.  What does the 

identity 𝑥𝑛 − 𝑎𝑛 = (𝑥 − 𝑎)(𝑥𝑛−1 + 𝑎𝑥𝑛−2 + 𝑎2𝑥𝑛−3 + ⋯ + 𝑎𝑛−1) suggest 

about whether or not the number 𝑏𝑛 − 𝑎𝑛 is prime? 

 We see that 𝑏𝑛 − 𝑎𝑛 is divisible by 𝑏 − 𝑎 and that 

𝑏𝑛 − 𝑎𝑛 = (𝑏 − 𝑎)(𝑏𝑛−1 + 𝑎𝑏𝑛−2 + ⋯ + 𝑎𝑛−1). 

 If 𝑏 − 𝑎 = 1, then we do not know if 𝑏𝑛 − 𝑎𝑛 is prime because we do not know  

if 𝑏𝑛−1 + 𝑎𝑏𝑛−2 + ⋯ + 𝑎𝑛−1is prime.  For example, 152 − 142 = 225 − 196 = 29 is prime,  

but 172 − 162 = 289 − 256 = 33 is composite. 

 But, if 𝑏 − 𝑎 > 1, then we know that that 𝑏𝑛 − 𝑎𝑛 is not prime.   

 Use the identity 𝑏𝑛 − 𝑎𝑛 = (𝑏 − 𝑎)(𝑏𝑛−1 + 𝑎𝑏𝑛−2 + 𝑎2𝑏𝑛−3 + ⋯ + 𝑎𝑛−1) to determine whether or not 143 

is prime.  Check your work using a calculator. 

 Let 𝑏 = 12, 𝑎 = 1, and 𝑛 = 2.  Since 𝑏 − 𝑎 is a factor of 𝑏𝑛 − 𝑎𝑛, and 𝑏 − 𝑎 = 12 − 1 = 11, we know 

that 11 is a factor of 143, which means that 143 is not prime.  The calculator shows 143 = 11 ∙ 13. 

 We could have used a calculator to determine that 11 ⋅ 13 = 143, so that 143 is not prime.  Will a calculator 

help us determine whether 2100 − 1 is prime?  Try it. 

 The calculator will have difficulty calculating a number this large. 

 Can we determine whether or not 2100 − 1 is prime using identities from this lesson? 

 We can try to apply the following identity. 

𝑥𝑛 − 1 = (𝑥 − 1)(𝑥𝑛−1 + 𝑥𝑛−2 + ⋯ + 1) 

 If we let 𝑛 = 100, then this identity does not help us because 1 divides both composites and primes. 

2100 − 1 = (2 − 1)(299 + 298 + ⋯ 2 + 1) 

 But, what if we look at this problem a bit differently? 

2100 − 1 = (24)25 − 1 = 1625 − 1 = (16 − 1)(1624 + 1623 + ⋯ + 16 + 1) 

 We can see now that 2100 − 1 is divisible by 15, so 2100 − 1 is not prime. 

 What can we conclude from this discussion? 

 If we can write a positive integer as the difference of squares of nonconsecutive integers, then that 

integer is composite.  

  

Scaffolding: 

If students are struggling with 
the words prime and 
composite, try doing a quick  
T-chart activity in which 
students classify numbers as 
prime or composite on either 
side of the T.  
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Exercises 2–3  (4 minutes) 

 

Exercises 2–3 

2. Find two additional factors of 𝟐𝟏𝟎𝟎 − 𝟏. 

𝟐𝟏𝟎𝟎 − 𝟏 = (𝟐𝟓)𝟐𝟎 − 𝟏 

= 𝟑𝟐𝟐𝟎 − 𝟏 

= (𝟑𝟐 − 𝟏)(𝟑𝟐𝟏𝟗 + 𝟑𝟐𝟏𝟖 + ⋯ + 𝟑𝟐 + 𝟏) 

𝟐𝟏𝟎𝟎 − 𝟏 = (𝟐𝟐)𝟓𝟎 − 𝟏 

= 𝟒𝟓𝟎 − 𝟏 

= (𝟒 − 𝟏)(𝟒𝟒𝟗 + 𝟒𝟒𝟖 + ⋯ + 𝟒 + 𝟏) 

Thus 𝟑𝟏 is a factor and so is 𝟑.  

 

3. Show that 𝟖𝟑 − 𝟏 is divisible by 𝟕. 

𝟖𝟑 − 𝟏 = (𝟖 − 𝟏)(𝟖𝟐 + 𝟖 + 𝟏) = 𝟕 ⋅ 𝟕𝟑 

 

Closing  (2 minutes) 

Ask students to write a mental math problem that they can now do easily and to explain why the calculation can be done 

simply. 

Ask students to summarize the important parts of the lesson, either in writing, to a partner, or as a class.  Use this 

opportunity to informally assess their understanding of the lesson.  The following are some important summary 

elements:  

 

 

 

Exit Ticket  (3 minutes)  

Lesson Summary 

Based on the work in this lesson, students can convert differences of squares into products (and vice versa) using 

𝒙𝟐 − 𝒂𝟐 = (𝒙 − 𝒂)(𝒙 + 𝒂). 

If 𝒙, 𝒂, and 𝒏 are integers with (𝒙 − 𝒂) ≠ ±𝟏 and 𝒏 > 𝟏, then numbers of the form 𝒙𝒏 − 𝒂𝒏 are not prime because 

𝒙𝒏 − 𝒂𝒏 = (𝒙 − 𝒂)(𝒙𝒏−𝟏 + 𝒂𝒙𝒏−𝟐 + 𝒂𝟐𝒙𝒏−𝟑 + ⋯ + 𝒂𝒏−𝟐𝒙 + 𝒂𝒏−𝟏). 
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Name                                   Date                          

Lesson 7:  Mental Math 

 
Exit Ticket 
 

1. Explain how you could use the patterns in this lesson to quickly compute (57)(43). 

 

 

 

 

 

 

 

 

2. Jessica believes that 103 − 1 is divisible by 9.  Support or refute her claim using your work in this lesson. 
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Exit Ticket Sample Solutions 

 

1. Explain how you could use the patterns in this lesson to quickly compute (𝟓𝟕)(𝟒𝟑). 

Subtract 𝟒𝟗 from 𝟐, 𝟓𝟎𝟎.  That would be 𝟐, 𝟒𝟓𝟏.  You can use the identity 𝒙𝟐 − 𝒂𝟐 = (𝒙 + 𝒂)(𝒙 − 𝒂).  In this case, 

𝒙 = 𝟓𝟎 and 𝒂 = 𝟕. 

 

2. Jessica believes that 𝟏𝟎𝟑 − 𝟏 is divisible by 𝟗.  Support or refute her claim using your work in this lesson. 

Since we recognize that 𝟗 = 𝟏𝟎 − 𝟏, then 
𝟏𝟎𝟑−𝟏

𝟗
 fits the pattern of  

𝒙𝟑−𝒂𝟑

𝒙−𝒂
 where 𝒙 = 𝟏𝟎 and 𝒂 = 𝟏.  Therefore, 

𝟏𝟎
𝟑

−𝟏

𝟗
=

𝟏𝟎
𝟑

−𝟏

𝟏𝟎−𝟏
= 𝟏𝟎𝟐 + 𝟏𝟎 + 𝟏 = 𝟏𝟏𝟏,  

and Jessica is correct.   

 

Problem Set Sample Solutions 

 

1. Using an appropriate polynomial identity, quickly compute the following products.  Show each step.  Be sure to 

state your values for 𝒙 and 𝒂. 

a. 𝟒𝟏 ⋅ 𝟏𝟗 

 

𝒂 = 𝟏𝟏, 𝒙 = 𝟑𝟎 

(𝒙 + 𝒂)(𝒙 − 𝒂) = 𝒙𝟐 − 𝒂𝟐 

(𝟑𝟎 + 𝟏𝟏)(𝟑𝟎 − 𝟏𝟏) = 𝟑𝟎𝟐 − 𝟏𝟏𝟐 

= 𝟗𝟎𝟎 − 𝟏𝟐𝟏 

= 𝟕𝟕𝟗 

 

b. 𝟗𝟗𝟑 ⋅ 𝟏, 𝟎𝟎𝟕 

 

𝒂 = 𝟕, 𝒙 = 𝟏𝟎𝟎𝟎 

(𝒙 − 𝒂)(𝒙 + 𝒂) = 𝒙𝟐 − 𝒂𝟐 

(𝟏𝟎𝟎𝟎 − 𝟕)(𝟏𝟎𝟎𝟎 + 𝟕) = 𝟏𝟎𝟎𝟎𝟐 − 𝟕𝟐 

= 𝟏 𝟎𝟎𝟎 𝟎𝟎𝟎 − 𝟒𝟗 

= 𝟗𝟗𝟗 𝟗𝟓𝟏 

 

c. 𝟐𝟏𝟑 ⋅ 𝟏𝟖𝟕 𝒂 = 𝟏𝟑, 𝒙 = 𝟐𝟎𝟎 
(𝒙 − 𝒂)(𝒙 + 𝒂) = 𝒙𝟐 − 𝒂𝟐 

(𝟐𝟎𝟎 − 𝟏𝟑)(𝟐𝟎𝟎 + 𝟏𝟑) = 𝟐𝟎𝟎𝟐 − 𝟏𝟑𝟐 

= 𝟒𝟎𝟎𝟎𝟎 − 𝟏𝟔𝟗 

= 𝟑𝟗𝟖𝟑𝟏 

 

d. 𝟐𝟗 ⋅ 𝟓𝟏 

 

𝒂 = 𝟏𝟏, 𝒙 = 𝟒𝟎 

(𝒙 − 𝒂)(𝒙 + 𝒂) = 𝒙𝟐 − 𝒂𝟐 

(𝟒𝟎 − 𝟏𝟏)(𝟒𝟎 + 𝟏𝟏) = 𝟒𝟎𝟐 − 𝟏𝟏𝟐 

= 𝟏𝟔𝟎𝟎 − 𝟏𝟐𝟏 

= 𝟏𝟒𝟕𝟗 

 

e. 𝟏𝟐𝟓 ⋅ 𝟕𝟓 𝒂 = 𝟐𝟓, 𝒙 = 𝟏𝟎𝟎 

(𝒙 − 𝒂)(𝒙 + 𝒂) = 𝒙𝟐 − 𝒂𝟐 

(𝟏𝟎𝟎 − 𝟐𝟓)(𝟏𝟎𝟎 + 𝟐𝟓) = 𝟏𝟎𝟎𝟐 − 𝟐𝟓𝟐 

= 𝟏𝟎𝟎𝟎𝟎 − 𝟔𝟐𝟓 

= 𝟗𝟑𝟕𝟓 

MP.3 
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2. Give the general steps you take to determine 𝒙 and 𝒂 when asked to compute a product such as those in Problem 1. 

The number 𝒙 is the mean (average is also acceptable) of the two factors, and 𝒂 is the positive difference between 𝒙 

and either factor. 

 

3. Why is 𝟏𝟕 ⋅ 𝟐𝟑 easier to compute than 𝟏𝟕 ⋅ 𝟐𝟐? 

The mean of 𝟏𝟕 and 𝟐𝟐 is 𝟏𝟗. 𝟓, whereas the mean of 𝟏𝟕 and 𝟐𝟑 is the integer 𝟐𝟎.  I know that the square of 𝟐𝟎 is 

𝟒𝟎𝟎 and the square of 𝟑 is 𝟗.  However, I cannot quickly compute the squares of 𝟏𝟗. 𝟓 and 𝟐. 𝟓. 

 

4. Rewrite the following differences of squares as a product of two integers. 

a. 𝟖𝟏 − 𝟏 

 

𝟖𝟏 − 𝟏 = 𝟗𝟐 − 𝟏𝟐 

= (𝟗 − 𝟏)(𝟗 + 𝟏) 

= 𝟖 ⋅ 𝟏𝟎 

 

b. 𝟒𝟎𝟎 − 𝟏𝟐𝟏 

 

𝟒𝟎𝟎 − 𝟏𝟐𝟏 = 𝟐𝟎𝟐 − 𝟏𝟏𝟐 

= (𝟐𝟎 − 𝟏𝟏)(𝟐𝟎 + 𝟏𝟏) 

= 𝟗 ⋅ 𝟑𝟏 

 

5. Quickly compute the following differences of squares. 

a. 𝟔𝟒𝟐 − 𝟏𝟒𝟐 

 

𝟔𝟒𝟐 − 𝟏𝟒𝟐 = (𝟔𝟒 − 𝟏𝟒)(𝟔𝟒 + 𝟏𝟒) 

= 𝟓𝟎 ⋅ 𝟕𝟖 

= 𝟑𝟗𝟎𝟎 

 

b. 𝟏𝟏𝟐𝟐 − 𝟖𝟖𝟐 𝟏𝟏𝟐𝟐 − 𝟖𝟖𝟐 = (𝟏𝟏𝟐 − 𝟖𝟖)(𝟏𝟏𝟐 + 𝟖𝟖) 

= 𝟐𝟒 ⋅ 𝟐𝟎𝟎 

= 𝟒𝟖𝟎𝟎 

 

c. 𝟕𝟖𝟓𝟐 − 𝟐𝟏𝟓𝟐 𝟕𝟖𝟓𝟐 − 𝟐𝟏𝟓𝟐 = (𝟕𝟖𝟓 − 𝟐𝟏𝟓)(𝟕𝟖𝟓 + 𝟐𝟏𝟓) 

= 𝟓𝟕𝟎 ⋅ 𝟏𝟎𝟎𝟎 

= 𝟓𝟕𝟎 𝟎𝟎𝟎 

 

6. Is 𝟑𝟐𝟑 prime?  Use the fact that 𝟏𝟖𝟐 = 𝟑𝟐𝟒 and an identity to support your answer. 

No, 𝟑𝟐𝟑 is not prime because it is equal to 𝟏𝟖𝟐 − 𝟏.  Therefore, 𝟑𝟐𝟑 = (𝟏𝟖 − 𝟏)(𝟏𝟖 + 𝟏). 

Note:  This problem can also be solved through factoring. 

 

7. The number 𝟐𝟑 − 𝟏 is prime and so are 𝟐𝟓 − 𝟏 and 𝟐𝟕 − 𝟏.  Does that mean 𝟐𝟗 − 𝟏 is prime?  Explain why or why 

not. 

𝟐𝟗 − 𝟏 = (𝟐𝟑)𝟑 − 𝟏 

= (𝟐𝟑 − 𝟏)((𝟐𝟑)𝟐 + 𝟐𝟑(𝟏) + 𝟏𝟐) 

The factors are 𝟕 and 𝟕𝟑.  As such, 𝟐𝟗 − 𝟏 is not prime. 

 

8. Show that 𝟗, 𝟗𝟗𝟗, 𝟗𝟗𝟗, 𝟗𝟗𝟏 is not prime without using a calculator or computer. 

Note that  𝟗 𝟗𝟗𝟗 𝟗𝟗𝟗 𝟗𝟗𝟏 = 𝟏𝟎 𝟎𝟎𝟎 𝟎𝟎𝟎 𝟎𝟎𝟎 − 𝟗.  Since 𝟏𝟎𝟏𝟎 is the square of 𝟏𝟎𝟓,  𝟏𝟎, 𝟎𝟎𝟎, 𝟎𝟎𝟎, 𝟎𝟎𝟎 is the 

square of 𝟏𝟎𝟎 𝟎𝟎𝟎.  Since 𝟗 is the square of 𝟑, 𝟗 𝟗𝟗𝟗 𝟗𝟗𝟗 𝟗𝟗𝟏 = 𝟏𝟎𝟎 𝟎𝟎𝟎𝟐 − 𝟑𝟐, which is divisible by 𝟏𝟎𝟎 𝟎𝟎𝟎 − 𝟑 

and by 𝟏𝟎𝟎 𝟎𝟎𝟎 + 𝟑. 
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9. Show that 𝟗𝟗𝟗, 𝟗𝟕𝟑 is not prime without using a calculator or computer. 

Note that 𝟗𝟗𝟗 𝟗𝟕𝟑 = 𝟏 𝟎𝟎𝟎 𝟎𝟎𝟎 − 𝟐𝟕.  Since 𝟐𝟕 = 𝟑𝟑 and 𝟏 𝟎𝟎𝟎 𝟎𝟎𝟎 = 𝟏𝟎𝟎𝟑 are both perfect cubes, we have 

𝟗𝟗𝟗 𝟗𝟕𝟑 = 𝟏𝟎𝟎𝟑 − 𝟑𝟑.  Therefore, we know that 𝟗𝟗𝟗, 𝟗𝟕𝟑 is divisible by 𝟏𝟎𝟎 − 𝟑 = 𝟗𝟕. 

 

10. Find a value of 𝒃 so that the expression 𝒃𝒏 − 𝟏 is always divisible by 𝟓 for any positive integer 𝒏.  Explain why your 

value of 𝒃 works for any positive integer 𝒏. 

There are many correct answers.  If 𝒃 = 𝟔, then the expression 𝟔𝒏 − 𝟏 will always be divisible by 𝟓 because  

𝟓 = 𝟔 − 𝟏.  This will work for any value of 𝒃 that is one more than a multiple of 𝟓, such as 𝒃 = 𝟏𝟎𝟏 or 𝒃 = 𝟏𝟏. 

 

11. Find a value of 𝒃 so that the expression 𝒃𝒏 − 𝟏 is always divisible by 𝟕 for any positive integer 𝒏.  Explain why your 

value of 𝒃 works for any positive integer 𝒏. 

There are many correct answers.  If 𝒃 = 𝟖, then the expression 𝟖𝒏 − 𝟏 will always be divisible by 𝟕 because  

𝟕 = 𝟖 − 𝟏.  This will work for any value of 𝒃 that is one more than a multiple of 𝟕, such as 𝒃 = 𝟓𝟎 or 𝒃 = 𝟏𝟓. 

 

12. Find a value of 𝒃 so that the expression 𝒃𝒏 − 𝟏 is divisible by both 𝟕 and 9 for any positive integer 𝒏.  Explain why 

your value of 𝒃 works for any positive integer 𝒏. 

There are multiple correct answers, but one simple answer is 𝒃 = 𝟔𝟒.  Since 𝟔𝟒 = 𝟖𝟐, 𝟔𝟒𝒏 − 𝟏 = (𝟖𝟐)𝒏 − 𝟏  

has a factor of 𝟖𝟐 − 𝟏, which factors into (𝟖 − 𝟏)(𝟖 + 𝟏) =  𝟕 ∙ 𝟗. 
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Lesson 8:  The Power of Algebra—Finding Primes  

 
Student Outcomes  

 Students apply polynomial identities to the detection of prime numbers. 

 

Lesson Notes  

This lesson applies the identities students have been working with in previous lessons to finding prime numbers, a rich 

topic with a strong historical background.  Many famous mathematicians have puzzled over prime numbers, and their 

work is the foundation for mathematics used today in the RSA encryption algorithm that provides for secure Internet 

transmissions.  This is an engaging topic for students and is readily accessible to them because of its current use in 

providing safe and secure electronic communications and transactions.  Students will be actively engaging several 

mathematical practice standards during this lesson, including making sense of problems (MP.1), looking for patterns, and 

seeing the structure in expressions (MP.7 and MP.8), as they investigate patterns with prime numbers.  The lesson 

includes many opportunities to prove conjectures (MP.3) as students gain experience using algebraic properties to prove 

statements about integers.  Several excellent resources are available for students wishing to learn more about prime 

numbers, their history, and their application to encryption and decryption.  A good starting place for additional 

exploration about prime numbers is the website The Prime Pages, http://primes.utm.edu/. 

 

Classwork  

Opening  (10 minutes) 

To motivate students, show the YouTube video on RSA encryption (http://www.youtube.com/watch?v=M7kEpw1tn50) 

to the class.  This video introduces students to encryption and huge numbers.  Encryption algorithms are the basis of all 

secure Internet transactions.  Today, many encryption algorithms rely on very large prime numbers or very large 

composite numbers that are the product of two primes to create an encryption key.  Often these numbers are Mersenne 

Primes—primes of the form 2𝑝 − 1, where 𝑝 is itself prime.  Interestingly, not all numbers in this form are prime.  As of 

December 2013, only 43 Mersenne Primes have been discovered.  Encourage students to research the following terms:  

Mersenne Primes, Data Encryption, and RSA.  The Opening Exercise along with the first examples engage students in the 

exploration of large primes. 

Mathematicians have tried for centuries to find a formula that always yields a prime number but have been unsuccessful 

in their quest.  The search for large prime numbers and a formula that will generate all the prime numbers has provided 

fertile ground for work in number theory.  The mathematician Pierre de Fermat (1601–1665, France) applied the 

difference of two squares identity to factor very large integers as the product of two prime numbers.  Up to this point, 

students have worked with numbers that can be expressed as the difference of two perfect squares.  If a prime number 

could be written as a difference of perfect squares 𝑎2 − 𝑏2, then it would have to be of the form (𝑎 + 𝑏)(𝑎 − 𝑏), where 

𝑎 and 𝑏 are consecutive whole numbers and 𝑎 + 𝑏 is prime.  The challenge is that not every pair of consecutive whole 

numbers yields a prime number when added.  For example, 3 + 4 = 7 is prime, but 4 + 5 = 9 is not.  This idea is further 

addressed in the last exercise and in the Problem Set. 

  

1 
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Opening Exercise  (10 minutes):  When is 𝟐𝒏 − 𝟏 prime and when is it 

composite?  

Before beginning this exercise, have students predict when an expression in this 

form will be prime and when it will be composite.  Questions like this are ideal 

places to engage students in constructing viable arguments. 

 When will this expression be prime and when will it be composite? 

 Student responses will vary.  Some may say always prime or 

always composite.  A response that goes back to the identity  

𝑥𝑛 − 1 = (𝑥 − 1)(𝑥𝑛−1 + 𝑥𝑛−2 +⋯+ 1) from the previous 

lesson is showing some good initial thinking. 

Students should work the Opening Exercise in small groups.  After about seven 

minutes of group work, have one student from each group come up and fill in the 

table values and the supporting work.  Then, lead a whole group discussion to 

debrief this problem.  

 

Opening Exercise:  When is 𝟐𝐧 − 𝟏 prime and when is it composite? 

Complete the table to investigate which numbers of the form 𝟐𝐧 − 𝟏 are prime and which are composite. 

Exponent 

𝒏 

Expression 

𝟐𝒏 − 𝟏 

Value Prime or Composite? 

Justify your answer if composite. 

𝟏 𝟐𝟏 − 𝟏 𝟏 Prime 

𝟐 𝟐𝟐 − 𝟏 𝟑 Prime 

𝟑 𝟐𝟑 − 𝟏 𝟕 Prime 

𝟒 𝟐𝟒 − 𝟏 𝟏𝟓 Composite (𝟑 ∙ 𝟓) 

𝟓 𝟐𝟓 − 𝟏 𝟑𝟏 Prime 

𝟔 𝟐𝟔 − 𝟏 𝟔𝟑 Composite (𝟕 ∙ 𝟗) 

𝟕 𝟐𝟕 − 𝟏 𝟏𝟐𝟕 Prime 

𝟖 𝟐𝟖 − 𝟏 𝟐𝟓𝟓 Composite (𝟓 ⋅ 𝟓𝟏) 

𝟗 𝟐𝟗 − 𝟏 𝟓𝟏𝟏 Composite (𝟕 ∙ 𝟕𝟑) 

𝟏𝟎 𝟐𝟏𝟎 − 𝟏 𝟏𝟎𝟐𝟑 Composite (𝟑𝟐 − 𝟏)(𝟑𝟐 + 𝟏) 

𝟏𝟏 𝟐𝟏𝟏 − 𝟏 𝟐𝟎𝟒𝟕 Composite (𝟐𝟑 ∙ 𝟖𝟗) 

 

What patterns do you notice in this table about which expressions are prime and which are composite? 

Answers will vary.  Suggested responses are in the discussion questions. 

 

Encourage students to use tools strategically as they work with these problems.  They should have a calculator available 

to determine if the larger numbers are composite.  When debriefing, point out the fact that students can use the 

difference of two squares identity to factor these expressions when the exponent is an even number. 

Use these questions to lead a short discussion on the results of this Opening Exercise. 

 

MP.2 
MP.7 

& 
MP.8 

Scaffolding: 

For more advanced students, consider 

posing the question:  Can you construct 

an expression that always yields a prime 

number?  Do this before starting the 

Opening Exercise, and then ask them to 

test their expressions. 

If students are having a hard time 

constructing an expression, consider 

asking the following questions:  Can you 

construct an expression that will always 

yield an even number?  Can you 

construct an expression that will always 

yield an odd number? 

If 𝑛 is an integer, then 2𝑛 is always an 

even number, and 2𝑛 + 1 is always an 

odd number. 

MP.3 
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 What patterns do you notice about which expressions are composite and which are prime? 

 When the exponent is an even number greater than 2, the result is composite and can be factored using 

this identity:  22𝑛 − 1 = (2𝑛 + 1)(2𝑛 − 1). 

 When the exponent is a prime number, the result is sometimes prime and sometimes not prime.   

211 − 1 was the first number with a prime exponent that was composite. 

 When the exponent is a composite odd number, the expression appears to be composite, but we have 

yet to prove that. 

 

The statements above are examples of the types of patterns students should notice as they complete the Opening 

Exercise.  If the class was not able to prove that the case for even exponents resulted in a composite number, encourage 

them to consider the identities learned in the last lesson involving the difference of two squares.  See if they can solve 

the problem with that hint.  Of course, that technique does not work when the exponent is odd.  Make sure students 

have articulated the answer to the last problem.  To transition to the next section, ask students how they might prove 

that 2𝑎𝑏 − 1 is composite when the exponent 𝑎𝑏 is an odd composite number.   

 

Example 1  (5 minutes):  Proving a Conjecture  

This example and the next exercise prove patterns students noticed in the table in the Opening Exercise.  Some 

scaffolding is provided, but feel free to adjust as needed for students.  Give students who need less support the 

conjecture on the board for Example 1 (without the additional scaffolding on the student pages); others may need more 

assistance to get started. 

 

Example 1:  Proving a Conjecture 

Conjecture: If 𝒎 is a positive odd composite number, then 𝟐𝒎 − 𝟏 is a composite number. 

 

Start with an identity:  𝒙𝒏 − 𝟏 = (𝒙 − 𝟏)(𝒙𝒏−𝟏 + 𝒙𝒏−𝟐 +⋯𝒙𝟏 + 𝟏) 

In this case, 𝒙 = 𝟐, so the identity above becomes: 

𝟐𝒎 − 𝟏 = (𝟐 − 𝟏)(𝟐𝒎−𝟏 + 𝟐𝒎−𝟐 +⋯+ 𝟐𝟏 + 𝟏) 

= (𝟐𝒎−𝟏 + 𝟐𝒎−𝟐 +⋯+ 𝟐𝟏 + 𝟏), 

and it is not clear whether or not 𝟐𝒎 − 𝟏 is composite.  

 

Rewrite the expression: Let 𝒎 = 𝒂𝒃 be a positive odd composite number.  Then 𝒂 and 𝒃 must also be odd, or else 

the product 𝒂𝒃 would be even.  The smallest such number 𝒎 is 𝟗, so we have 𝒂 ≥ 𝟑 and 

𝒃 ≥ 𝟑. 

Then we have 

𝟐𝒎 − 𝟏 = (𝟐𝒂)𝒃 − 𝟏 

= (𝟐𝒂 − 𝟏) ((𝟐𝒂)𝒃−𝟏 + (𝟐𝒂)𝒃−𝟐 +⋯+ (𝟐𝒂)𝟏 + 𝟏)⏟                        
Some number larger than 𝟏

. 

 
Since 𝒂 ≥ 𝟑, we have 𝟐𝒂 ≥ 𝟖; thus, 𝟐𝒂 − 𝟏 ≥ 𝟕.  Since the other factor is also larger than 𝟏, 𝟐𝒎 − 𝟏 is 

composite, and we have proven our conjecture.  

 

MP.2 
MP.7 

& 
MP.8 
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Exercises 1–3  (4 minutes) 

In these exercises, students confirm the conjecture proven in Example 1.  Emphasize that it does not really matter what 

the 2
nd

 factor is once the first one is known.  There is more than one way to solve each of these problems depending on 

how students decide to factor the exponent on the 2.  Students should work in small groups on these exercises.  

Encourage them to use a calculator to determine the prime factors of 537 in Exercise 3.  Have different groups present 

their results.  

 

Exercises 1–3 

For Exercises 1–3, find a factor of each expression using the method discussed in Example 1. 

1. 𝟐𝟏𝟓 − 𝟏 

(𝟐𝟓)𝟑 − 𝟏 = (𝟐𝟓 − 𝟏)((𝟐𝟓)𝟐 + 𝟐𝟓 + 𝟏) = (𝟑𝟏)(𝟑𝟐𝟐   +    𝟑𝟐  +   𝟏⏟            
 Some number larger than 𝟏

) 

Thus, 𝟑𝟏 is a factor of 𝟐𝟏𝟓 − 𝟏. 

 

2. 𝟐𝟗𝟗 − 𝟏 

(𝟐𝟑)𝟑𝟑 = (𝟐𝟑 − 𝟏)(𝟖𝟑𝟐 + 𝟖𝟑𝟏 +⋯+ 𝟖+ 𝟏⏟              
Some number larger than 𝟏

) 

Thus, 𝟕 is a factor of 𝟐𝟗𝟗 − 𝟏. 

 

3. 𝟐𝟓𝟑𝟕 − 𝟏  (Hint:  𝟓𝟑𝟕 is the product of two prime numbers that are both less than 𝟓𝟎.) 

Using a calculator we see that 𝟓𝟑𝟕 = 𝟏𝟕 ∙ 𝟑𝟏, so  

(𝟐𝟏𝟕)𝟑𝟏 − 𝟏 = (𝟐𝟏𝟕 − 𝟏)((𝟐𝟏𝟕)𝟑𝟎 +⋯+ 𝟐𝟏𝟕 + 𝟏⏟              
Some number larger than 𝟏

) . 

Thus, 𝟐𝟏𝟕 − 𝟏 is a factor of 𝟐𝟓𝟑𝟕 − 𝟏.  

 

Discussion  (4 minutes) 

Cryptography is the science of making codes, and cryptanalysis is the science of breaking codes.  The rise of Internet 

commerce has created a demand for encoding methods that are hard for unintended observers to decipher.  One 

encryption method, known as RSA encryption, uses very large numbers with hundreds of digits that are the product of 

two primes; the product of the prime factors is called the key.  The key itself is made public so anyone can encode using 

this system, but in order to break the code, you would have to know how to factor the key, and that is what is so 

difficult. 

 You had a hint in Exercise 3 that made it easier for you to factor a very large number, but what if you do not 

have any hints? 

 It would be almost impossible to factor the number because you would have to check all the prime 

numbers up to the square root of the exponent to find the factors. 

If you know the key, then decoding is not particularly difficult.  Programmers select a number that is almost impossible 

to factor without significant time and computing power and use this as the key to encode data and communications.  

The last exercise illuminates the logic behind modern encryption algorithms.  
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Exercise 4  (6 minutes):  How quickly can a computer factor a very large number?  

To determine if a number 𝑚 is prime, it is possible to just try dividing by every prime number 𝑝 that is less than √𝑚.  This 

takes the longest time if 𝑚 happens to be a perfect square.  In this exercise, students consider the speed it takes a 

certain computer algorithm to factor a square of a large prime number; this is the case where it should take the 

algorithm the longest to find the factorization.  Actual algorithms used to factor large numbers are quicker than this, but 

it still takes a really long time and works to the advantage of people who want to encrypt information electronically 

using these large numbers.  Introduce the problem and review the table as a whole class; then, have students answer 

the question in small groups.  Have students working in groups apply the given function to estimate the time it would 

take to factor a 32-digit number.  Make sure they convert their answer to years.  Because we are using an exponential 

function, the factorization time grows very rapidly.  Take the time after Exercise 4 to remind students that exponential 

functions increase very rapidly over intervals of equal length, ideas that were introduced in Algebra I and will be revisited 

in Module 3 of Algebra II.   

 

Exercise 4:  How quickly can a computer factor a very large number? 

4. How long would it take a computer to factor some squares of very large prime numbers? 

The time in seconds required to factor an 𝒏-digit number of the form 𝒑𝟐, where 𝒑 is a large prime, can roughly be 

approximated by 𝒇(𝒏) = 𝟑. 𝟒 × 𝟏𝟎(𝒏−𝟏𝟑)/𝟐 .  Some values of this function are listed in the table below. 

𝒑 𝒑𝟐 Number of Digits 

Time needed to 

factor the number 

(sec) 

𝟏𝟎, 𝟎𝟎𝟕 𝟏𝟎𝟎, 𝟏𝟒𝟎, 𝟎𝟒𝟗 𝟗 𝟎. 𝟎𝟑𝟒 
𝟏𝟎𝟎, 𝟎𝟎𝟑 𝟏𝟎, 𝟎𝟎𝟎, 𝟔𝟎𝟎, 𝟎𝟎𝟗 𝟏𝟏 𝟎. 𝟑𝟒 
𝟏, 𝟎𝟎𝟎, 𝟎𝟎𝟑 𝟏, 𝟎𝟎𝟎, 𝟎𝟎𝟔, 𝟎𝟎𝟎, 𝟎𝟎𝟗 𝟏𝟑 𝟑. 𝟒 
𝟏𝟎, 𝟎𝟎𝟎, 𝟎𝟏𝟗 𝟏𝟎𝟎, 𝟎𝟎𝟎, 𝟑𝟖𝟎, 𝟎𝟎𝟎, 𝟑𝟔𝟏 𝟏𝟓 𝟑𝟒 
𝟏𝟎𝟎, 𝟎𝟎𝟎, 𝟎𝟎𝟕 𝟏𝟎, 𝟎𝟎𝟎, 𝟎𝟎𝟏, 𝟒𝟎𝟎, 𝟎𝟎𝟎, 𝟎𝟒𝟗 𝟏𝟕 𝟑𝟒𝟎 
𝟏𝟎𝟎𝟎, 𝟎𝟎𝟎, 𝟎𝟎𝟕 𝟏, 𝟎𝟎𝟎, 𝟎𝟎𝟎, 𝟎𝟏𝟒, 𝟎𝟎𝟎, 𝟎𝟎𝟎, 𝟎𝟒𝟗 𝟏𝟗 𝟑, 𝟒𝟎𝟎 

Use the function given above to determine how long it would take this computer to factor a number that contains 

𝟑𝟐 digits.   

Using the given function, 𝒇(𝟑𝟐) = 𝟏. 𝟎𝟖 × 𝟏𝟎𝟏𝟎 seconds  = 𝟏.𝟖𝟎 × 𝟏𝟎𝟖 minutes = 𝟑 × 𝟏𝟎𝟔 hours = 𝟏𝟐𝟓, 𝟎𝟎𝟎 days, 

which is about 𝟑𝟒𝟐. 𝟓 years. 

 

After allowing groups to take a few minutes to evaluate the function and convert their answer to years, connect this 

exercise to the context of this situation by summarizing the following points. 

 Using a very fast personal computer with a straightforward algorithm, it would take about 342 years to factor 

a 32-digit number, making any secret message encoded with that number obsolete before it could be cracked 

with that computer. 

 However, we have extremely fast computers (much faster than one personal computer) and very efficient 

algorithms designed for those computers for factoring numbers.  These computers can factor a number 

thousands of times faster than the computer used above, but they are still not fast enough to factor huge 

composite numbers in a reasonable amount of time.   
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 In 2009, computer scientists were able to factor a 232-digit number in two years by distributing the work over 

hundreds of fast computers running at the same time.  That means any message encoded using that 232-digit 

number would take two years to decipher, by which time the message would no longer be relevant.  Numbers 

used to encode secret messages typically contain over 300 digits, and extremely important secret messages 

use numbers that have over 600 digits—a far bigger number than any bank of computers can currently factor 

in a reasonable amount of time. 

 

Closing  (2 minutes) 

There are better ways of factoring numbers than just checking all of the factors, but even advanced methods take a long 

time to execute.  Products of primes of the magnitude of 22048 are almost impossible to factor in a reasonable amount 

of time, which is how mathematics is used to guarantee the security of electronic transactions.  Give students a few 

minutes to summarize what they have learned in writing or by discussing it with a partner before starting the Exit Ticket.  

 Polynomial identities can help us prove conjectures about numbers and make calculations easier. 

 The field of number theory has contributed greatly to the fields of cryptography and cryptanalysis (code-

making and code-breaking). 

 

Exit Ticket  (4 minutes)  
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Name                                   Date                          

Lesson 8:  The Power of Algebra—Finding Primes 

 
Exit Ticket 
 

Express the prime number 31 in the form 2𝑝 − 1 where 𝑝 is a prime number and as a difference of two perfect squares 

using the identity (𝑎 + 𝑏)(𝑎 − 𝑏) = 𝑎2 − 𝑏2. 
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Exit Ticket Sample Solutions 

 

Express the prime number 𝟑𝟏 in the form 𝟐𝒑 − 𝟏 where 𝒑 is a prime number and as a difference of two perfect squares 

using the identity (𝒂 + 𝒃)(𝒂 − 𝒃) = 𝒂𝟐 − 𝒃𝟐. 

 

𝟑𝟏 = (𝟏𝟔 − 𝟏𝟓)(𝟏𝟔 + 𝟏𝟓) 

= 𝟏𝟔𝟐 − 𝟏𝟓𝟐 

𝟑𝟏 = 𝟐𝟓 − 𝟏 

 

 
 
Problem Set Sample Solutions 

 

1. Factor 𝟒𝟏𝟐 − 𝟏 in two different ways using the identity  𝒙𝒏 − 𝒂𝒏 = (𝒙 − 𝒂)(𝒙𝒏 + 𝒂𝒙𝒏−𝟏 + 𝒂𝟐𝒙𝒏−𝟐 +⋯+ 𝒂𝒏) and 

the difference of squares identity. 

(𝟒𝟔 − 𝟏)(𝟒𝟔 + 𝟏) 

(𝟒 − 𝟏)(𝟒𝟏𝟏 + 𝟒𝟏𝟎 +. . . + 𝟒 + 𝟏) 

 

2. Factor 𝟐𝟏𝟐 + 𝟏 using the identity 𝒙𝒏 + 𝒂𝒏 = (𝒙 + 𝒂)(𝒙𝒏 − 𝒂𝒙𝒏−𝟏 + 𝒂𝟐𝒙𝒏−𝟐 −⋯+ 𝒂𝒏) for odd numbers 𝒏. 

(𝟐𝟒)𝟑 + 𝟏 = (𝟐𝟒 + 𝟏)((𝟐𝟒)𝟐 − 𝟐𝟒 + 𝟏) 

 

3. Is 𝟏𝟎, 𝟎𝟎𝟎, 𝟎𝟎𝟎, 𝟎𝟎𝟏 prime?  Explain your reasoning. 

No, because it is of the form 𝟏𝟎𝟏𝟎 + 𝟏, which could be written as (𝟏𝟎𝟐)𝟓 + 𝟏 = (𝟏𝟎𝟐 + 𝟏)((𝟏𝟎𝟐)𝟒 − ⋯ + 𝟏). 

 

4. Explain why 𝟐𝒏 − 𝟏 is never prime if 𝒏 is a composite number. 

If 𝒏 is composite, then it can be written in the form 𝒏 = 𝒂𝒃, where 𝒂 and 𝒃 are integers larger than 𝟏.   

Then 𝟐𝒏 − 𝟏 = 𝟐𝒂𝒃 − 𝟏 = (𝟐𝒂)𝒃 − 𝟏 = (𝟐𝒂 − 𝟏)((𝟐𝒂)𝒃−𝟏 +⋯+ 𝟐𝒂 + 𝟏).  For 𝒂 > 𝟏, this number will be composite 

because 𝟐𝒂 − 𝟏 will be larger than 𝟏. 

 

5. Fermat numbers are of the form 𝟐𝒏 + 𝟏 where 𝒏 is a positive integer.  

a. Create a table of Fermat numbers for odd values of 𝒏 up to 𝟗. 

𝒏 𝟐𝒏 + 𝟏 

𝟏 𝟐𝟏 + 𝟏 = 𝟑 

𝟑 𝟐𝟑 + 𝟏 = 𝟗 

𝟓 𝟐𝟓 + 𝟏 = 𝟑𝟑 

𝟕 𝟐𝟕 + 𝟏 = 𝟏𝟐𝟗 

𝟗 𝟐𝟗 + 𝟏 = 𝟓𝟏𝟑 

 

b. Explain why if 𝒏 is odd, the Fermat number 𝟐𝒏 + 𝟏 will always be divisible by 𝟑. 

The Fermat number 𝟐𝒏 + 𝟏 will factor as (𝟐 + 𝟏)(𝟐𝒏−𝟏 − 𝟐𝒏−𝟐 +⋯+ 𝟏) using the identity in Exercise 2. 
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c. Complete the table of values for even values of 𝒏 up to 𝟏𝟐. 

𝒏 𝟐𝒏 + 𝟏 
𝟐 𝟐𝟐 + 𝟏 = 𝟓 

𝟒 𝟐𝟒 + 𝟏 = 𝟏𝟕 

𝟔 𝟐𝟔 + 𝟏 = 𝟔𝟓 

𝟖 𝟐𝟖 + 𝟏 = 𝟐𝟓𝟕 

𝟏𝟎 𝟐𝟏𝟎 + 𝟏 = 𝟏,𝟎𝟐𝟓 

𝟏𝟐 𝟐𝟏𝟐 + 𝟏 = 𝟒,𝟎𝟗𝟕 

 

d. Show that if 𝒏 can be written in the form 𝟐𝒌 where 𝒌 is odd, then 𝟐𝒏 + 𝟏 is divisible by 𝟓. 

Let 𝒏 = 𝟐𝒌, where 𝒌 is odd.  Then 𝟐𝒏 + 𝟏 = 𝟐𝟐𝒌 + 𝟏 = (𝟐𝟐)𝒌 + 𝟏 = (𝟐𝟐 + 𝟏) ((𝟐𝟐)𝒌−𝟏 +⋯+ 𝟐𝟐 + 𝟏)⏟                
number larger than 𝟏

.  

Since 𝟐𝟐 + 𝟏 = 𝟓, we know that 𝟓 is a factor of 𝟐𝒏 + 𝟏.  This only holds when 𝒌 is an odd number because 

that is the only case when we can factor expressions of the form 𝒙𝒌 + 𝟏. 

 

e. Which even numbers are not divisible by an odd number?  Make a conjecture about the only Fermat numbers 

that might be prime. 

The powers of 𝟐 are the only positive integers that are not divisible by any odd numbers.  This implies that 

when the exponent 𝒏 in 𝟐𝒏 + 𝟏 is a power of 𝟐, the Fermat number 𝟐𝒏 + 𝟏 might be prime.  

 

6. Complete this table to explore which numbers can be expressed as the difference of two perfect squares. 

Number Difference of Two Squares Number Difference of Two Squares 

𝟏 𝟏𝟐 − 𝟎𝟐 = 𝟏 − 𝟎 = 𝟏 𝟏𝟏 𝟔𝟐 − 𝟓𝟐 = 𝟑𝟔 − 𝟐𝟓 = 𝟏𝟏 

𝟐 Not possible 𝟏𝟐 𝟒𝟐 − 𝟐𝟐 = 𝟏𝟔 − 𝟒 = 𝟏𝟐 

𝟑 𝟐𝟐 − 𝟏𝟐 = 𝟒 − 𝟏 = 𝟑 𝟏𝟑 𝟕𝟐 − 𝟔𝟐 = 𝟒𝟗 − 𝟑𝟔 = 𝟏𝟑 

𝟒 𝟐𝟐 − 𝟎𝟐 = 𝟒 − 𝟎 = 𝟒 𝟏𝟒 Not possible 

𝟓 𝟑𝟐 − 𝟐𝟐 = 𝟗 − 𝟒 = 𝟓 𝟏𝟓 𝟖𝟐 − 𝟕𝟐 = 𝟔𝟒 − 𝟒𝟗 = 𝟏𝟓 

𝟔 Not possible 𝟏𝟔 𝟓𝟐 − 𝟑𝟐 = 𝟐𝟓 − 𝟗 = 𝟏𝟔 

𝟕 𝟒𝟐 − 𝟑𝟐 = 𝟏𝟔 − 𝟗 = 𝟕 𝟏𝟕 𝟗𝟐 − 𝟖𝟐 = 𝟖𝟏 − 𝟔𝟒 = 𝟏𝟕 

𝟖 𝟑𝟐 − 𝟏𝟐 = 𝟗 − 𝟏 = 𝟖 𝟏𝟖 Not possible 

𝟗 𝟓𝟐 − 𝟒𝟐 = 𝟐𝟓 − 𝟏𝟔 = 𝟗 𝟏𝟗 𝟏𝟎𝟐 − 𝟗𝟐 = 𝟏𝟎𝟎 − 𝟖𝟏 = 𝟏𝟗 

𝟏𝟎 Not possible 𝟐𝟎 𝟔𝟐 − 𝟒𝟐 = 𝟑𝟔 − 𝟏𝟔 = 𝟐𝟎 

 

a. For which odd numbers does it appear to be possible to write the number as the difference of two squares? 

It appears that we can write any positive odd number as the difference of two squares. 

 

b. For which even numbers does it appear to be possible to write the number as the difference of two squares? 

It appears that we can write any multiple of 𝟒 as the difference of two squares. 

 

c. Suppose that 𝒏 is an odd number that can be expressed as 𝒏 = 𝒂𝟐 − 𝒃𝟐 for positive integers 𝒂 and 𝒃.  What 

do you notice about 𝒂 and 𝒃? 

When 𝒏 is odd, 𝒂 and 𝒃 are consecutive whole numbers and 𝒂 + 𝒃 = 𝒏. 

 

d. Suppose that 𝒏 is an even number that can be expressed as 𝒏 = 𝒂𝟐 − 𝒃𝟐 for positive integers 𝒂 and 𝒃.  What 

do you notice about 𝒂 and 𝒃? 

When 𝒏 is an even number that can be written as a difference of squares, then 𝒏 is a multiple of 𝟒, and 𝒂 and 

𝒃 are either consecutive even integers or consecutive odd integers.  We also have 𝒂 + 𝒃 =
𝒏
𝟐

.   
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7. Express the numbers from 𝟐𝟏 to 𝟑𝟎 as the difference of two squares, if possible. 

This is not possible for 𝟐𝟐, 𝟐𝟔, and 𝟑𝟎.  Otherwise we have the following. 

𝟐𝟏 = 𝟏𝟏𝟐 − 𝟏𝟎𝟐  𝟐𝟕 = 𝟏𝟒𝟐 − 𝟏𝟑𝟐 
𝟐𝟑 = 𝟏𝟐𝟐 − 𝟏𝟏𝟐  𝟐𝟖 = 𝟖𝟐 − 𝟔𝟐  
𝟐𝟒 = 𝟕𝟐 − 𝟓𝟐  𝟐𝟗 = 𝟏𝟓𝟐 − 𝟏𝟒𝟐 
𝟐𝟓 = 𝟏𝟑𝟐 − 𝟏𝟐𝟐 

 

8. Prove this conjecture:  Every positive odd number 𝒎 can be expressed as the difference of the squares of two 

consecutive numbers that sum to the original number 𝒎. 

a. Let 𝒎 be a positive odd number.  Then for some integer 𝒏, 𝒎 = 𝟐𝒏+ 𝟏.  We will look at the consecutive 

integers 𝒏 and 𝒏 + 𝟏.  Show that 𝒏 + (𝒏 + 𝟏) = 𝒎.   

𝒏 + (𝒏 + 𝟏) = 𝒏 + 𝒏 + 𝟏 

= 𝟐𝒏 + 𝟏 

= 𝒎 

 

b. What is the difference of squares of 𝒏 + 𝟏 and 𝒏? 

(𝒏 + 𝟏)𝟐 − 𝒏𝟐 = 𝒏𝟐 + 𝟐𝒏+ 𝟏 − 𝒏𝟐 

= 𝟐𝒏 + 𝟏 

= 𝒎 

 

c. What can you conclude from parts (a) and (b)? 

We can write any positive odd number 𝒎 as the difference of squares of two consecutive numbers that sum 

to 𝒎. 

 

9. Prove this conjecture:  Every positive multiple of 𝟒 can be expressed as the difference of squares of two numbers 

that differ by 𝟐.  Use the table below to organize your work for parts (a)–(c). 

a. Write each multiple of 𝟒 in the table as a difference of squares. 

𝒏 𝟒𝒏 Difference of squares 

𝒂𝟐 − 𝒃𝟐 
𝒂 𝒃 

𝟏 𝟒 𝟐𝟐 − 𝟎𝟐 𝟐 0 

𝟐 𝟖 𝟑𝟐 − 𝟏𝟐 𝟑 𝟏 

𝟑 𝟏𝟐 𝟒𝟐 − 𝟐𝟐 𝟒 𝟐 

𝟒 𝟏𝟔 𝟓𝟐 − 𝟑𝟐 𝟓 𝟑 

𝟓 𝟐𝟎 𝟔𝟐 − 𝟒𝟐 𝟔 𝟒 

𝒏 𝟒𝒏 (         )𝟐 − (        )𝟐 𝒏 + 𝟏 𝒏 − 𝟏 

 

b. What do you notice about the numbers 𝒂 and 𝒃 that are squared?  How do they relate to the number 𝒏? 

The values of 𝒂 and 𝒃 in the differences of two squares differ by 𝟐 every time.  They are one larger and one 

smaller than 𝒏; that is, 𝒂 = 𝒏 + 𝟏 and 𝒃 = 𝒏 − 𝟏. 
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c. Given a positive integer of the form 𝟒𝒏, prove that there are integers 𝒂 and 𝒃 so that 𝟒𝒏 = 𝒂𝟐 − 𝒃𝟐 and that 

𝒂 − 𝒃 = 𝟐.  (Hint:  Refer to parts (a) and (b) for the relationship between 𝒏 and 𝒂 and 𝒃.) 

Define 𝒂 = 𝒏 + 𝟏 and 𝒃 = 𝒏 − 𝟏.  Then we can calculate 𝒂𝟐 − 𝒃𝟐 as follows. 

𝒂𝟐 − 𝒃𝟐 = (𝒏 + 𝟏)𝟐 − (𝒏− 𝟏)𝟐 

= ((𝒏 + 𝟏) + (𝒏 − 𝟏))((𝒏 + 𝟏) − (𝒏 − 𝟏)) 

= (𝟐𝒏)(𝟐) 

= 𝟒𝒏 

We can also see that  

𝒂 − 𝒃 = (𝒏 + 𝟏) − (𝒏 − 𝟏) 

= 𝒏 + 𝟏 − 𝒏 + 𝟏 

= 𝟐. 

Thus every positive multiple of 𝟒 can be written as a difference of squares of two integers that differ by 𝟐.  

 

10. The steps below prove that the only positive even numbers that can be written as a difference of square integers are 

the multiples of 𝟒.  That is, completing this exercise will prove that it is impossible to write a number of the form 

𝟒𝒏 − 𝟐 as a difference of square integers.  

a. Let 𝒎 be a positive even integer that we can write as the difference of square integers 𝒎 = 𝒂𝟐 − 𝒃𝟐.  Then 

𝒎 = (𝒂 + 𝒃)(𝒂 − 𝒃) for integers 𝒂 and 𝒃.  How do we know that either 𝒂 and 𝒃 are both even or 𝒂 and 𝒃 are 

both odd? 

If one of 𝒂 and 𝒃 is even and the other one is odd, then one of 𝒂𝟐 and 𝒃𝟐 is even and the other one is odd.  

Since the difference of an odd and an even number is odd, this means that 𝒎 = 𝒂𝟐 − 𝒃𝟐 would be odd.  Since 

we know that 𝒎 is even, it must be that either 𝒂 and 𝒃 are both even or 𝒂 and 𝒃 are both odd.   

 

b. Is 𝒂 + 𝒃 even or odd?  What about 𝒂 − 𝒃?  How do you know? 

Since 𝒂 and 𝒃 are either both odd or both even, we know that both 𝒂 + 𝒃 and 𝒂 − 𝒃 are even. 

 

c. Is 𝟐 a factor of 𝒂 + 𝒃?  Is 𝟐 a factor of 𝒂 − 𝒃?  Is 𝟒 a factor of (𝒂 + 𝒃)(𝒂 − 𝒃)?  Explain how you know.  

Because 𝒂 + 𝒃 and 𝒂 − 𝒃 are both even, 2 is a factor of both 𝒂 + 𝒃 and 𝒂 − 𝒃.  Thus, 𝟐𝟐 = 𝟒 is a factor of 

(𝒂 + 𝒃)(𝒂 − 𝒃). 

 

d. Is 𝟒 a factor of any integer of the form 𝟒𝒏 − 𝟐? 

No.  If 𝟒 were a factor of 𝟒𝒏 − 𝟐, we could factor it out:  𝟒𝒏 − 𝟐 = 𝟒(𝒏 −
𝟏
𝟐
).  But this means that 𝒏 −

𝟏
𝟐

 is an 

integer, which it clearly is not.  This means that 𝟒 is not a factor of any number of the form 𝟒𝒏 − 𝟐. 

 

e. What can you conclude from your work in parts (a)–(d)? 

If 𝒎 is a positive even integer and 𝒎 can be written as the difference of two square integers, then 𝒎 cannot 

be of the form 𝟒𝒏− 𝟐 for any integer 𝒏.  Another way to say this is that the positive integers of the form 

𝟒𝒏 − 𝟐 for some integer 𝒏 cannot be written as the difference of two square integers.  
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11. Explain why the prime number 𝟏𝟕 can only be expressed as the difference of two squares in only one way, but the 

composite number 𝟐𝟒 can be expressed as the difference of two squares in more than one way. 

Since every odd number can be expressed as the difference of two squares, 𝒂𝟐 − 𝒃𝟐 = (𝒂 + 𝒃)(𝒂 − 𝒃), the number 

𝟏𝟕 must fit this pattern.  Because 𝟏𝟕 is prime, there is only one way to factor 𝟏𝟕, which is 𝟏𝟕 = 𝟏 ∙ 𝟏𝟕. 

Let 𝒂 + 𝒃 = 𝟏𝟕 and 𝒂 − 𝒃 = 𝟏.  The two numbers that satisfy this system of equations are 𝟖 and 𝟗.  Thus, 

𝟏𝟕 = 𝟏 ∙ 𝟏𝟕 

= (𝟗 − 𝟖)(𝟗 + 𝟖) 

= 𝟗𝟐 − 𝟖𝟐. 

A composite number has more than one factorization, not all of which will lead to writing the number as the 

difference of squares of two integers.  For the number 𝟐𝟒, you could use 

𝟐𝟒 = 𝟐 ∙ 𝟏𝟐 

= (𝟕 − 𝟓)(𝟕 + 𝟓) 

= 𝟕𝟐 − 𝟓𝟐. 

Or, you could use 

𝟐𝟒 = 𝟒 ∙ 𝟔 

= (𝟓 − 𝟏)(𝟓 + 𝟏) 

= 𝟓𝟐 − 𝟏𝟐. 

 

12. Explain why you cannot use the factors of 𝟑 and 𝟖 to rewrite 𝟐𝟒 as the difference of two square integers. 

If 𝟐𝟒 = 𝟑 ∙ 𝟖, then 𝒂 − 𝒃 = 𝟑 and 𝒂 + 𝒃 = 𝟖.  The solution to this system of equations is (𝟓. 𝟓, 𝟐. 𝟓).  If we are 

restricting this problem to the set of whole numbers, then you cannot apply the identity to rewrite 𝟐𝟒 as the 

difference of two perfect squares where 𝒂 and 𝒃 are whole numbers.  It certainly is true that  

𝟐𝟒 = (𝟓. 𝟓 − 𝟐. 𝟓)(𝟓. 𝟓 + 𝟐. 𝟓) = 𝟓. 𝟓𝟐 − 𝟐. 𝟓𝟐, but this is not necessarily an easy way to calculate 𝟐𝟒. 

MP.3 
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Lesson 9:  Radicals and Conjugates 

 
Student Outcomes 

 Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or 

cube root) of their sum. 

 Students convert expressions to simplest radical form. 

 Students understand that the product of conjugate radicals can be viewed as the difference of two squares. 

 

Lesson Notes 

Because this lesson deals with radicals, it might seem out of place amid other lessons on 

polynomials.  A major theme, however, is the parallelism between the product of 

conjugate radicals and the difference of two squares.  There is also parallelism between 

taking the square root or cube root of a sum and taking the square of a sum; both give rise 

to an error sometimes called the freshman’s dream or the illusion of linearity.  If students 

are not careful, they may easily conclude that (𝑥 + 𝑦)𝑛 and 𝑥𝑛 + 𝑦𝑛 are equivalent 

expressions for all 𝑛 ≥ 0, when this is only true for 𝑛 = 1.  Additionally, this work with 

radicals prepares students for later work with radical expressions in Module 3.  

Throughout this lesson, students employ MP.7, as they see complicated expressions as 

being composed of simpler ones.  Additionally, the Opening Exercise offers further 

practice in making a conjecture (MP.3). 

 

Classwork 

Opening Exercise  (3 minutes) 

The Opening Exercise is designed to show students that they need to be cautious when working with radicals.  The 

multiplication and division operations combine with radicals in a predictable way, but the addition and subtraction 

operations do not.   

The square root of a product is the product of the two square roots.  For example, 

√4 ∙ 9 = √2 ∙ 2 ∙ 3 ∙ 3 

= √6 ∙ 6 

= 6 

= 2 ∙ 3 

= √4 ∙ √9. 

Similarly, the square root of a quotient is the quotient of the two square roots:  √
25

16
=

5

4
=

√25

√16
.  And the same holds 

true for multiplication and division with cube roots, but not for addition or subtraction with square or cube roots. 

 

Scaffolding: 

If necessary, remind students 

that √2 and − √4
3

 are irrational 
numbers.  They cannot be 

written in the form 
𝑝

𝑞
 for 

integers 𝑝 and 𝑞.  They are 
numbers, however, and, just 

like √4 and − √64
3

, can be 
found on a number line.  On 

the number line, √2 = 1.414… 
is just to the right of 1.4, and 

−√4
3

= −1.5874… is just to 
the left of −1.587.   
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Begin by posing the following question for students to work on in groups. 

 

Opening Exercise 

Which of these statements are true for all 𝒂, 𝒃 > 𝟎?  Explain your conjecture. 

i. 𝟐(𝒂 + 𝒃) = 𝟐𝒂 + 𝟐𝒃 

ii. 
𝒂 + 𝒃

𝟐
=

𝒂

𝟐
+

𝒃

𝟐
 

iii. √𝒂 + 𝒃 = √𝒂 + √𝒃 

 

Discussion  (3 minutes) 

Students should be able to show that the first two equations are true for all 𝑎 and 𝑏, and they should be able to find 

values of 𝑎 and 𝑏 for which the third equation is not true.  (In fact, it is always false, as students will show in the Problem 

Set.) 

 Can you provide cases for which the third equation is not true?  (Remind them that a single counterexample is 

sufficient to make an equation untrue in general.) 

 Students should give examples such as √9 + √16 = 3 + 4 = 7, but √9 + 16 = √25 = 5. 

Point out that just as they have learned (in Lesson 2, if not before) that the square of (𝑥 + 𝑦) is not equal to the sum of 

𝑥2 and 𝑦2 (for 𝑥, 𝑦 ≠ 0), so it is also true that the square root of (𝑥 + 𝑦) is not equal to the sum of the square roots of  

𝑥 and 𝑦 (for 𝑥, 𝑦 > 0).  Similarly, the cube root of (𝑥 + 𝑦) is not equal to the sum of the cube roots of 𝑥 and 𝑦  

(for 𝑥, 𝑦 ≠ 0). 

 

Example 1  (2 minutes)  

Explain to students that an expression is in simplest radical form when the radicand (the 

expression under the radical sign) has no factor that can be raised to a power greater than 

or equal to the index (either 2 or 3), and there is no radical in the denominator.  Present 

the following example. 

 

Example 1 

Express √𝟓𝟎 − √𝟏𝟖 + √𝟖  in simplest radical form and combine like terms.  

√𝟓𝟎 =  √𝟐𝟓 ∙ 𝟐 = √𝟐𝟓 ∙ √𝟐 = 𝟓√𝟐  

√𝟏𝟖 =  √𝟗 ∙ 𝟐 = √𝟗 ∙ √𝟐 = 𝟑√𝟐  

√𝟖 =  √𝟒 ∙ 𝟐 = √𝟒 ∙ √𝟐 = 𝟐√𝟐  

Therefore, √𝟓𝟎 − √𝟏𝟖 + √𝟖 = 𝟓√𝟐 − 𝟑√𝟐 + 𝟐√𝟐 = 𝟒√𝟐. 

 

  

Scaffolding: 

If necessary, circulate to help 
students get started by 
suggesting that they substitute 
numerical values for 𝑎 and 𝑏.  
Perfect squares like 1 and 4 are 
good values to start with when 
square roots are in the 
expression. 

√8 

√6 

√18 

√20 

√20 + √8 

√20 − √18. 

Scaffolding: 

If necessary, ask students 

about expressions that are 

easier to express in simplest 

radical form, such as: 
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Exercises 1–5  (8 minutes) 

The following exercises make use of the rules for multiplying and dividing radicals.  

Express each expression in simplest radical form and combine like terms. 

 

Exercises 1–5 

1. √
𝟏

𝟒
+ √

𝟗

𝟒
− √𝟒𝟓  

𝟐 − 𝟑√𝟓  

 

2. √𝟐 (√𝟑 − √𝟐) 

√𝟔 − 𝟐  

 

3. √
𝟑

𝟖
  

√𝟑

√𝟖
=

√𝟔

√𝟏𝟔
=

√𝟔

𝟒
  

 

4. √
𝟓

𝟑𝟐

𝟑
  

√𝟓
𝟑

√𝟑𝟐
𝟑 =

√𝟏𝟎
𝟑

√𝟔𝟒
𝟑 =

√𝟏𝟎
𝟑

𝟒
  

 

5. √𝟏𝟔𝒙𝟓𝟑
   

√𝟖𝒙𝟑 
𝟑

∙ √𝟐𝒙𝟐𝟑
 = 𝟐𝒙 √𝟐𝒙𝟐𝟑

 

 

 

In the example and exercises above, we repeatedly used the following properties of radicals (write the following 

statements on the board). 

√𝑎 ∙ √𝑏 =  √𝑎𝑏     √𝑎
3

⋅ √𝑏
3

= √𝑎𝑏
3  

√𝑎

√𝑏
= √

𝑎

𝑏
     

√𝑎
3

√𝑏
3 = √

𝑎

𝑏

3
 

 When do these identities make sense? 

 Students should answer that the identities make sense for the square roots whenever 𝑎 ≥ 0 and 𝑏 ≥ 0, 

with 𝑏 ≠ 0 when 𝑏 is a denominator.  They make sense for the cube roots for all 𝑎 and 𝑏, with 𝑏 ≠ 0 

when 𝑏 is a denominator. 

 

Example 2  (8 minutes)  

This example is designed to introduce conjugates and their properties. 

 

Example 2 

Multiply and combine like terms.  Then explain what you notice about the two different results. 

(√𝟑 + √𝟐) (√𝟑 + √𝟐) 

(√𝟑 + √𝟐) (√𝟑 − √𝟐) 

 

 

Scaffolding: 

Circulate to make sure that 
students understand that they 
are looking for perfect square 
factors when the index is 2 and 
perfect cube factors when the 
index is 3.  Remind students 
that the cubes of the first 
counting numbers are 1, 8, 27, 
64, and 125. 
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Solution (with teacher comments and a question):  

The first product is √3 ∙ √3 + 2(√3 ∙ √2) + √2 ∙ √2 = 5 + 2√6. 

The second product is √3 ∙ √3 − (√3 ∙ √2) + (√3 ∙ √2) − √2 ∙ √2 = 3 − 2 = 1. 

The first product is an irrational number; the second is an integer. 

The second product has the nice feature that the radicals have been eliminated.  In that 

case, the two factors are given a special name:  two binomials of the form √𝑎 + √𝑏 and 

√𝑎 − √𝑏 are called conjugate radicals:  

√𝑎 + √𝑏 is the conjugate of √𝑎 − √𝑏, and  

√𝑎 − √𝑏 is the conjugate of √𝑎 + √𝑏. 

More generally, for any expression in two terms, at least one of which contains a radical, 

its conjugate is an expression consisting of the same two terms but with the opposite sign 

separating the terms.  For example, the conjugate of 2 − √3 is 2 + √3, and the conjugate 

of √5
3

+ √3 is √5
3

− √3. 

 What polynomial identity is suggested by the product of two conjugates? 

 Students should answer that it looks like the difference of two squares.  

The product of two conjugates has the form of the difference of squares:  

(𝑥 + 𝑦)(𝑥 − 𝑦) = 𝑥2 − 𝑦2. 

The following exercise focuses on the use of conjugates. 

 

Exercise 6  (5 minutes) 

 

Exercise 6 

6. Find the product of the conjugate radicals. 

(√𝟓 + √𝟑)(√𝟓 − √𝟑) 𝟓 − 𝟑 = 𝟐 

(𝟕 + √𝟐)(𝟕 − √𝟐) 𝟒𝟗 − 𝟐 = 𝟒𝟕 

(√𝟓 + 𝟐)(√𝟓 − 𝟐) 𝟓 − 𝟒 = 𝟏 

 

 In each case in Exercise 6, is the result the difference of two squares? 

 Yes.  For example, if we think of 5 as (√5)
2
 and 3 as (√3)

2
, then 5 − 3 = (√5)

2
− (√3)

2
. 

  

Scaffolding: 

Students may have trouble 
with the word conjugate.  If so, 
have them fill out the following 
diagram.
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Example 3  (6 minutes)  

This example is designed to show how division by a radical can be reduced to division by an integer by multiplication by 

the conjugate radical in the numerator and denominator. 

 

Example 3 

Write 
√𝟑

𝟓−𝟐√𝟑
 in simplest radical form. 

√𝟑

𝟓 − 𝟐√𝟑
=

√𝟑

𝟓 − 𝟐√𝟑
∙

𝟓 + 𝟐√𝟑

𝟓 + 𝟐√𝟑
=

√𝟑(𝟓 + 𝟐√𝟑)

𝟐𝟓 − 𝟏𝟐
=

𝟓√𝟑 + 𝟔

𝟏𝟑
 

 

The process for simplifying an expression with a radical in the denominator has two steps: 

1. Multiply the numerator and denominator of the fraction by the conjugate of the denominator. 

2. Simplify the resulting expression. 

 

Closing  (5 minutes) 

 Radical expressions with the same index and same radicand combine in the same way as like terms in a 

polynomial when performing addition and subtraction. 

For example, √3
3

+ √2 + 5√3
3

− √7 + √3 + √7 + 3√2 = 6 √3
3

+ 4√2 + √3. 

 Simplifying an expression with a radical in the denominator relies on an application of the difference of squares 

formula.   

 For example, to simplify 
3

√2+√3
, we treat the denominator like a binomial. 

Substitute √2 = 𝑥 and √3 = 𝑦, and then 

3

√2 + √3
=

3

𝑥 + 𝑦
=

3

𝑥 + 𝑦
∙

𝑥 − 𝑦

𝑥 − 𝑦
=  

3(𝑥 − 𝑦)

𝑥2 − 𝑦2
. 

Since 𝑥 = √2 and 𝑦 = √3, 𝑥2 − 𝑦2 is an integer.  In this case, 𝑥2 − 𝑦2 = −1. 

3

√2 + √3
∙

√2 − √3

√2 − √3
=

3(√2 − √3)

2 − 3
= −3(√2 − √3) 
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Ask students to summarize the important parts of the lesson, either in writing, to a partner, or as a class.  Use this as an 

opportunity to informally assess understanding of the lesson.  The following are some important summary elements. 

 

 

 

Exit Ticket  (5 minutes)  

Lesson Summary 

 For real numbers 𝒂 ≥ 𝟎 and 𝒃 ≥ 𝟎, where 𝒃 ≠ 𝟎 when 𝒃 is a denominator, 

√𝒂𝒃 = √𝒂 ⋅ √𝒃  and  √
𝒂

𝒃
=

√𝒂

√𝒃
. 

 For real numbers 𝒂 ≥ 𝟎 and 𝒃 ≥ 𝟎, where 𝒃 ≠ 𝟎 when 𝒃 is a denominator, 

√𝒂𝒃
𝟑

= √𝒂𝟑 ⋅ √𝒃
𝟑

  and  √
𝒂

𝒃

𝟑
=

√𝒂𝟑

√𝒃
𝟑 .  

 Two binomials of the form √𝒂 + √𝒃 and √𝒂 − √𝒃 are called conjugate radicals: 

√𝒂 + √𝒃 is the conjugate of √𝒂 − √𝒃, and 

√𝒂 − √𝒃 is the conjugate of √𝒂 + √𝒃. 

For example, the conjugate of 𝟐 − √𝟑 is 𝟐 + √𝟑. 

 To rewrite an expression with a denominator of the form √𝒂 + √𝒃 in simplest radical form, multiply the 

numerator and denominator by the conjugate √𝒂 − √𝒃 and combine like terms. 
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Name                                   Date                          

Lesson 9:  Radicals and Conjugates 

 
Exit Ticket 
 

1. Rewrite each of the following radicals as a rational number or in simplest radical form.   

a. √49 

 

b. √40
3

 

 

c. √242 

 

 

2. Find the conjugate of each of the following radical expressions. 

a. √5 + √11  

 

b. 9 − √11 

 

c. √3
3

+ 1.5 

 

 

3. Rewrite each of the following expressions as a rational number or in simplest radical form. 

a. √3(√3 − 1)  

 

b. (5 + √3)
2

 

 

c. (10 + √11)(10 − √11) 
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Exit Ticket Sample Solution 

 

1. Rewrite each of the following radicals as a rational number or in simplest radical form. 

a. √𝟒𝟗 𝟕 

 

b. √𝟒𝟎
𝟑

  𝟐√𝟓
𝟑

 

 

c. √𝟐𝟒𝟐  𝟏𝟏√𝟐 

 

2. Find the conjugate of each of the following radical expressions. 

a. √𝟓 + √𝟏𝟏   √𝟓 − √𝟏𝟏 

 

b. 𝟗 − √𝟏𝟏 𝟗 + √𝟏𝟏 

 

c. √𝟑
𝟑

+ 𝟏. 𝟓 √𝟑
𝟑

− 𝟏. 𝟓 

   

3. Rewrite each of the following expressions as a rational number or in simplest radical form. 

a. √𝟑 (√𝟑 − 𝟏)    𝟑 − √𝟑 

 

b. (𝟓 + √𝟑)
𝟐

 𝟐𝟖 + 𝟏𝟎√𝟑 

 

c. (𝟏𝟎 + √𝟏𝟏)(𝟏𝟎 − √𝟏𝟏) 𝟖𝟗 

    

 
 
Problem Set Sample Solutions 

Problem 10 is different from the others and may require some discussion and explanation before students work on it.  

Consider explaining that the converse of an if–then theorem is obtained by interchanging the clauses introduced by if 

and then, and that the converse of such a theorem is not necessarily a valid theorem.  The converse of the Pythagorean 

theorem will be important for the development of a formula leading to Pythagorean triples in Lesson 10. 

 

1. Express each of the following as a rational number or in simplest radical form.  Assume that the symbols 𝒂, 𝒃, and 𝒙 

represent positive numbers. 

a. √𝟑𝟔     𝟔 

 

b. √𝟕𝟐     𝟔√𝟐 

 

c. √𝟏𝟖     𝟑√𝟐 

 

d. √𝟗𝒙𝟑     𝟑𝒙√𝒙 
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e. √𝟐𝟕𝒙𝟐     𝟑𝒙√𝟑 

 

f. √𝟏𝟔
𝟑

     𝟐√𝟐
𝟑

 

 

g. √𝟐𝟒𝒂
𝟑

     𝟐√𝟑𝒂
𝟑

 

 

h. √𝟗𝒂𝟐 + 𝟗𝒃𝟐    𝟑√𝒂𝟐 + 𝒃𝟐 

 

2. Express each of the following in simplest radical form, combining terms where possible. 

a. √𝟐𝟓 + √𝟒𝟓 − √𝟐𝟎   𝟓 + √𝟓 

 

b. 𝟑√𝟑 − √
𝟑

𝟒
 + √

𝟏

𝟑
    

𝟏𝟕√𝟑

𝟔
 

 

c. √𝟓𝟒
𝟑

− √𝟖
𝟑

+ 𝟕√
𝟏

𝟒

𝟑

   
𝟏𝟑 √𝟐

𝟑

𝟐
− 𝟐 

 

d. √
𝟓

𝟖

𝟑

+ √𝟒𝟎
𝟑

−  √
𝟖

𝟗

𝟑

    
𝟓 √𝟓

𝟑

𝟐
−

𝟐 √𝟑
𝟑

𝟑
 

 

3. Evaluate √𝒙𝟐 − 𝒚𝟐 when 𝒙 = 𝟑𝟑 and 𝐲 = 𝟏𝟓.  𝟏𝟐√𝟔 

 

4. Evaluate √𝒙𝟐 + 𝒚𝟐 when 𝒙 = 𝟐𝟎 and 𝒚 = 𝟏𝟎.   𝟏𝟎√𝟓 

 

5. Express each of the following as a rational expression or in simplest radical form.  Assume that the symbols 𝒙 and 𝒚  

represent positive numbers. 

a. √𝟑(√𝟕 − √𝟑)     √𝟐𝟏 − 𝟑 

 

b. (𝟑 + √𝟐)
𝟐
    𝟏𝟏 + 𝟔√𝟐 

 

c. (𝟐 + √𝟑)(𝟐 − √𝟑)   𝟏 

 

d. (𝟐 + 𝟐√𝟓)(𝟐 − 𝟐√𝟓)   −𝟏𝟔 

 

e. (√𝟕 − 𝟑)(√𝟕 + 𝟑)   −𝟐 

 

f. (𝟑√𝟐 + √𝟕)(𝟑√𝟐 − √𝟕)   𝟏𝟏 

 

g. (𝒙 − √𝟑)(𝒙 + √𝟑)   𝒙𝟐 − 𝟑 

 

h. (𝟐𝒙√𝟐 + 𝒚)(𝟐𝒙√𝟐 − 𝒚)   𝟖𝒙𝟐 − 𝒚𝟐 
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6. Simplify each of the following quotients as far as possible. 

a. (√𝟐𝟏 − √𝟑) ÷ √𝟑 √𝟕 − 𝟏 

 

b. (√𝟓 + 𝟒) ÷ (√𝟓 + 𝟏) 
𝟏

𝟒
(𝟏 + 𝟑√𝟓) 

 

c. (𝟑 − √𝟐) ÷ (𝟑√𝟐 − 𝟓) −
𝟏

𝟕
(𝟗 + 𝟒√𝟐) 

 

d. (𝟐√𝟓 − √𝟑) ÷ (𝟑√𝟓 − 𝟒√𝟐) 
𝟏

𝟏𝟑
(𝟑𝟎 − 𝟑√𝟏𝟓 + 𝟖√𝟏𝟎 − 𝟒√𝟔) 

 

7. If 𝒙 = 𝟐 + √𝟑, show that 𝒙 +
𝟏
𝒙

 has a rational value.   

𝒙 +
𝟏

𝒙
= 𝟒 

 

8. Evaluate 𝟓𝒙𝟐 − 𝟏𝟎𝒙  when the value of 𝒙 is 
𝟐−√𝟓

𝟐
 . 

𝟓

𝟒
 

 

9. Write the factors of 𝒂𝟒 − 𝒃𝟒.  Express (√𝟑 + √𝟐)
𝟒

− (√𝟑 − √𝟐)
𝟒
 in a simpler form. 

Factors:  (𝒂𝟐 + 𝒃𝟐)(𝒂 + 𝒃)(𝒂 − 𝒃)   Simplified form:  𝟒𝟎√𝟔 

 

10. The converse of the Pythagorean theorem is also a theorem:  If the square of one side of a triangle is equal to the 

sum of the squares of the other two sides, then the triangle is a right triangle. 

Use the converse of the Pythagorean theorem to show that for 𝑨, 𝑩, 𝑪 > 𝟎, if 𝑨 + 𝑩 = 𝑪, then √𝑨 + √𝑩 > √𝑪, so 

that √𝑨 + √𝑩 > √𝑨 + 𝑩. 

Solution 1:  Since 𝑨, 𝑩, 𝑪 > 𝟎, we can interpret these quantities as the areas of three squares whose sides have 

lengths √𝑨, √𝑩, and √𝑪.  Because 𝑨 + 𝑩 = 𝑪, then by the converse of the Pythagorean theorem, √𝑨, √𝑩, and √𝑪 

are the lengths of the legs and hypotenuse of a right triangle.  In a triangle, the sum of any two sides is greater than 

the third side.  Therefore, √𝑨 + √𝑩 > √𝑪, so √𝑨 + √𝑩 > √𝑨 + 𝑩. 

Solution 2:  Since 𝑨, B, 𝑪 > 𝟎, we can interpret these quantities as the areas of three squares whose sides have 

lengths √𝑨, √𝑩, and √𝑪.  Because 𝑨 + 𝑩 = 𝑪, then by the converse of the Pythagorean theorem, √𝑨 = 𝒂, √𝑩 = 𝒃, 

and 𝒄 = √𝑪 are the lengths of the legs and hypotenuse of a right triangle, so 𝒂, 𝒃, 𝒄 > 𝟎.  Therefore, 𝟐𝒂𝒃 > 𝟎.  

Adding equal positive quantities to each side of that inequality, we get 𝒂𝟐 + 𝒃𝟐 + 𝟐𝒂𝒃 > 𝒄𝟐, which we can rewrite 

as (𝒂 + 𝒃)𝟐 > 𝒄𝟐.  Taking the positive square root of each side, we get 𝒂 + 𝒃 > 𝒄, or equivalently, √𝑨 + √𝑩 > √𝑪. 

We then have √𝑨 + √𝑩 > √𝑨 + 𝑩. 
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Lesson 10:  The Power of Algebra—Finding Pythagorean 

Triples  

 
Student Outcomes 

 Students explore the difference of two squares identity 𝑥2 − 𝑦2 = (𝑥 − 𝑦)(𝑥 + 𝑦) in the context of finding 

Pythagorean triples.   

 

Lesson Notes  

This lesson addresses standards A-SSE.A.2 and A-APR.C.4, and MP.7 directly.  In particular, this lesson investigates the 

example suggested by A-APR.C.4:  Show how “the polynomial identity (𝑥2 + 𝑦2)2 = (𝑥2 − 𝑦2)2 + (2𝑥𝑦)2 can be used 

to generate Pythagorean triples.”  This polynomial identity is proven in this lesson using the difference of two squares 

identity by 

(𝑥2 + 𝑦2)2 − (𝑥2 − 𝑦2)2 = ((𝑥2 + 𝑦2) − (𝑥2 − 𝑦2))((𝑥2 + 𝑦2) + (𝑥2 − 𝑦2)) = (2𝑦2)(2𝑥2) = (2𝑥𝑦)2. 

However, students are first asked to prove the identity on their own in the case when 𝑦 = 1.  Very few (or likely none) of 

the students will use the difference of two squares identity, offering an opportunity to surprise them with the quick 

solution presented here. 

The lesson starts with a quick review of the most important theorem in all of geometry and arguably in all of 

mathematics:  the Pythagorean theorem.  Students have already studied the Pythagorean theorem in Grade 8 and high 

school Geometry, have proven the theorem in numerous ways, and have used it in a wide variety of situations.  Students 

are asked to prove it in yet a different way in the Problem Set to this lesson.  The Pythagorean theorem plays an 

important role in both this module and the next.  

 

Classwork 

Opening Exercise  (10 minutes) 

This exercise is meant to help students recall facts about the Pythagorean theorem.  

Because it is not the main point of this lesson, feel free to move through this exercise 

quickly.  After they have worked the problem, summarize with a statement of the 

Pythagorean theorem and its converse, and then move on. 

Have students work in groups of two on this problem.  Suggest immediately that they 

draw a diagram to represent the problem.  

  

 

 

52 + 122 = 𝑥2   ⇒   𝑥 = 13 

Scaffolding: 

Consider starting by showing a 
simple example of the 
Pythagorean theorem. 

 

 

 

 
12 cm 

5 cm 
𝑥 cm 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
  
  
 

 

    

 

 

NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 10 
ALGEBRA II 

Lesson 10: The Power of Algebra—Finding Pythagorean Triples  
 
 

 

112 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Opening Exercise 

Sam and Jill decide to explore a city.  Both begin their walk from the same starting point. 

 Sam walks 𝟏 block north, 𝟏 block east, 𝟑 blocks north, and 𝟑 blocks west. 

 Jill walks 𝟒 blocks south, 𝟏 block west, 𝟏 block north, and 𝟒 blocks east. 

If all city blocks are the same length, who is the farthest distance from the starting point? 

 

 

 

 

 

 

 

 

 

 

 

 

Students may have a question about what the problem is asking:  Does distance mean, “Who walked the farthest?”, or 

“Who is the farthest (as the crow flies) from the starting point?”  This question boils down to the difference between the 

definitions of path length versus distance.  While Sam’s path length is 8 city blocks and Jill’s is 10 city blocks, the 

question asks for the distance between the starting point and their final destinations.  To calculate distance, students 

need to use the Pythagorean theorem. 

The problem is designed so that answers cannot be guessed easily from precisely drawn pictures. 

Another (valid) issue that a student may bring up is whether the streets are considered to have width or not.  Discuss this 

possibility with the class (again, it is a valid point).  Suggest that for the purposes of this problem, the assumption is that 

the streets have no width (or, as some may point out, Sam and Jill could walk down the center of the streets—but this is 

not advisable).   

Try to get students to conclude that √18 < √20 simply because 18 < 20 and the square root function increases.  

 Why must the side length of a square with area 18 square units be smaller than the side length of a square 

with area 20 square units? 

 Can you state the Pythagorean theorem?   

 If a right triangle has legs of length 𝑎 and 𝑏 units and a hypotenuse of length 𝑐 units,  

then 𝑎2 + 𝑏2 = 𝑐2.  

 What is the converse of the Pythagorean theorem?  Can you state it as an if–then statement? 

 If the lengths 𝑎, 𝑏, 𝑐 of the sides of a triangle are related by 𝑎2 + 𝑏2 = 𝑐2, then the angle opposite the 

side of length 𝑐 is a right angle. 

 We will need the converse of the Pythagorean theorem for this lesson. 

 

Sam’s distance:  √𝟐𝟎 city block lengths 

Jill’s distance:  √𝟏𝟖 city block lengths 

Sam was farthest away from the starting point.  

MP.6 
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Example 1  (15 minutes)  

In this example, students explore a specific case of the general method of generating 

Pythagorean triples, that is triples of positive integers (𝑎, 𝑏, 𝑐) that satisfy 𝑎2 + 𝑏2 = 𝑐2.  

The general form that students explore in the Problem Set is (𝑥2 − 𝑦2, 2𝑥𝑦, 𝑥2 − 𝑦2) for 

𝑥 > 𝑦. 

 

Example 1 

Prove that if 𝒙 > 𝟏, then a triangle with side lengths 𝒙𝟐 − 𝟏, 𝟐𝒙, and 𝒙𝟐 + 𝟏 is a right triangle. 

 

 

 

Note:  By the converse to the Pythagorean theorem, if 𝒂𝟐 + 𝒃𝟐 = 𝒄𝟐, then a triangle with side lengths 𝒂, 𝒃, 𝒄 is a right 

triangle with a right angle opposite the side of length 𝒄.  We are given that the triangle exists with these side lengths, so 

we do not need to explicitly verify that the lengths are positive.  Therefore, we need only check that for any 𝒙 > 𝟏, we 

have (𝒙𝟐 − 𝟏)𝟐 + (𝟐𝒙)𝟐 = (𝒙𝟐 + 𝟏)𝟐.  

PROOF:  We are given a triangle with side lengths 𝟐𝒙, 𝒙𝟐 − 𝟏, and 𝒙𝟐 + 𝟏 for some real number 𝒙 > 𝟏.  We need to show 

that the three lengths 𝟐𝒙, 𝒙𝟐 − 𝟏, and 𝒙𝟐 + 𝟏 form a Pythagorean triple.  We will first show that (𝟐𝒙)𝟐 is equivalent to  

(𝒙𝟐 + 𝟏)𝟐 − (𝒙𝟐 − 𝟏)𝟐. 

(𝒙𝟐 + 𝟏)𝟐 − (𝒙𝟐 − 𝟏)𝟐 = ((𝒙𝟐 + 𝟏) + (𝒙𝟐 − 𝟏))((𝒙𝟐 + 𝟏) − (𝒙𝟐 − 𝟏)) 

= (𝟐𝒙𝟐)(𝟐) 

= 𝟒𝒙𝟐 

= (𝟐𝒙)𝟐 

Since (𝟐𝒙)𝟐 = (𝒙𝟐 + 𝟏)𝟐 − (𝒙𝟐 − 𝟏)𝟐, we have shown that (𝒙𝟐 − 𝟏)𝟐 + (𝟐𝒙)𝟐 = (𝒙𝟐 + 𝟏)𝟐, and thus the numbers 𝒙𝟐 −

𝟏, 𝟐𝒙, and 𝒙𝟐 + 𝟏 form a Pythagorean triple.  Then by the converse of the Pythagorean theorem, a triangle with sides of 

length 𝟐𝒙, 𝒙𝟐 − 𝟏, and 𝒙𝟐 + 𝟏 for some 𝒙 > 𝟏 is a right triangle.  

 

Proving that (𝑥2 − 1)2 + (2𝑥)2 = (𝑥2 + 1)2 can be done in different ways.  Consider asking students to try their own 

method first, and then show the method above.  Very few students will use the identity 𝑎2 − 𝑏2 = (𝑎 − 𝑏)(𝑎 + 𝑏).  

Most will use (𝑥2 − 1)2 + 4𝑥2 = 𝑥4 − 2𝑥2 + 1 + 4𝑥2 = 𝑥4 + 2𝑥2 + 1 = (𝑥2 + 1)2.  This is an excellent exercise as 

well, since it gets students to wrestle with squares of quadratic polynomials and requires factoring.  After they have tried 

it on their own, they will be surprised by the use of the difference of squares identity. 

 A Pythagorean triple is a triple of positive integers (𝑎, 𝑏, 𝑐) such that 𝑎2 + 𝑏2 = 𝑐2.  So, while (3, 4, 5) is a 

Pythagorean triple, the triple (1, 1, √2) is not, even though 1, 1, and √2 are side lengths of a 45°-45°-90° 

triangle and 12 + 12 = (√2)
2

.  While the triangle from Example 1 can have non-integer side lengths, notice that 

a Pythagorean triple must comprise positive integers by definition.  

 Note that any multiple of a Pythagorean triple is also a Pythagorean triple:  if (𝑎, 𝑏, 𝑐) is a Pythagorean triple, 

then so is (𝑛𝑎, 𝑛𝑏, 𝑛𝑐) for any positive integer 𝑛 (discuss why).  Thus, (6, 8, 10), (9, 12, 15), (12, 16, 20), 

(15, 20, 25) are all Pythagorean triples because they are multiples of (3, 4, 5).  

Scaffolding: 

To make this example more 
concrete and accessible, 
generate (or ask students to 
generate) a set of triples of the 
form (𝑥2 − 𝑦2, 2𝑥𝑦, 𝑥2 + 𝑦2) 
and verify that they are 
Pythagorean triples.  For 
example, (3,4,5) arises when 
𝑥 = 2 and 𝑦 = 1. 

Furthermore, consider 
challenging them to find a 
triple of this form that is not a 
Pythagorean triple. 

If 𝒙 > 𝟏, is this 

triangle right? 

MP.3 

MP.7 
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 Also note that if (𝑎, 𝑏, 𝑐) is a Pythagorean triple, then (𝑏, 𝑎, 𝑐) is also a Pythagorean triple.  To reduce 

redundancy, we often write the smaller number of 𝑎 and 𝑏 first.  Although (3, 4, 5) and (4, 3, 5) are both 

Pythagorean triples, they represent the same triple, and we refer to it as (3, 4, 5). 

 One way to generate Pythagorean triples is to use the expressions from Example 1:  (𝑥2 − 1, 2𝑥, 𝑥2 + 1).   

Have students try a few as mental math exercises:  𝑥 = 2 gives (4, 3, 5), 𝑥 = 3 gives (8, 6, 10), 𝑥 = 4 gives (15, 8, 17), 

and so on.  

One of the Problem Set questions asks students to generalize triples from (𝑥2 − 1, 2𝑥, 𝑥2 + 1) to show that triples 

generated by (𝑥2 − 𝑦2, 2𝑥𝑦, 𝑥2 + 𝑦2) also form Pythagorean triples for 𝑥 > 𝑦 > 0.  The next example helps students 

see the general pattern.  

 

Example 2  (12 minutes)  

This example shows a clever way for students to remember that 𝑥2 − 1, 2𝑥, and 𝑥2 + 1 can be used to find Pythagorean 

triples.   

 

Example 2 

Next we describe an easy way to find Pythagorean triples using the expressions from Example 1.  Look at the 

multiplication table below for {𝟏, 𝟐,… , 𝟗}.  Notice that the square numbers {𝟏, 𝟒, 𝟗, … , 𝟖𝟏} lie on the diagonal of this 

table.   

a. What value of 𝒙 is used to generate the Pythagorean triple (𝟏𝟓, 𝟖, 𝟏𝟕) by the formula (𝒙𝟐 − 𝟏, 𝟐𝒙, 𝒙𝟐 + 𝟏)?  

How do the numbers (𝟏, 𝟒, 𝟒, 𝟏𝟔) at the corners of the shaded square in the table relate to the values 𝟏𝟓, 𝟖, 

and 𝟏𝟕? 

 

 

Using the value 𝟒 for 𝒙 gives the triple (𝟏𝟓, 𝟖, 𝟏𝟕).  We see that  
𝟏 = 𝟏𝟐 and 𝟏𝟔 = 𝟒𝟐, and then we can take 𝟏𝟔 − 𝟏 = 𝟏𝟓, and  
𝟏𝟔 + 𝟏 = 𝟏𝟕.  We also have 𝟒 + 𝟒 = 𝟖.   

 

 

 

 

b. Now you try one.  Form a square on the multiplication table below whose left-top corner is the 𝟏 (as in the 

example above) and whose bottom-right corner is a square number.  Use the sums or differences of the 

numbers at the vertices of your square to form a Pythagorean triple.  Check that the triple you generate is a 

Pythagorean triple. 

 

 

Answers will vary.  Ask students to report their answers.  For 

example, a student whose square has the bottom-right number 𝟑𝟔 

will generate 𝟑𝟔 − 𝟏 = 𝟑𝟓, 𝟔 + 𝟔 = 𝟏𝟐, and 𝟑𝟔 + 𝟏 = 𝟑𝟕.  Have 

students check that (𝟏𝟐, 𝟑𝟓, 𝟑𝟕) is indeed a Pythagorean triple:  

𝟏𝟐𝟐 + 𝟑𝟓𝟐 = 𝟏𝟑𝟔𝟗, and 𝟑𝟔𝟐 = 𝟏𝟑𝟔𝟗. 
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Let’s generalize this square to any square in the multiplication table where two opposite vertices of the square are square 

numbers.  

c. How can you use the sums or differences of the numbers at the vertices of the shaded square to get a triple 
(𝟏𝟔, 𝟑𝟎, 𝟑𝟒)?  Is it a Pythagorean triple? 

 

 

Following what we did above, take 𝟐𝟓 − 𝟗 = 𝟏𝟔, 𝟏𝟓 + 𝟏𝟓 = 𝟑𝟎, 

and 𝟐𝟓 + 𝟗 = 𝟑𝟒 to get the triple (𝟏𝟔, 𝟑𝟎, 𝟑𝟒).  Yes, it is a 

Pythagorean triple:  𝟏𝟔𝟐 + 𝟑𝟎𝟐 = 𝟗𝟎𝟎 + 𝟐𝟓𝟔 = 𝟏𝟏𝟓𝟔 = 𝟑𝟒𝟐.  

 

 

 

 

 

d. Using 𝒙 instead of 𝟓 and 𝒚 instead of 𝟑 in your calculations in part (c), write down a formula for generating 

Pythagorean triples in terms of 𝒙 and 𝒚. 

The calculation 𝟐𝟓 − 𝟗 generalizes to 𝒙𝟐 − 𝒚𝟐 as the length of one leg.  The length of the other leg can be 

found by 𝟏𝟓 + 𝟏𝟓 = 𝟐(𝟑 ∙ 𝟓), which generalizes to 𝟐𝒙𝒚.  The length of the hypotenuse, 𝟐𝟓 + 𝟗, generalizes to 

𝒙𝟐 + 𝒚𝟐.  It seems that Pythagorean triples can be generated by triples (𝒙𝟐 − 𝒚𝟐, 𝟐𝒙𝒚,  𝒙𝟐 + 𝒚𝟐) where  

𝒙 > 𝒚 > 𝟎. 

 

In the Problem Set, students prove that if 𝑥 and 𝑦 are positive integers with 𝑥 > 𝑦, then (𝑥2 − 𝑦2,  2𝑥𝑦, 𝑥2 + 𝑦2) is a 

Pythagorean triple, mimicking the proof of Example 1.   

 

Closing  (3 minutes) 

 Pythagorean triples are triples of positive integers (𝑎, 𝑏, 𝑐) that satisfy the relationship 𝑎2 + 𝑏2 = 𝑐2.  Such a 

triple is called a Pythagorean triple because a right triangle with legs of length 𝑎 and 𝑏 will have a hypotenuse 

of length 𝑐 by the Pythagorean theorem. 

 To generate a Pythagorean triple, take any two positive integers 𝑥 and 𝑦 with 𝑥 > 𝑦, and compute  

(𝑥2 − 𝑦2, 2𝑥𝑦, 𝑥2 + 𝑦2). 

 

Relevant Facts and Vocabulary 

PYTHAGOREAN THEOREM:  If a right triangle has legs of length 𝒂 and 𝒃 units and hypotenuse of length 𝒄 units, then  

𝒂𝟐 + 𝒃𝟐 = 𝒄𝟐. 

CONVERSE TO THE PYTHAGOREAN THEOREM:  If the lengths 𝒂, 𝒃, 𝒄 of the sides of a triangle are related by 𝒂𝟐 + 𝒃𝟐 = 𝒄𝟐, then 

the angle opposite the side of length 𝒄 is a right angle. 

PYTHAGOREAN TRIPLE:  A Pythagorean triple is a triple of positive integers (𝒂,𝒃, 𝒄) such that 𝒂𝟐 + 𝒃𝟐 = 𝒄𝟐.  The triple 

(𝟑, 𝟒, 𝟓) is a Pythagorean triple but (𝟏, 𝟏, √𝟐) is not, even though the numbers are side lengths of an isosceles right 

triangle. 

 

Exit Ticket (5 minutes)  
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Name                                   Date                          

Lesson 10:  The Power of Algebra—Finding Pythagorean Triples 

 
Exit Ticket 
 

Generate six Pythagorean triples using any method discussed during class.  Explain each method you use. 
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Exit Ticket Sample Solutions 

 

Generate six Pythagorean triples using any method discussed during class.  Explain each method you use. 

Answers will vary.  One example should use either (𝒙𝟐 − 𝟏, 𝟐𝒙, 𝒙𝟐 + 𝟏) or (𝒙𝟐 − 𝒚𝟐, 𝟐𝒙𝒚, 𝒙𝟐 + 𝒚𝟐), but after that students 

can use the fact that a multiple of a Pythagorean triple is again a Pythagorean triple. 

 

Problem Set Sample Solutions 

 

1. Rewrite each expression as a sum or difference of terms. 

a. (𝒙 − 𝟑)(𝒙 + 𝟑) 

𝒙𝟐 − 𝟗 
 

b. (𝒙𝟐 − 𝟑)(𝒙𝟐 + 𝟑) 

𝒙𝟒 − 𝟗 
 

c. (𝒙𝟏𝟓 + 𝟑)(𝒙𝟏𝟓 − 𝟑) 

𝒙𝟑𝟎 − 𝟗 
 

d. (𝒙 − 𝟑)(𝒙𝟐 + 𝟗)(𝒙 + 𝟑) 

𝒙𝟒 − 𝟖𝟏 
 

e. (𝒙𝟐 + 𝒚𝟐)(𝒙𝟐 − 𝒚𝟐) 

𝒙𝟒 − 𝒚𝟒 
 

f. (𝒙𝟐 + 𝒚𝟐)𝟐 

𝒙𝟒 + 𝟐𝒙𝟐𝒚𝟐 + 𝒚𝟒 
 

g. (𝒙 − 𝒚)𝟐(𝒙 + 𝒚)𝟐 

𝒙𝟒 − 𝟐𝒙𝟐𝒚𝟐 + 𝒚𝟒 

h. (𝒙 − 𝒚)𝟐(𝒙𝟐 + 𝒚𝟐)𝟐(𝒙 + 𝒚)𝟐 

𝒙𝟖 − 𝟐𝒙𝟒𝒚𝟒 + 𝒚𝟖 

 

2. Tasha used a clever method to expand (𝒂 + 𝒃 + 𝒄)(𝒂 + 𝒃 − 𝒄).  She grouped the addends together like this 
[(𝒂 + 𝒃) + 𝒄][(𝒂 + 𝒃) − 𝒄] and then expanded them to get the difference of two squares: 

(𝒂 + 𝒃 + 𝒄)(𝒂 + 𝒃 − 𝒄) = [(𝒂 + 𝒃) + 𝒄][(𝒂 + 𝒃) − 𝒄] = (𝒂 + 𝒃)𝟐 − 𝒄𝟐 = 𝒂𝟐 + 𝟐𝒂𝒃+ 𝒃𝟐 − 𝒄𝟐. 

a. Is Tasha's method correct?  Explain why or why not. 

Yes, Tasha is correct.  Expanding in the traditional way gives the same result. 

(𝒂 + 𝒃 + 𝒄)(𝒂 + 𝒃 − 𝒄) = (𝒂 + 𝒃 + 𝒄)𝒂 + (𝒂 + 𝒃 + 𝒄)𝒃 − (𝒂 + 𝒃 + 𝒄)𝒄 

= 𝒂𝟐 + 𝒃𝒂 + 𝒄𝒂+ 𝒂𝒃 + 𝒃𝟐 + 𝒄𝒃 − 𝒂𝒄 − 𝒃𝒄− 𝒄𝟐 

= 𝒂𝟐 + 𝟐𝒂𝒃 + 𝒃𝟐 − 𝒄𝟐 

 

b. Use a version of her method to find (𝒂 + 𝒃 + 𝒄)(𝒂 − 𝒃 − 𝒄). 

(𝒂 + (𝒃 + 𝒄))(𝒂 − (𝒃 + 𝒄)) = 𝒂𝟐 − (𝒃 + 𝒄)𝟐 = 𝒂𝟐 − 𝒃𝟐 − 𝟐𝒃𝒄 − 𝒄𝟐  

 

c. Use a version of her method to find (𝒂 + 𝒃 − 𝒄)(𝒂 − 𝒃 + 𝒄). 

(𝒂 + (𝒃 − 𝒄))(𝒂 − (𝒃 − 𝒄)) = 𝒂𝟐 − (𝒃 − 𝒄)𝟐 = 𝒂𝟐 − 𝒃𝟐 + 𝟐𝒃𝒄 − 𝒄𝟐  

 

3. Use the difference of two squares identity to factor each of the following expressions. 

a. 𝒙𝟐 − 𝟖𝟏 

(𝒙 − 𝟗)(𝒙 + 𝟗) 
 

b. (𝟑𝒙 + 𝒚)𝟐 − (𝟐𝒚)𝟐 

(𝟑𝒙 − 𝒚)(𝟑𝒙 + 𝟑𝒚) = 𝟑(𝟑𝒙 − 𝒚)(𝒙 + 𝒚) 
 

c. 𝟒 − (𝒙 − 𝟏)𝟐 

(𝟑 − 𝒙)(𝟏 + 𝒙) 

d. (𝒙 + 𝟐)𝟐 − (𝒚 + 𝟐)𝟐 

(𝒙 − 𝒚)(𝒙 + 𝒚 + 𝟒) 
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4. Show that the expression (𝒙 + 𝒚)(𝒙 − 𝒚) − 𝟔𝒙 + 𝟗 may be written as the difference of two squares, and then factor 

the expression. 

(𝒙 + 𝒚)(𝒙 − 𝒚) − 𝟔𝒙 + 𝟗 = 𝒙𝟐 − 𝒚𝟐 − 𝟔𝒙 + 𝟗 = (𝒙𝟐 − 𝟔𝒙 + 𝟗) − 𝒚𝟐 = (𝒙 − 𝟑)𝟐 − 𝒚𝟐 = (𝒙 − 𝟑 − 𝒚)(𝒙 − 𝟑 + 𝒚) 

 

5. Show that (𝒙 + 𝒚)𝟐 − (𝒙 − 𝒚)𝟐 = 𝟒𝒙𝒚 for all real numbers 𝒙 and 𝒚. 

(𝒙 + 𝒚)𝟐 − (𝒙 − 𝒚)𝟐 = [(𝒙 + 𝒚) − (𝒙 − 𝒚)][(𝒙 + 𝒚) + (𝒙 − 𝒚)] = (𝟐𝒚)(𝟐𝒙) = 𝟒𝒙 

 

6. Prove that a triangle with side lengths 𝒙𝟐 − 𝒚𝟐, 𝟐𝒙𝒚, and 𝒙𝟐 + 𝒚𝟐 with 𝒙 > 𝒚 > 𝟎 is a right triangle. 

The proof should look like the proof in Example 1 but with 𝒚 instead of 𝟏. 

 

7. Complete the table below to find Pythagorean triples (the first row is done for you). 

𝒙 𝒚 𝒙𝟐 − 𝒚𝟐 𝟐𝒙𝒚 𝒙𝟐 + 𝒚𝟐 Check:  Is it a Pythagorean Triple? 

𝟐 𝟏 𝟑 𝟒 𝟓 Yes:  𝟑𝟐 + 𝟒𝟐 = 𝟐𝟓 = 𝟓𝟐 

𝟑 𝟏 𝟖 𝟔 𝟏𝟎 Yes:  𝟖𝟐 + 𝟔𝟐 = 𝟏𝟎𝟎 = 𝟏𝟎𝟐  

𝟑 𝟐 𝟓 𝟏𝟐 𝟏𝟑 Yes:  𝟓𝟐 + 𝟏𝟐𝟐 = 𝟏𝟔𝟗 = 𝟏𝟑𝟐 

𝟒 𝟏 𝟏𝟓 𝟖 𝟏𝟕 Yes:  𝟏𝟓𝟐 + 𝟖𝟐 = 𝟐𝟖𝟗 = 𝟏𝟕𝟐  

𝟒 𝟐 𝟏𝟐 𝟏𝟔 𝟐𝟎 Yes:  𝟏𝟐𝟐 + 𝟏𝟔𝟐 = 𝟒𝟎𝟎 = 𝟐𝟎𝟐 

𝟒 𝟑 𝟕 𝟐𝟒 𝟐𝟓 Yes:  𝟕𝟐 + 𝟐𝟒𝟐 = 𝟔𝟐𝟓 = 𝟐𝟓𝟐 

𝟓 𝟏 𝟐𝟒 𝟏𝟎 𝟐𝟔 Yes:  𝟐𝟒𝟐 + 𝟏𝟎𝟐 = 𝟔𝟕𝟔 = 𝟐𝟔𝟐 

 

8. Answer the following parts about the triple (𝟗, 𝟏𝟐, 𝟏𝟓). 

a. Show that (𝟗, 𝟏𝟐, 𝟏𝟓) is a Pythagorean triple. 

We see that 𝟗𝟐 + 𝟏𝟐𝟐 = 𝟖𝟏 + 𝟏𝟒𝟒 = 𝟐𝟐𝟓, and 𝟏𝟓𝟐 = 𝟐𝟐𝟓 so 𝟗𝟐 + 𝟏𝟐𝟐 = 𝟏𝟓𝟐. 

 

b. Prove that neither (𝟗, 𝟏𝟐, 𝟏𝟓) nor (𝟏𝟐, 𝟗, 𝟏𝟓) can be found by choosing a pair of integers 𝒙 and 𝒚 with 𝒙 > 𝒚 

and computing (𝒙𝟐 − 𝒚𝟐, 𝟐𝒙𝒚, 𝒙𝟐 + 𝒚𝟐). 

(Hint:  What are the possible values of 𝒙 and 𝒚 if 𝟐𝒙𝒚 = 𝟏𝟐?  What about if 𝟐𝒙𝒚 = 𝟗?) 

PROOF:  Since 𝟗 is odd and 𝟐𝒙𝒚 is even, there are no integer values of 𝒙 and 𝒚 that satisfy 𝟐𝒙𝒚 = 𝟗.  Thus, our 

formula cannot generate the triple (𝟏𝟐, 𝟗, 𝟏𝟓).  Now suppose 𝒙 and 𝒚 are integers such that 𝟐𝒙𝒚 = 𝟏𝟐.  Thus 

𝒙𝒚 = 𝟔 and 𝒙 > 𝒚.  There are only two possibilities:  either 𝒙 = 𝟔 and 𝒚 = 𝟏, or 𝒙 = 𝟑 and 𝒚 = 𝟐.  In the first 

case, our formula generates the triple (𝟔𝟐 − 𝟏, 𝟐 ∙ 𝟔 ∙ 𝟏, 𝟔𝟐 + 𝟏) = (𝟑𝟓, 𝟏𝟐, 𝟑𝟕).  In the second case, our 

formula generates the triple (𝟑𝟐 − 𝟐𝟐, 𝟐 ∙ 𝟑 ∙ 𝟐, 𝟑𝟐 + 𝟐𝟐) = (𝟓, 𝟏𝟐, 𝟏𝟑).  Thus, there is no way to generate the 

triple (𝟗, 𝟏𝟐, 𝟏𝟓) using this method, even though it is a Pythagorean triple. 

 

c. Wouldn’t it be nice if all Pythagorean triples were generated by (𝒙𝟐 − 𝒚𝟐, 𝟐𝒙𝒚, 𝒙𝟐 + 𝒚𝟐)?  Research 

Pythagorean triples on the Internet to discover what is known to be true about generating all Pythagorean 

triples using this formula. 

All Pythagorean triples are some multiple of a Pythagorean triple generated using this formula.  For example, 

while (𝟗, 𝟏𝟐, 𝟏𝟓) is not generated by the formula, it is a multiple of a Pythagorean triple (𝟑, 𝟒, 𝟓), which is 

generated by the formula. 

 

9. Follow the steps below to prove the identity (𝒂𝟐 + 𝒃𝟐)(𝒙𝟐 + 𝒚𝟐) = (𝒂𝒙 − 𝒃𝒚)𝟐 + (𝒃𝒙+ 𝒂𝒚)𝟐. 

a. Multiply (𝒂𝟐 + 𝒃𝟐)(𝒙𝟐 + 𝒚𝟐). 

(𝒂𝟐 + 𝒃𝟐)(𝒙𝟐 + 𝒚𝟐) = 𝒂𝟐𝒙𝟐 + 𝒂𝟐𝒚𝟐 + 𝒃𝟐𝒙𝟐 + 𝒃𝟐𝒚𝟐 
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b. Square both binomials in (𝒂𝒙 − 𝒃𝒚)𝟐 + (𝒃𝒙+ 𝒂𝒚)𝟐 and collect like terms. 

(𝒂𝒙 − 𝒃𝒚)𝟐 + (𝒃𝒙+ 𝒂𝒚)𝟐 = 𝒂𝟐𝒙𝟐 − 𝟐𝒂𝒙𝒃𝒚+ 𝒃𝟐𝒚𝟐 + 𝒃𝟐𝒙𝟐 + 𝟐𝒂𝒙𝒃𝒚 + 𝒂𝟐𝒚𝟐 

= 𝒂𝟐𝒙𝟐 + 𝒂𝟐𝒚𝟐 + 𝒃𝟐𝒙𝟐 + 𝒃𝟐𝒚𝟐 

 

c. Use your answers from part (a) and part (b) to prove the identity. 

(𝒂𝟐 + 𝒃𝟐)(𝒙𝟐 + 𝒚𝟐) = 𝒂𝟐𝒙𝟐 + 𝒂𝟐𝒚𝟐 + 𝒃𝟐𝒙𝟐 + 𝒃𝟐𝒚𝟐 

= (𝒂𝒙− 𝒃𝒚)𝟐 + (𝒃𝒙 + 𝒂𝒚)𝟐 

 

10. Many U.S. presidents took great delight in studying mathematics.  For example, 

President James Garfield, while still a congressman, came up with a proof of the 

Pythagorean theorem based upon the ideas presented below.  

In the diagram, two congruent right triangles with side lengths 𝒂, 𝒃, and 

hypotenuse 𝒄, are used to form a trapezoid 𝑷𝑸𝑹𝑺 composed of three triangles. 

a. Explain why ∠𝑸𝑻𝑹 is a right angle. 

Since ∠𝑻𝑺𝑹 is a right angle, the measures of ∠𝑺𝑻𝑹 and ∠𝑺𝑹𝑻 sum to 𝟗𝟎°, so 

∠𝑺𝑻𝑹 and ∠𝑺𝑹𝑻 are complementary angles.  Since △ 𝑻𝑺𝑹 ≅ △ 𝑸𝑷𝑻 by SSS 

triangle congruence, we have ∠𝑺𝑹𝑻 ≅ ∠𝑷𝑻𝑸.  Thus, ∠𝑷𝑻𝑸 and ∠𝑺𝑻𝑹 must 

also be complementary.  By the angle sum properties, 

𝒎∠𝑸𝑻𝑹+𝒎∠𝑷𝑻𝑸+𝒎∠𝑺𝑻𝑹⏟            
𝟗𝟎°

= 𝟏𝟖𝟎° 

so that 

𝒎∠𝑸𝑻𝑹+ 𝟗𝟎° = 𝟏𝟖𝟎° 

and we have shown that 𝒎∠𝑸𝑻𝑹 = 𝟗𝟎°.  Thus, ∠𝑸𝑻𝑹 is a right angle. 

 

b. What are the areas of △ 𝑺𝑻𝑹, △ 𝑷𝑻𝑸, and △𝑸𝑻𝑹 in terms of 𝒂, 𝒃, and 𝒄? 

We see that 𝑨(△ 𝑺𝑻𝑹) =
𝟏
𝟐
𝒂𝒃, 𝑨(△ 𝑷𝑻𝑸) =

𝟏
𝟐
𝒂𝒃, and because ∠𝑸𝑻𝑹 is a right angle, 𝑨(△ 𝑸𝑻𝑹) =

𝟏
𝟐
𝒄𝟐. 

 

c. Using the formula for the area of a trapezoid, what is the total area of trapezoid 𝑷𝑸𝑹𝑺 in terms of 𝒂 and 𝒃? 

𝑨(𝑷𝑸𝑹𝑺) =
𝟏

𝟐
(𝒂 + 𝒃)(𝒂 + 𝒃) 

 

d. Set the sum of the areas of the three triangles from part (b) equal to the area of the trapezoid you found in 

part (c), and simplify the equation to derive a relationship between 𝒂, 𝒃, and 𝒄.  Conclude that a right triangle 

with legs of length 𝒂 and 𝒃 and hypotenuse of length 𝒄 must satisfy the relationship 𝒂𝟐 + 𝒃𝟐 = 𝒄𝟐. 

Equate areas: 

𝟏

𝟐
𝒂𝒃 +

𝟏

𝟐
𝒂𝒃 +

𝟏

𝟐
𝒄𝟐 =

𝟏

𝟐
(𝒂 + 𝒃)(𝒂 + 𝒃), 

𝒂𝒃 +
𝟏

𝟐
𝒄𝟐 =

𝟏

𝟐
(𝒂𝟐 + 𝟐𝒂𝒃+ 𝒃𝟐). 

Multiply both sides by 𝟐, 

𝟐𝒂𝒃 + 𝒄𝟐 = 𝒂𝟐 + 𝟐𝒂𝒃+ 𝒃𝟐, 

and subtract 𝟐𝒂𝒃 from both sides, 

𝒄𝟐 = 𝒂𝟐 + 𝒃𝟐. 
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Lesson 11:  The Special Role of Zero in Factoring 

 
Student Outcomes 

 Students find solutions to polynomial equations where the polynomial expression is not factored into linear 

factors.  

 Students construct a polynomial function that has a specified set of zeros with stated multiplicity. 

 

Lesson Notes  

This lesson focuses on the first part of standard A-APR.B.3, identifying zeros of polynomials presented in factored form.  

Although the terms root and zero are interchangeable, for consistency only the term zero is used throughout this lesson 

and in later lessons.  The second part of the standard, using the zeros to construct a rough graph of a polynomial 

function, is delayed until Lesson 14.  The ideas that begin in this lesson continue in Lesson 19, in which students will be 

able to associate a zero of a polynomial function to a factor in the factored form of the associated polynomial as a 

consequence of the remainder theorem, and culminate in Lesson 39, in which students apply the fundamental theorem 

of algebra to factor polynomial expressions completely over the complex numbers.  

 

Classwork 

Opening Exercise  (12 minutes) 

 

Opening Exercise 

Find all solutions to the equation (𝒙𝟐  + 𝟓𝒙 + 𝟔)(𝒙𝟐 − 𝟑𝒙 − 𝟒) = 𝟎.  

 

The main point of this opening exercise is for students to recognize and then formalize 

that the statement “If 𝑎𝑏 = 0, then 𝑎 = 0 or 𝑏 = 0” applies not only when 𝑎 and 𝑏 are 

numbers or linear functions (which we used when solving a quadratic equation), but also 

applies to cases where 𝑎 and 𝑏 are polynomial functions of any degree. 

In small groups, let students discuss ways to solve this equation.  Walk around the room 

and offer advice such as, “Have you considered factoring each quadratic expression?  

What do you get?”  As soon as one group factors both quadratic expressions, or when 

three minutes have passed, show, or let that group show, the factorization on the board. 

 

(𝑥 + 2)(𝑥 + 3)⏟          
𝑥2+5𝑥+6

⋅ (𝑥 − 4)(𝑥 + 1)⏟          
𝑥2−3𝑥−4

= 0 

 

 What are the solutions to this equation?  

 −2,−3, 4, −1   

 

Scaffolding: 

Here is an alternative opening 

activity that may better 

illuminate the special role of 

zero. 

 For each equation, list 
some possible values for 𝑥 
and 𝑦.  

𝑥𝑦 = 10, 𝑥𝑦 = 1, 
𝑥𝑦 = −1, 𝑥𝑦 = 0 

 What do you notice?  Does 
one equation tell you 
more information than 
others? 
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 Why? 

 If 𝑥 is any number other than −2, −3, 4, or −1, then each factor is a nonzero number that is 𝑥 + 2 ≠ 0, 

𝑥 + 3 ≠ 0, etc.  However, the multiplication of four nonzero numbers is nonzero, so that value of 𝑥 

cannot be a solution.  Therefore, the only possible solutions are −2, −3, 4, and −1.  It is easy to confirm 

that these are indeed solutions by substituting them each into the equation individually. 

 Why are these numbers also solutions to the original equation? 

 Because the expression (𝑥 + 2)(𝑥 + 3)(𝑥 − 4)(𝑥 + 1) is equivalent to (𝑥2 + 5𝑥 + 6)(𝑥2 − 3𝑥 − 4). 

Now let’s study the solutions to 𝑥2 + 5𝑥 + 6 = 0 and 𝑥2 − 3𝑥 − 4 = 0 separately. 

 What are the solutions to 𝑥2 + 5𝑥 + 6 = 0? 

 −2, −3 

 What are the solutions to 𝑥2 − 3𝑥 − 4 = 0? 

 4, −1 

 Relate the solutions of the equation (𝑥2  + 5𝑥 + 6)(𝑥2 − 3𝑥 − 4) = 0 to the solutions of the compound 

statement, “𝑥2 + 5𝑥 + 6 = 0 or 𝑥2 − 3𝑥 − 4 = 0.” 

 They are the same. 

 Given two polynomial functions 𝑝 and 𝑞 of any degree, the solution set of the equation 𝑝(𝑥)𝑞(𝑥) = 0 is the 

union of the solution set of 𝑝(𝑥) = 0 and the solution set of 𝑞(𝑥) = 0.  Let’s think about why.  

Lead students in a discussion of the following proof:   

 Suppose 𝑎 is a solution to the equation 𝑝(𝑥)𝑞(𝑥) = 0; that is, it is a number that satisfies 𝑝(𝑎)𝑞(𝑎) = 0.  

Since 𝑝(𝑎) is a number and 𝑞(𝑎) is a number, one or both of them must be zero, by the zero product property 

that states, “If the product of two numbers is zero, then at least one of the numbers is zero.”  Therefore, 

𝑝(𝑎) = 0 or 𝑞(𝑎) = 0, which means 𝑎 is a solution to the compound statement, “𝑝(𝑥) = 0 or 𝑞(𝑥) = 0.” 

 Now let’s prove the other direction and show that if 𝑎 is a solution to the compound statement, then it is a 

solution to the equation 𝑝(𝑥)𝑞(𝑥) = 0.  This direction is also easy:  Suppose 𝑎 is a number such that either 

𝑝(𝑎) = 0 or 𝑞(𝑎) = 0.  In the first case, 𝑝(𝑎)𝑞(𝑎) = 0 ∙ 𝑞(𝑎) = 0.  In the second case,  

𝑝(𝑎)𝑞(𝑎) = 𝑝(𝑎) ∙ 0 = 0.  Hence, in either case, 𝑎 is a solution to the equation 𝑝(𝑥)𝑞(𝑥) = 0. 

Students may have difficulty understanding the distinction between the equations 𝑝(𝑥)𝑞(𝑥) = 0 and 𝑝(𝑎)𝑞(𝑎) = 0.  

Help students understand that 𝑝(𝑥)𝑞(𝑥) = 0 is an equation in a variable 𝑥, while 𝑝(𝑎) is the value of the function 𝑝 

when it is evaluated at the number 𝑎.  Thus, 𝑝(𝑎)𝑞(𝑎) is a number.  For example, if 𝑝 and 𝑞 are the quadratic 

polynomials 𝑝(𝑥) = 𝑥2 + 5𝑥 + 6 and 𝑞(𝑥) = 𝑥2 − 3𝑥 − 4 from the Opening Exercise, and students are considering the 

case when 𝑎 is 5, then 𝑝(5) = 56 and 𝑞(5) = 6.  Therefore, 5 cannot be a solution to the equation 𝑝(𝑥)𝑞(𝑥) = 0. 

 Communicate to students that they can use the statement below to break problems into simpler parts: 

Given any two polynomial functions 𝑝 and 𝑞, the set of solutions to the equation 𝑝(𝑥)𝑞(𝑥) = 0 can be found 

by solving 𝑝(𝑥) = 0, solving 𝑞(𝑥) = 0, and combining the solutions into one set.  

 

Ask students to try the following exercise on their own. 

 

  

MP.1 
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Exercise 1  (2 minutes) 

 

Exercise 1 

1. Find the solutions of (𝒙𝟐 − 𝟗)(𝒙𝟐 − 𝟏𝟔) = 𝟎.  

The solutions to (𝒙𝟐 − 𝟗)(𝒙𝟐 − 𝟏𝟔) are the solutions of 𝒙𝟐 − 𝟗 = 𝟎 combined with the solutions of 𝒙𝟐 − 𝟏𝟔 = 𝟎.  

These solutions are −𝟑, 𝟑, −𝟒, and 𝟒. 

 

The next example looks at a polynomial equation for which the solution is already known.  The goal of this example and 

the discussion that follows is to use a solution to the equation 𝑓(𝑥) = 0 to further factor the polynomial 𝑓.  In doing so, 

the class ends with a description of the zeros of a function, a concept first introduced in Algebra I, Module 4. 

 

Example 1  (8 minutes)  

 

Example 1 

Suppose we know that the polynomial equation 𝟒𝒙𝟑 − 𝟏𝟐𝒙𝟐 + 𝟑𝒙 + 𝟓 = 𝟎 has three real solutions and that one of the 

factors of 𝟒𝒙𝟑 − 𝟏𝟐𝒙𝟐 + 𝟑𝒙 + 𝟓 is (𝒙 − 𝟏).  How can we find all three solutions to the given equation? 

 

Steer the discussion to help students conjecture that the polynomial 4𝑥3 − 12𝑥2 + 3𝑥 + 5 must be the product  

of (𝑥 − 1) and some quadratic polynomial. 

 

Since (𝑥 − 1) is a factor, and we know how to divide polynomials, we can find the quadratic polynomial by dividing: 

4𝑥3 − 12𝑥2 + 3𝑥 + 5 

𝑥 − 1
= 4𝑥2 − 8𝑥 − 5. 

 

Now we know that 4𝑥3 − 12𝑥2 + 3𝑥 + 5 = (𝑥 − 1)(4𝑥2 − 8𝑥 − 5), and we also know 

that 4𝑥2 − 8𝑥 − 5  is a quadratic polynomial that has linear factors (2𝑥 + 1) and  

(2𝑥 − 5).  

Therefore, 4𝑥3 − 12𝑥2 + 3𝑥 + 5 = 0 has the same solutions  

as (𝑥 − 1)(4𝑥2 − 8𝑥 − 5) = 0, which has the same solutions as  

(𝑥 − 1)(2𝑥 + 1)(2𝑥 − 5) = 0. 

In this factored form, the solutions of 𝑓(𝑥) = 0 are readily apparent:  −
1
2

, 1, and 
5

2
. 

 

  

Scaffolding: 

Allow students to generate 
ideas about how the linear 
factors affect the behavior of 
the graph so that they can use 
the graph of a function to 
identify zeros.  
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Zeros of 𝑓 are 

−
1

2
, 1, and 

5

2
. 

𝑦 = 𝑓(𝑥) 

Discussion  (8 minutes) 

 In Example 1 above, we saw that factoring the 

polynomial into linear factors helped us to find solutions 

to the original polynomial equation  

4𝑥3 − 12𝑥2 + 3𝑥 + 5 = 0.  

 There is a corresponding notion for the zeros of a 

function.  Let 𝑓 be a function whose domain is a subset 

of the real numbers and whose range is a subset of the 

real numbers.  A zero (or root) of the function 𝑓 is a 

number 𝑐 such that 𝑓(𝑐) = 0.  

 The zeros of the function 𝑓(𝑥) = 4𝑥3 − 12𝑥2 + 3𝑥 + 5 

are the 𝑥-intercepts of the graph of 𝑓:  these are −
1
2

, 1, 

and 
5

2
. 

 By definition, a zero of a polynomial function 𝑓 is a 

solution to the equation 𝑓(𝑥) = 0.  If (𝑥 − 𝑎) is a factor 

of a polynomial function 𝑓, then 𝑓(𝑎) = 0 and 𝑎 is a zero 

of 𝑓.   

 

However, consider the polynomial functions 𝑝(𝑥) = (𝑥 − 2)(𝑥 + 3)2, 𝑞(𝑥) = (𝑥 − 2)2(𝑥 + 3)4, and  

𝑟(𝑥) = (𝑥 − 2)4(𝑥 − 3)5.  Because 𝑝(2) = 0, 𝑞(2) = 0, and 𝑟(2) = 0, the number 2 is a zero of 𝑝, 𝑞, and 𝑟.  Likewise, 

−3 is also a zero of 𝑝, 𝑞, and 𝑟.  Even though these polynomial functions have the same zeros, they are not the same 

function; they do not even have the same degree!  

 

We would like to be able to distinguish between the zeros of these two polynomial functions.  If we write out all of the 

factors for 𝑝, 𝑞, and 𝑟, we see that 

𝑝(𝑥) = (𝑥 − 2)(𝑥 + 3)(𝑥 + 3) 

𝑞(𝑥) = (𝑥 − 2)(𝑥 − 2)(𝑥 + 3)(𝑥 + 3)(𝑥 + 3)(𝑥 + 3) 

𝑟(𝑥) = (𝑥 − 2)(𝑥 − 2)(𝑥 − 2)(𝑥 − 2)(𝑥 + 3)(𝑥 + 3)(𝑥 + 3)(𝑥 + 3)(𝑥 + 3). 

𝑦 = 𝑝(𝑥) 𝑦 = 𝑞(𝑥) 𝑦 = 𝑟(𝑥) 
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 We notice that (𝑥 − 2) is a factor of 𝑝 once, and (𝑥 + 3) is a factor of 𝑝 twice.  Thus, we say that 2 is a zero of 

𝑝 of multiplicity 1, and −3 is a zero of 𝑝 of multiplicity 2.  Zeros of multiplicity 1 are usually just referred to as 

zeros, without mentioning the multiplicity.   

 What are the zeros of 𝑞, with their multiplicities? 

 For 𝑞, 2 is a zero of multiplicity 2, and −3 is a zero of multiplicity 4. 

 What are the zeros of 𝑟, with their multiplicities? 

 For 𝑟, 2 is a zero of multiplicity 4, and −3 is a zero of multiplicity 5. 

 Can you look at the factored form of a polynomial equation and identify the zeros with their multiplicities?  

Explain how you know.  

 Yes.  Each linear factor (𝑎𝑥 − 𝑏)𝑚 of the polynomial will produce a zero 
𝑏

𝑎
 with multiplicity 𝑚. 

 Can multiplicity be negative?  Can it be zero?  Can it be a fraction? 

 No.  Multiplicity is the count of the number of times a factor appears in a factored polynomial 

expression.  Polynomials can only have positive integer exponents, so a factor must have positive 

integer exponents.  Thus, the multiplicity of a zero must be a positive integer.  

Note:  In Lesson 14, students use the zeros of a polynomial function together with their multiplicities to create a graph of 

the function, and in Lesson 19, students use the zeros of a polynomial function with their multiplicities to construct the 

equation of the function. 

 

Exercises 2–5  (8 minutes) 

 

Exercises 2–5  

2. Find the zeros of the following polynomial functions, with their multiplicities. 

a. 𝒇(𝒙) = (𝒙 + 𝟏)(𝒙 − 𝟏)(𝒙𝟐 + 𝟏) 

−𝟏 with multiplicity 𝟏 

𝟏 with multiplicity 𝟏 

 

b. 𝒈(𝒙) = (𝒙 − 𝟒)𝟑(𝒙 − 𝟐)𝟖 

𝟒 with multiplicity 𝟑 

𝟐 with multiplicity 𝟖 

 

c. 𝒉(𝒙) = (𝟐𝒙 − 𝟑)𝟓 

𝟑

𝟐
 with multiplicity 𝟓 

 

d. 𝒌(𝒙) = (𝟑𝒙 + 𝟒)𝟏𝟎𝟎(𝒙 − 𝟏𝟕)𝟒 

−
𝟒
𝟑

 with multiplicity 𝟏𝟎𝟎 

𝟏𝟕 with multiplicity 𝟒 
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3. Find a polynomial function that has the following zeros and multiplicities.  What is the degree of your polynomial? 

Zero Multiplicity 

𝟐 𝟑 

−𝟒 𝟏 

𝟔 𝟔 

−𝟖 𝟏𝟎 

𝒑(𝒙) = (𝒙 − 𝟐)𝟑(𝒙 + 𝟒)(𝒙 − 𝟔)𝟔(𝒙 + 𝟖)𝟏𝟎 

The degree of 𝒑 is 𝟐𝟎.  

 

4. Is there more than one polynomial function that has the same zeros and multiplicities as the one you found in 

Exercise 3?    

Yes.  Consider (𝒙) = (𝒙𝟐 + 𝟓)(𝒙 − 𝟐)𝟑(𝒙 + 𝟒)(𝒙 − 𝟔)𝟔(𝒙 + 𝟖)𝟏𝟎.  Since there are no real solutions to 𝒙𝟐 + 𝟓 = 𝟎, 

adding this factor does not produce a new zero.  Thus 𝒑 and 𝒒 have the same zeros and multiplicities but are 

different functions.   

 

5. Can you find a rule that relates the multiplicities of the zeros to the degree of the polynomial function? 

Yes.  If 𝒑 is a polynomial function of degree 𝒏, then the sum of the multiplicities of all of the zeros is less than or 

equal to 𝒏.  If 𝒑 can be factored into linear terms, then the sum of the multiplicities of all of the zeros is exactly equal 

to 𝒏. 

 

Closing  (2 minutes) 

Ask students to summarize the key ideas of the lesson, either in writing or with a neighbor.  Consider posing the 

questions below.  

 Part of the lesson today has been that given two polynomials, 𝑝 and 𝑞, we can determine solutions to 

𝑝(𝑥)𝑞(𝑥) = 0 by solving both 𝑝(𝑥) = 0 and 𝑞(𝑥) = 0, even if they are high-degree polynomials.  If 𝑝 and 𝑞 

are polynomial functions that do not have any real number zeros, do you think the equation 𝑝(𝑥)𝑞(𝑥) = 0 still 

has real number solutions?  Can you give an example of two such functions? 

 If 𝑝(𝑥) ≠ 0 for all real numbers 𝑥 and 𝑞(𝑥) ≠ 0 for all real numbers 𝑥, then there is no possible way to 

have 𝑝(𝑥)𝑞(𝑥) = 0.  

 For example:  If 𝑝(𝑥) = 𝑥2 + 1 and 𝑞(𝑥) = 𝑥4 + 1, then the equation (𝑥2 + 1)(𝑥4 + 1) = 0 has no 

real solutions. 

The following vocabulary was introduced in Algebra I (please see Module 3 and Module 4 in Algebra I).  While the 

teacher should not have to teach these terms explicitly, it may still be a good idea to go through them with the class. 

 

Relevant Vocabulary Terms 

In the definitions below, the symbol ℝ stands for the set of real numbers. 

FUNCTION:  A function is a correspondence between two sets, 𝑿 and 𝒀, in which each element of 𝑿 is assigned to one and 

only one element of 𝒀.   

The set 𝑿 in the definition above is called the domain of the function.  The range (or image) of the function is the subset 

of 𝒀, denoted 𝒇(𝑿), that is defined by the following property:  𝒚 is an element of 𝒇(𝑿) if and only if there is an 𝒙 in 𝑿 such 

that 𝒇(𝒙) = 𝒚. 

If 𝒇(𝒙) = 𝒙𝟐 where 𝒙 can be any real number, then the domain is all real numbers (denoted ℝ), and the range is the set of 

nonnegative real numbers. 
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POLYNOMIAL FUNCTION:  Given a polynomial expression in one variable, a polynomial function in one variable is a function 

𝒇: ℝ → ℝ such that for each real number 𝒙 in the domain, 𝒇(𝒙) is the value found by substituting the number 𝒙 into all 

instances of the variable symbol in the polynomial expression and evaluating.   

It can be shown that if a function 𝒇: ℝ → ℝ is a polynomial function, then there is some nonnegative integer 𝒏 and 

collection of real numbers 𝒂𝟎, 𝒂𝟏, 𝒂𝟐,… , 𝒂𝒏 with 𝒂𝒏 ≠ 𝟎 such that the function satisfies the equation 

𝒇(𝒙) = 𝒂𝒏𝒙
𝒏 + 𝒂𝒏−𝟏𝒙

𝒏−𝟏 +⋯+𝒂𝟏𝒙 + 𝒂𝟎, 

for every real number 𝒙 in the domain, which is called the standard form of the polynomial function.  The function  

𝒇(𝒙) = 𝟑𝒙𝟑 + 𝟒𝒙𝟐 + 𝟒𝒙 + 𝟕, where 𝒙 can be any real number, is an example of a function written in standard form. 

DEGREE OF A POLYNOMIAL FUNCTION:  The degree of a polynomial function is the degree of the polynomial expression used to 

define the polynomial function.   

The degree of 𝒇(𝒙) = 𝟖𝒙𝟑 + 𝟒𝒙𝟐 + 𝟕𝒙 + 𝟔 is 3, but the degree of 𝒈(𝒙) = (𝒙 + 𝟏)𝟐 − (𝒙 − 𝟏)𝟐 is 𝟏 because when 𝒈 is put 

into standard form, it is 𝒈(𝒙) = 𝟒𝒙. 

CONSTANT FUNCTION:  A constant function is a polynomial function of degree 0.  A constant function is of the form 𝒇(𝒙) = 𝒄, 

for a constant 𝒄. 

LINEAR FUNCTION:  A linear function is a polynomial function of degree 𝟏.  A linear function is of the form 𝒇(𝒙) = 𝒂𝒙+ 𝒃, 

for constants 𝒂 and 𝒃 with 𝒂 ≠ 𝟎. 

QUADRATIC FUNCTION:  A quadratic function is a polynomial function of degree 𝟐.  A quadratic function is in standard form if 

it is written in the form 𝒇(𝒙) = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄, for constants 𝒂, 𝒃, 𝒄 with 𝒂 ≠ 𝟎 and any real number 𝒙.   

CUBIC FUNCTION:  A cubic function is a polynomial function of degree 𝟑.  A cubic function is of the form 𝒇(𝒙) = 𝒂𝒙𝟑 + 𝒃𝒙𝟐 +

𝒄𝒙 + 𝒅, for constants 𝒂, 𝒃, 𝒄, 𝒅 with 𝒂 ≠ 𝟎. 

ZEROS OR ROOTS OF A FUNCTION:  A zero (or root) of a function 𝒇: ℝ → ℝ is a number 𝒙 of the domain such that  

𝒇(𝒙) = 𝟎.  A zero of a function is an element in the solution set of the equation 𝒇(𝒙) = 𝟎. 

 

 

Exit Ticket  (5 minutes) 

  

Lesson Summary 

Given any two polynomial functions 𝒑 and 𝒒, the solution set of the equation 𝒑(𝒙)𝒒(𝒙) = 𝟎 can be quickly found 

by solving the two equations 𝒑(𝒙) = 𝟎 and 𝒒(𝒙) = 𝟎 and combining the solutions into one set. 

The number 𝒂 is a zero of a polynomial function 𝒑 with multiplicity 𝒎 if the factored form of 𝒑 contains (𝒙 − 𝒂)𝒎.    
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Name                                   Date                          

Lesson 11:  The Special Role of Zero in Factoring 

 
Exit Ticket 
 

Suppose that a polynomial function 𝑝 can be factored into seven factors:  (𝑥 − 3), (𝑥 + 1), and 5 factors of (𝑥 − 2).  

What are its zeros with multiplicity, and what is the degree of the polynomial?  Explain how you know.  
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Exit Ticket Sample Solutions 

 

Suppose that a polynomial function 𝒑 can be factored into seven factors:  (𝒙 − 𝟑), (𝒙 + 𝟏), and 𝟓 factors of (𝒙 − 𝟐).  

What are its zeros with multiplicity, and what is the degree of the polynomial?  Explain how you know. 

Zeros:  𝟑 with multiplicity 𝟏;  −𝟏  with multiplicity 𝟏;  𝟐 with multiplicity 𝟓 

The polynomial has degree seven.  There are seven linear factors as given above, so 𝒑(𝒙) = (𝒙 − 𝟑)(𝒙 + 𝟏)(𝒙 − 𝟐)𝟓.   

If the factors were multiplied out, the leading term would be 𝒙𝟕, so the degree of 𝒑 is 𝟕. 

 

 
Problem Set Sample Solutions 

 

For Problems 1–4, find all solutions to the given equations.   

1. (𝒙 − 𝟑)(𝒙 + 𝟐) = 𝟎 

𝟑, −𝟐 

 

2. (𝒙 − 𝟓)(𝒙 + 𝟐)(𝒙 + 𝟑) = 𝟎 

𝟓, −𝟐, −𝟑 

 

3. (𝟐𝒙 − 𝟒)(𝒙 + 𝟓) = 𝟎 

𝟐, −𝟓  

 

4. (𝟐𝒙 − 𝟐)(𝟑𝒙 + 𝟏)(𝒙 − 𝟏) = 𝟎 

𝟏, −
𝟏

𝟑
, 𝟏 

 

5. Find four solutions to the equation (𝒙𝟐  −  𝟗)(𝒙𝟒 − 𝟏𝟔) = 𝟎. 

𝟐, −𝟐, 𝟑, −𝟑 

 

6. Find the zeros with multiplicity for the function 𝒑(𝒙) = (𝒙𝟑 − 𝟖)(𝒙𝟓 − 𝟒𝒙𝟑). 

We can factor 𝒑 to give 𝒑(𝒙) = 𝒙𝟑(𝒙 − 𝟐)(𝒙𝟐 + 𝟐𝒙 + 𝟒)(𝒙 − 𝟐)(𝒙 + 𝟐) = 𝒙𝟑(𝒙 − 𝟐)𝟐(𝒙 + 𝟐)(𝒙𝟐 + 𝟐𝒙 + 𝟒).   

Then, 𝟎 is a zero of multiplicity 𝟑, −𝟐 is a zero of multiplicity 𝟏, and 𝟐 is a zero of multiplicity 𝟐.  

 

7. Find two different polynomial functions that have zeros at 𝟏, 𝟑, and 𝟓 of multiplicity 𝟏. 

𝒑(𝒙) = (𝒙 − 𝟏)(𝒙 − 𝟑)(𝒙 − 𝟓) and 𝒒(𝒙) = (𝒙𝟐 + 𝟏)(𝒙 − 𝟏)(𝒙 − 𝟑)(𝒙 − 𝟓) 

 

8. Find two different polynomial functions that have a zero at 𝟐 of multiplicity 𝟓 and a zero at −𝟒 of multiplicity 𝟑.  

𝒑(𝒙) = (𝒙 − 𝟐)𝟓(𝒙 + 𝟒)𝟑 and 𝒒(𝒙) = (𝒙𝟐 + 𝟏)(𝒙 − 𝟐)𝟓(𝒙 + 𝟒)𝟑  

 

9. Find three solutions to the equation (𝒙𝟐 − 𝟗)(𝒙𝟑 − 𝟖) = 𝟎. 

From Lesson 6, we know that (𝒙 − 𝟐) is a factor of (𝒙𝟑 − 𝟖), so three solutions are 𝟑,−𝟑, and 𝟐. 
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10. Find two solutions to the equation (𝒙𝟑 − 𝟔𝟒)(𝒙𝟓 − 𝟏) = 𝟎. 

From Lesson 6, we know that (𝒙 − 𝟒) is a factor of (𝒙𝟑 − 𝟔𝟒), and (𝒙 − 𝟏) is a factor of (𝒙𝟓 − 𝟏), so two solutions 

are 𝟏 and 𝟒.  

 

11. If 𝒑, 𝒒, 𝒓, 𝒔 are nonzero numbers, find the solutions to the equation (𝒑𝒙 + 𝒒)(𝒓𝒙 + 𝒔) = 𝟎 in terms of 𝒑, 𝒒, 𝒓, 𝒔. 

Setting each factor equal to zero gives solutions −
𝒒

𝒑
 and −

𝒔

𝒓
.   

 

Use the identity 𝒂𝟐 − 𝒃𝟐 = (𝒂− 𝒃)(𝒂 + 𝒃) to solve the equations given in Problems 12–13. 

12.  (𝟑𝒙 − 𝟐)𝟐 = (𝟓𝒙 + 𝟏)𝟐 

Using algebra, we have (𝟑𝒙 − 𝟐)𝟐 − (𝟓𝒙 + 𝟏)𝟐 = 𝟎.  Applying the difference of squares formula, we have 

((𝟑𝒙 − 𝟐) − (𝟓𝒙 + 𝟏))((𝟑𝒙 − 𝟐) + (𝟓𝒙 + 𝟏)) = 𝟎.  Combining like terms gives (−𝟐𝒙− 𝟑)(𝟖𝒙 − 𝟏) = 𝟎, so the 

solutions are −
𝟑

𝟐
 and 

𝟏

𝟖
. 

 

13. (𝒙 + 𝟕)𝟐 = (𝟐𝒙 + 𝟒)𝟐  

Using algebra, we have (𝒙 + 𝟕)𝟐 − (𝟐𝒙 + 𝟒)𝟐 = 𝟎.  Then ((𝒙 + 𝟕) − (𝟐𝒙 + 𝟒))((𝒙 + 𝟕) + (𝟐𝒙 + 𝟒)) = 𝟎, so we 

have (−𝒙 + 𝟑)(𝟑𝒙 + 𝟏𝟏) = 𝟎.  Thus the solutions are −
𝟏𝟏

𝟑
 and 𝟑. 

 

14. Consider the polynomial function 𝑷(𝒙) = 𝒙𝟑 + 𝟐𝒙𝟐 + 𝟐𝒙 − 𝟓. 

a. Divide 𝑷 by the divisor (𝒙 − 𝟏) and rewrite in the form 𝑷(𝒙) = (𝐝𝐢𝐯𝐢𝐬𝐨𝐫)(𝐪𝐮𝐨𝐭𝐢𝐞𝐧𝐭) + 𝐫𝐞𝐦𝐚𝐢𝐧𝐝𝐞𝐫.  

𝑷(𝒙) = (𝒙 − 𝟏)(𝒙𝟐 + 𝟑𝒙 + 𝟓) + 𝟎  

 

b. Evaluate 𝑷(𝟏).  

𝑷(𝟏) = 𝟎  

 

15. Consider the polynomial function 𝑸(𝒙) = 𝒙𝟔 − 𝟑𝒙𝟓 + 𝟒𝒙𝟑 − 𝟏𝟐𝒙𝟐 + 𝒙 − 𝟑. 

a. Divide 𝑸 by the divisor (𝒙 − 𝟑) and rewrite in the form 𝑸(𝒙) = (𝐝𝐢𝐯𝐢𝐬𝐨𝐫)(𝐪𝐮𝐨𝐭𝐢𝐞𝐧𝐭) + 𝐫𝐞𝐦𝐚𝐢𝐧𝐝𝐞𝐫.  

𝑸(𝒙) = (𝒙 − 𝟑)(𝒙𝟓 + 𝟒𝒙𝟐 + 𝟏) + 𝟎  

 

b. Evaluate 𝑸(𝟑).  

𝑸(𝟑) = 𝟎  

 

16. Consider the polynomial function 𝑹(𝒙) = 𝒙𝟒 + 𝟐𝒙𝟑 − 𝟐𝒙𝟐 − 𝟑𝒙 + 𝟐. 

a. Divide 𝑹 by the divisor (𝒙 + 𝟐) and rewrite in the form 𝑹(𝒙) = (𝐝𝐢𝐯𝐢𝐬𝐨𝐫)(𝐪𝐮𝐨𝐭𝐢𝐞𝐧𝐭) + 𝐫𝐞𝐦𝐚𝐢𝐧𝐝𝐞𝐫.  

𝑹(𝒙) = (𝒙 + 𝟐)(𝒙𝟑 − 𝟐𝒙 + 𝟏) + 𝟎  

 

b. Evaluate 𝑹(−𝟐).  

𝑹(−𝟐) = 𝟎  
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17. Consider the polynomial function 𝑺(𝒙) = 𝒙𝟕 + 𝒙𝟔 − 𝒙𝟓 − 𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 − 𝒙 − 𝟏. 

a. Divide 𝑺 by the divisor (𝒙 + 𝟏) and rewrite in the form 𝑺(𝒙) = (𝐝𝐢𝐯𝐢𝐬𝐨𝐫)(𝐪𝐮𝐨𝐭𝐢𝐞𝐧𝐭) + 𝐫𝐞𝐦𝐚𝐢𝐧𝐝𝐞𝐫.  

𝑺(𝒙) = (𝒙 + 𝟏)(𝒙𝟔 − 𝒙𝟒 + 𝒙𝟐 − 𝟏) + 𝟎  

 

b. Evaluate 𝑺(−𝟏).  

𝑺(−𝟏) = 𝟎  

 

18. Make a conjecture based on the results of Problems 14–17. 

It seems that the zeros 𝒂 of a polynomial function correspond to factors (𝒙 − 𝒂) in the equation of the polynomial.  
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Lesson 12:  Overcoming Obstacles in Factoring 

 
Student Outcomes 

 Students factor certain forms of polynomial expressions by using the structure of the polynomials. 

 

Lesson Notes 

Students have factored polynomial expressions in earlier lessons and in earlier courses.  In this lesson, students explore 

further techniques for factoring polynomial expressions, including factoring by completing the square, by applying the 

quadratic formula, and by grouping.  They apply these techniques to solve polynomial equations.  

The idea of the greatest common factor (GCF) is important to this lesson.  The teacher may want to consider displaying a 

GCF poster on the classroom wall for reference.  Consider using some of the problem set exercises during the lesson to 

supplement the examples included here. 

 

Classwork  

Opening  (4 minutes) 

Consider the following polynomial equation.  

(𝑥2 − 4𝑥 + 3)(𝑥2 + 4𝑥 − 5) = 0 

Discuss the following questions in pairs or small groups:  

1. What is the degree of this polynomial?  How do you know? 

2. How many solutions to this equation should there be?  How do you know? 

3. How might you begin to solve this equation? 

We can solve this equation by factoring because we can solve each of the equations  

𝑥2 − 4𝑥 + 3 = 0 

𝑥2 + 4𝑥 − 5 = 0. 

There is no need to solve the whole way through; students completed a problem like this in Lesson 11.  The idea is that 

students see that this can be done relatively quickly.  The factored form of the original equation is  

(𝑥2 − 4𝑥 + 3)(𝑥2 + 4𝑥 − 5) = (𝑥 − 1)(𝑥 − 3)(𝑥 − 1)(𝑥 + 5) = (𝑥 − 1)2(𝑥 − 3)(𝑥 + 5) = 0, 

and the three solutions are 1, 3, and −5. 

However, consider the next example. 

 

Example 1  (8 minutes)  

 

Example 1 

Find all real solutions to the equation (𝒙𝟐 − 𝟔𝒙 + 𝟑)(𝟐𝒙𝟐 − 𝟒𝒙 − 𝟕) = 𝟎. 

 

Scaffolding: 

Ask struggling students to first 
solve the equation  
(𝑥 − 3)(𝑥 − 1) = 0.  Point out 
that they have used the zero 
product property, and ask how 
that property applies to the 
given problem. 
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Allow students the opportunity to struggle with factoring these expressions, discuss with their neighbors, and reach the 

conclusion that neither expression can be factored with integer coefficients. 

 We have discovered an obstacle to factoring.  The expressions 𝑥2 − 6𝑥 + 3 and 2𝑥2 − 4𝑥 − 7 do not factor as 

readily as the examples from the previous lesson.  Does anybody recall how we might factor them?   

Students have completed the square in both Geometry and Algebra I, so give them an opportunity to recall the process.  

 When a quadratic expression is not easily factorable, we can either apply a technique called completing the 

square, or we can use the quadratic formula.  Let’s factor the first expression by completing the square. 

 We first create some space between the 𝑥 term and the constant term: 

𝑥2 − 6𝑥 + ______ − ______ + 3 = 0. 

 The next step is the key step.  Take half of the coefficient of the 𝑥 term, square that number, and add and 

subtract it in the space we created: 

𝑥2 − 6𝑥 + (−3)2 − (−3)2 + 3 = 0 
𝑥2 − 6𝑥 + 9 − 9 + 3 = 0. 

Discuss the following questions with the class, and give them the opportunity to justify this step. 

 Why did we choose 9?  Why did we both add and subtract 9?  How does this help us solve the equation? 

 Adding 9 creates a perfect square trinomial in the first three terms.   

 Adding and subtracting 9 means that we have not changed the value of the expression on the left side 

of the equation. 

 Adding and subtracting 9 creates a perfect square trinomial 𝑥2 − 6𝑥 + 9 = (𝑥 − 3)2. 

 We cannot just add a number to an expression without changing its value.  By adding 9 and subtracting 9, we 

have essentially added 0 using the additive identity property, which leads to an equivalent expression on the 

left-hand side of the equation and thus preserves solutions of the equation. 

 This process creates a structure that allows us to factor the first three terms of the expression on the left side 

of the equation and then solve for the variable. 

𝑥2 − 6𝑥 + 9 − 9  + 3 = 0  

  

 (𝑥 − 3)2 − 6 = 0 

 Solving for 𝑥: 

  (𝑥 − 3)2 = 6  

𝑥 − 3 = √6    or   𝑥 − 3 = −√6  

𝑥 = 3 + √6    or   𝑥 = 3 − √6 .    

 Thus, we have found two solutions by setting the first quadratic 

expression equal to zero, completing the square, and solving the 

factored equation.  Since the leading coefficient of 𝑥2 − 6𝑥 + 3 is 1,  

we know from our work in Algebra I that the factored form is 

 𝑥2 − 6𝑥 + 3 = (𝑥 − (3 + √6)) (𝑥 − (3 − √6)). 

Scaffolding: 

We can use the tabular method to give 
a visual representation of the process of 
completing the square.  For example, 
the polynomial 𝑥2 − 6𝑥 can be 
represented as follows to illustrate the 
“missing” term. 

𝑥    −     3  

𝑥2 
 

 
−3𝑥 

 

𝑥
    −

    3
 

  

−3𝑥 
 

 

 
? 

 

Perfect square trinomial 
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 Let’s repeat the process with the second equation.  What is the first step to completing the square? 

2𝑥2 − 4𝑥 − 7 = 0 

Allow students an opportunity to suggest the first step to completing the square. 

 We can only complete the square when the leading coefficient is 1, so our first step is to factor out the 2. 

2 (𝑥2 − 2𝑥 −
7

2
) = 0 

 Now we can complete the square with the expression inside the parentheses.   

2 (𝑥2 − 2𝑥 + ______ − ______ +
7

2
) = 0 

2 (𝑥2 − 2𝑥 + (−1)2 − (−1)2 −
7

2
) = 0 

2 (𝑥2 − 2𝑥 + 1 −
9

2
) = 0 

2 ((𝑥 − 1)2 −
9

2
) = 0 

 Next, we divide both sides by 2. 

(𝑥 − 1)2 −
9

2
= 0 

 Finally, we solve for 𝑥. 

(𝑥 − 1)2 =
9

2
 

𝑥 = 1 + √
9

2
    or   𝑥 = 1 − √

9

2
 

𝑥 = 1 +
3√2

2
   or   𝑥 = 1 −

3√2

2
 

 Thus, we have found two more solutions to our original fourth-degree equation.  We then have 

2𝑥2 − 4𝑥 − 7 = 2 (𝑥2 − 2𝑥 −
7

2
) 

=  2 (𝑥 − (1 +
3√2

2
)) (𝑥 − (1 −

3√2

2
)) . 

 Notice that we needed to multiply the factors by 2 to make the leading coefficients match. 

 Finally, we have the factored form of our original polynomial equation: 

(𝑥2 − 6𝑥 + 3)(2𝑥2 − 4𝑥 − 7) = 0 in factored form 

2(𝑥 − (3 + √6))(𝑥 − (3 − √6)) (𝑥 − (1 +
3√2

2
)) (𝑥 − (1 −

3√2

2
)) = 0. 
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 Thus, the solutions to the equation (𝑥2 − 6𝑥 + 3)(2𝑥2 − 4𝑥 − 7) = 0 are the four values 3 + √6,  3 − √6,  

1 +
3√2

2
, and  1 −

3√2
2

. 

 Similarly, we could have applied the quadratic formula to find the solutions to each quadratic equation in the 

previous example.  Recall the quadratic formula. 

 The two solutions to the quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 are 
−𝑏+ √𝑏2−4𝑎𝑐

2𝑎
  and  

−𝑏− √𝑏2−4𝑎𝑐

2𝑎
. 

 

Exercise 1  (6 minutes) 

 

Exercise 1 

Factor and find all real solutions to the equation (𝒙𝟐 − 𝟐𝒙 − 𝟒)(𝟑𝒙𝟐 + 𝟖𝒙 − 𝟑) = 𝟎.  

 

Ask half of the students to apply the quadratic formula to solve 𝑥2 − 2𝑥 − 4 = 0 and the other half to apply the 

quadratic formula to solve 3𝑥2 + 8𝑥 − 3 = 0.   

The quadratic formula gives solutions 1 + √5 and 1 − √5 for the first equation and −3 and 
1

3
 for the second equation. 

Since 1 + √5 and 1 − √5 are the two solutions to 𝑥2 − 2𝑥 − 4 = 0 found by the quadratic formula, we know from work 

in Algebra I that (𝑥 − (1 + √5)) (𝑥 − (1 − √5)) = 𝑥2 − 2𝑥 − 4.  However, we need to be more careful when using the 

solutions to factor the second quadratic expression.  The leading coefficient of (𝑥 + 3) (𝑥 −
1
3

) = 𝑥2 +
8
3

𝑥 − 1 is 1, and 

the leading coefficient of 3𝑥2 + 8𝑥 − 3 is 3, so we need to multiply our factors by 3: 

3𝑥2 + 8𝑥 − 3 = 3(𝑥 + 3) (𝑥 −
1

3
). 

Thus, the factored form of the original equation is  

(𝑥2 − 2𝑥 − 4)(3𝑥2 + 8𝑥 − 3) = 3 (𝑥 − (1 + √5)) (𝑥 − (1 − √5)) (𝑥 + 3) (𝑥 −
1

3
)  = 0, 

and the four solutions to (𝑥2 − 2𝑥 − 4)(3𝑥2 + 8𝑥 − 3) = 0 are 1 + √5, 1 − √5, −3, and  
1

3
 . 

To summarize, if we have a fourth-degree polynomial already factored into two quadratic expressions, we can try to 

factor the entire polynomial by completing the square on one or both quadratic expressions, or by using the quadratic 

formula to find the roots of the quadratic polynomials and then constructing the factored form of each quadratic 

polynomial. 

 

Discussion  (6 minutes) 

 We have overcome the obstacle of difficult-to-factor quadratic expressions.  

Let’s look next at the obstacles encountered when attempting to solve a  

third-degree polynomial equation such as the following: 

𝑥3 + 3𝑥2 − 9𝑥 − 27 = 0. 

Scaffolding: 

Allow students to generate 
ideas.  Advanced students may 
benefit from significant 
independent time to attempt 
to solve the equation (MP.1). 
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 How might we begin to solve this equation?   

Allow students an opportunity to brainstorm as a class, in pairs, or in table groups.  Students may note that coefficients 

are powers of 3 but may not be sure how that helps.  Let them know they are seeing something important that they may 

be able to use.  Stronger students might even try to group the components. 

 While we have made some interesting observations, we have not quite found a way to factor this expression.  

What if we know that 𝑥 + 3 is one factor?   

If students do not come up with polynomial division, point them in that direction through a numerical example:   

Suppose we want the factors of 210, and we know that one factor is 3.  How do we find the other factors? 

Have students perform the polynomial division 

 

to find additional factors.  Students may also use the tabular method discussed in earlier lessons in this module. 

 

 

 

 

 

 

 

 

 

 

 

 

 Since 𝑥3 + 3𝑥3 − 9𝑥 − 27 = (𝑥 + 3)(𝑥2 − 9), we know that  

𝑥3 + 3𝑥2 − 9𝑥 − 27 = (𝑥 + 3)(𝑥 − 3)(𝑥 + 3) = (𝑥 + 3)2(𝑥 − 3). 

 By the zero product property, the solutions to 𝑥3 + 3𝑥2 − 9𝑥 − 27 = 0 are −3 and 3. 

 But, how do we start if we don’t know any of the factors in advance? 

 

Example 2  (6 minutes)   

 

Example 2 

Find all solutions to 𝒙𝟑 + 𝟑𝒙𝟐 − 𝟗𝒙 − 𝟐𝟕 = 𝟎 by factoring the equation. 

 

 Let’s start with our original equation 𝑥3 + 3𝑥2 − 9𝑥 − 27 = 0.  Is there a 

greatest common factor (GCF) for all four terms on the left-hand side we can 

factor out? 

 No, the GCF is 1. 

Scaffolding: 

If needed, have students 
compute the GCF for some 
numerical examples such as   

    GCF 75, 100 is 25  
    GCF 72, 16, 24 is 8  
    GCF 10, 35, 63 is 1. 
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 Let’s group the terms of the left-hand side as follows: 

𝑥3 + 3𝑥2 − 9𝑥 − 27 = (𝑥3 + 3𝑥2) − (9𝑥 + 27). 

 Can we factor out a GCF from each set of parentheses independently? 

 Yes, 𝑥2 can be factored out of the first piece and 9 out of the second. 

Factor the GCF out of each part.  Have students do as much of this work as possible. 

𝑥3 + 3𝑥2 − 9𝑥 − 27 = 𝑥2(𝑥 + 3) − 9(𝑥 + 3)   

 Do you notice anything interesting about the right side of the above equation? 

 I noticed that 𝑥 + 3 is a common factor. 

 Since both terms have a factor of (𝑥 + 3), we have found a quantity that can be factored out. 

𝑥3 + 3𝑥2 − 9𝑥 − 27 = (𝑥 + 3)(𝑥2 − 9) 

 And as we saw above, we can take this one step further.  

𝑥3 + 3𝑥2 − 9𝑥 − 27 = (𝑥 + 3)(𝑥 + 3)(𝑥 − 3) 

 Because of the zero property, the original problem is now easy to solve because 𝑥3 + 3𝑥2 − 9𝑥 − 27 = 0 

exactly when (𝑥 + 3)2(𝑥 − 3) = 0.  What are the solutions to the original equation? 

 The solutions to 𝑥3 + 3𝑥2 − 9𝑥 − 27 = 0 are 𝑥 =  −3 and 𝑥 = 3. 

 The process you just completed is often called factoring by grouping, and it works only on certain 3
rd

 degree 

polynomial expressions, such as 𝑥3 + 3𝑥2 − 9𝑥 − 27. 

 

Exercise 2  (4 minutes) 

Allow students to work in pairs or small groups on these exercises.  Realize that there are two ways to group the terms 

that result in the same factored expression.  Circulate around the room while students are working, and take note of any 

groups that are using a different approach.  At the end of these exercises, ask students who grouped differently to share 

their method, and discuss as a class.   

 

Exercise 2  

Find all real solutions to 𝒙𝟑 − 𝟓𝒙𝟐 − 𝟒𝒙 + 𝟐𝟎 = 𝟎. 

𝒙𝟑 − 𝟓𝒙𝟐 − 𝟒𝒙 + 𝟐𝟎 = 𝟎 

𝒙𝟐(𝒙 − 𝟓) − 𝟒(𝒙 − 𝟓) = 𝟎 

(𝒙 − 𝟓)(𝒙𝟐 − 𝟒) = 𝟎 

(𝒙 − 𝟓)(𝒙 − 𝟐)(𝒙 + 𝟐) = 𝟎 

Thus, the solutions are 𝟓, 𝟐, and −𝟐. 

Alternate approach: 

𝒙𝟑 − 𝟓𝒙𝟐 − 𝟒𝒙 + 𝟐𝟎 = 𝟎 

𝒙(𝒙𝟐 − 𝟒) − 𝟓(𝒙𝟐 − 𝟒) = 𝟎 

(𝒙 − 𝟓)(𝒙𝟐 − 𝟒) = 𝟎 

(𝒙 − 𝟓)(𝒙 − 𝟐)(𝒙 + 𝟐) = 𝟎 

 

 

  

MP.7 
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Exercise 3  (4 minutes) 

 

Exercise 3  

Find all real solutions to 𝒙𝟑 − 𝟖𝒙𝟐 − 𝟐𝒙 + 𝟏𝟔 = 𝟎. 

𝒙𝟑 − 𝟖𝒙𝟐 − 𝟐𝒙 + 𝟏𝟔 = 𝟎 

𝒙𝟐(𝒙 − 𝟖) − 𝟐(𝒙 − 𝟖) = 𝟎 

(𝒙 − 𝟖)(𝒙𝟐 − 𝟐) = 𝟎 

Thus, the solutions are  𝟖, √𝟐, and −√𝟐. 

𝒙𝟑 − 𝟖𝒙𝟐 − 𝟐𝒙 + 𝟏𝟔 = 𝟎 

𝒙(𝒙𝟐 − 𝟐) − 𝟖(𝒙𝟐 − 𝟐) = 𝟎 

(𝒙 − 𝟖)(𝒙𝟐 − 𝟐) = 𝟎 

 

Closing  (2 minutes) 

Ask students to summarize the important parts of the lesson in writing, to a partner, or as a class.  Use this as an 

opportunity to informally assess understanding of the lesson.  The following are some important summary elements. 

 

 

 

Exit Ticket  (5 minutes)  

Lesson Summary 

In this lesson, we learned some techniques to use when faced with factoring polynomials and solving polynomial 

equations.    

 If a fourth-degree polynomial can be factored into two quadratic expressions, then each quadratic 

expression might be factorable either using the quadratic formula or by completing the square.   

 Some third-degree polynomials can be factored using the technique of factoring by grouping.     
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Name                                   Date                          

Lesson 12:  Overcoming Obstacles in Factoring 

 
Exit Ticket 
 

Solve the following equation, and explain your solution method.  

 

𝑥3 + 7𝑥2 − 𝑥 − 7 = 0 
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Exit Ticket Sample Solutions 

 

Solve the following equation, and explain your solution method.  

𝒙𝟑 + 𝟕𝒙𝟐 − 𝒙 − 𝟕 = 𝟎 

𝒙𝟐(𝒙 + 𝟕) − (𝒙 + 𝟕) = 𝟎 
(𝒙 + 𝟕)(𝒙𝟐 − 𝟏) = 𝟎 

(𝒙 + 𝟕)(𝒙 − 𝟏)(𝒙 + 𝟏) = 𝟎 

The solutions are −𝟕, 𝟏, and −𝟏.  The equation was solved by factoring and by grouping.  I grouped the four terms into 

two groups, and then factored the GCF from each group.  I then factored out the common term (𝒙 + 𝟕) from each group 

to find the factored form of the equation.  I then applied the zero product property to find the solutions to the equation. 

 

 
Problem Set Sample Solutions 

 

1. Solve each of the following equations by completing the square. 

a. 𝒙𝟐 − 𝟔𝒙 + 𝟐 = 𝟎 

 

𝟑 + √𝟕,  𝟑 − √𝟕 

 

b. 𝒙𝟐 − 𝟒𝒙 = −𝟏 

 

𝟐 + √𝟑,  𝟐 − √𝟑 

 

c. 𝒙𝟐 + 𝒙 −
𝟑
𝟒

= 𝟎   

 

𝟏

𝟐
,  −

𝟑
𝟐

 

 

d. 𝟑𝒙𝟐 − 𝟗𝒙 = −𝟔 

 

𝟐,  𝟏 

 

e. (𝟐𝒙𝟐 − 𝟓𝒙 + 𝟐)(𝟑𝒙𝟐 − 𝟒𝒙 + 𝟏) = 𝟎 

 

𝟐,
𝟏

𝟐
, 𝟏,

𝟏

𝟑
 

 

f. 𝒙𝟒 − 𝟒𝒙𝟐 + 𝟐 = 𝟎 √𝟐 + √𝟐, −√𝟐 + √𝟐, √𝟐 − √𝟐, −√𝟐 − √𝟐 

 

2. Solve each of the following equations using the quadratic formula. 

a. 𝒙𝟐 − 𝟓𝒙 − 𝟑 = 𝟎 

 

𝟓

𝟐
+

√𝟑𝟕

𝟐
, 

𝟓

𝟐
−

√𝟑𝟕

𝟐
 

 

b. (𝟔𝒙𝟐 − 𝟕𝒙 + 𝟐)(𝒙𝟐 − 𝟓𝒙 + 𝟓) = 𝟎 

 

𝟏

𝟐
, 

𝟐

𝟑
, 

𝟏

𝟐
(𝟓 + √𝟓), 

𝟏

𝟐
(𝟓 − √𝟓) 

 

c. (𝟑𝒙𝟐 − 𝟏𝟑𝒙 + 𝟏𝟒)(𝒙𝟐 − 𝟒𝒙 + 𝟏) = 𝟎 𝟐, 
𝟕

𝟑
, 𝟐 + √𝟑, 𝟐 − √𝟑 
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3. Not all of the expressions in the equations below can be factored using the techniques discussed so far in this 

course.  First, determine if the expression can be factored with real coefficients.  If so, factor the expression, and 

find all real solutions to the equation.  

a. 𝒙𝟐 − 𝟓𝒙 − 𝟐𝟒 = 𝟎 

Can be factored:  (𝒙 − 𝟖)(𝒙 + 𝟑) = 𝟎.    

Solutions:  𝟖,  −𝟑 

 

b. 𝟑𝒙𝟐 + 𝟓𝒙 − 𝟐 = 𝟎 

Can be factored:  (𝟑𝒙 − 𝟏)(𝒙 + 𝟐) = 𝟎.   

Solutions:  
𝟏

𝟑
, −𝟐 

 

c. 𝒙𝟐 + 𝟐𝒙 + 𝟒 = 𝟎 

Cannot be factored with real number coefficients. 

 

d. 𝒙𝟑 + 𝟑𝒙𝟐 − 𝟐𝒙 + 𝟔 = 𝟎 

Cannot be factored with real number coefficients. 

 

e. 𝒙𝟑 + 𝟑𝒙𝟐 + 𝟐𝒙 + 𝟔 = 𝟎 

Can be factored:  (𝒙 + 𝟑)(𝒙𝟐 + 𝟐) = 𝟎.  

Solution:  −𝟑 

f. 𝟐𝒙𝟑 + 𝒙𝟐 − 𝟔𝒙 − 𝟑 = 𝟎 

Can be factored:  (𝟐𝒙 + 𝟏)(𝒙 − √𝟑)(𝒙 + √𝟑) =

𝟎.   

Solutions:  −
𝟏
𝟐

, √𝟑, −√𝟑   

 

g. 𝟖𝒙𝟑 − 𝟏𝟐𝒙𝟐 + 𝟐𝒙 − 𝟑 = 𝟎 

Can be factored:  (𝟐𝒙 − 𝟑)(𝟒𝒙𝟐 + 𝟏) = 𝟎.   

Solution:  
𝟑

𝟐
   

 

h. 𝟔𝒙𝟑 + 𝟖𝒙𝟐 + 𝟏𝟓𝒙 + 𝟐𝟎 = 𝟎 

Can be factored:  (𝟑𝒙 + 𝟒)(𝟐𝒙𝟐 + 𝟓) = 𝟎.   

Solution:  −
𝟒
𝟑

   

 

i. 𝟒𝒙𝟑 + 𝟐𝒙𝟐 − 𝟑𝟔𝒙 − 𝟏𝟖 = 𝟎 

Can be factored:  𝟐(𝟐𝒙 + 𝟏)(𝒙 − 𝟑)(𝒙 + 𝟑) = 𝟎.   

Solutions:  −
𝟏
𝟐

, 𝟑, −𝟑   

j. 𝒙𝟐 −
𝟏
𝟐

𝒙 −
𝟏𝟓
𝟐

= 𝟎 

Can be factored:  (𝒙 +
𝟓

𝟐
) (𝒙 − 𝟑) = 𝟎. 

Solutions:  −
𝟓
𝟐

, 𝟑 

 

4. Solve the following equations by bringing all terms to one side of the equation and factoring out the greatest 

common factor. 

a. (𝒙 − 𝟐)(𝒙 − 𝟏) = (𝒙 − 𝟐)(𝒙 + 𝟏) 

(𝒙 − 𝟐)(𝒙 + 𝟏) − (𝒙 − 𝟐)(𝒙 − 𝟏) = 𝟎 

(𝒙 − 𝟐)(𝒙 + 𝟏 − (𝒙 − 𝟏)) = 𝟎 

(𝒙 − 𝟐)(𝟐) = 𝟎 

𝒙 = 𝟐 

So, the only solution to (𝒙 − 𝟐)(𝒙 − 𝟏) = (𝒙 − 𝟐)(𝒙 + 𝟏) is 𝟐. 

 

b. (𝟐𝒙 + 𝟑)(𝒙 − 𝟒) = (𝟐𝒙 + 𝟑)(𝒙 + 𝟓) 

(𝟐𝒙 + 𝟑)(𝒙 − 𝟒) − (𝟐𝒙 + 𝟑)(𝒙 + 𝟓) = 𝟎 

(𝟐𝒙 + 𝟑)(𝒙 − 𝟒 − (𝒙 + 𝟓)) = 𝟎 

(𝟐𝒙 + 𝟑)(−𝟗) = 𝟎 

𝒙 = −
𝟑

𝟐
 

So, the only solution to (𝟐𝒙 + 𝟑)(𝒙 − 𝟒) = (𝟐𝒙 + 𝟑)(𝒙 + 𝟓) is −
𝟑

𝟐
. 
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c. (𝒙 − 𝟏)(𝟐𝒙 + 𝟑) = (𝒙 − 𝟏)(𝒙 + 𝟐) 

(𝒙 − 𝟏)(𝟐𝒙 + 𝟑) − (𝒙 − 𝟏)(𝒙 + 𝟐) = 𝟎 

(𝒙 − 𝟏)(𝟐𝒙 + 𝟑 − (𝒙 + 𝟐)) = 𝟎 

(𝒙 − 𝟏)(𝒙 + 𝟏) = 𝟎 

𝒙 = 𝟏  or  𝒙 = −𝟏 

The solutions to (𝒙 − 𝟏)(𝟐𝒙 + 𝟑) = (𝒙 − 𝟏)(𝒙 + 𝟐) are 𝟏 and −𝟏.  

 

d. (𝒙𝟐 + 𝟏)(𝟑𝒙 − 𝟕) = (𝒙𝟐 + 𝟏)(𝟑𝒙 + 𝟐) 

(𝒙𝟐 + 𝟏)(𝟑𝒙 − 𝟕) − (𝒙𝟐 + 𝟏)(𝟑𝒙 + 𝟐) = 𝟎 

(𝒙𝟐 + 𝟏)(𝟑𝒙 − 𝟕 − (𝟑𝒙 + 𝟐)) = 𝟎 

(𝒙𝟐 + 𝟏)(−𝟗) = 𝟎 

𝒙𝟐 + 𝟏 = 𝟎 

There are no real number solutions to (𝒙𝟐 + 𝟏)(𝟑𝒙 − 𝟕) = (𝒙𝟐 + 𝟏)(𝟑𝒙 + 𝟐). 

 

e. (𝒙 + 𝟑)(𝟐𝒙𝟐 + 𝟕) = (𝒙 + 𝟑)(𝒙𝟐 + 𝟖) 

(𝒙 + 𝟑)(𝟐𝒙𝟐 + 𝟕) − (𝒙 + 𝟑)(𝒙𝟐 + 𝟖) = 𝟎 

(𝒙 + 𝟑)(𝟐𝒙𝟐 + 𝟕 − (𝒙𝟐 + 𝟖)) = 𝟎 

(𝒙 + 𝟑)(𝒙𝟐 − 𝟏) = 𝟎 

(𝒙 + 𝟑)(𝒙 − 𝟏)(𝒙 + 𝟏) = 𝟎 

The three solutions to (𝒙 + 𝟑)(𝟐𝒙𝟐 + 𝟕) = (𝒙 + 𝟑)(𝒙𝟐 + 𝟖) are – 𝟑, −𝟏, and 𝟏. 

 

5. Consider the expression 𝒙𝟒 + 𝟏.  Since 𝒙𝟐 + 𝟏 does not factor with real number coefficients, we might expect that 

𝒙𝟒 + 𝟏 also does not factor with real number coefficients.  In this exercise, we investigate the possibility of factoring 

𝒙𝟒 + 𝟏. 

a. Simplify the expression (𝒙𝟐 + 𝟏)𝟐 − 𝟐𝒙𝟐. 

(𝒙𝟐 + 𝟏)𝟐 − 𝟐𝒙𝟐 = 𝒙𝟒 + 𝟏 

 

b. Factor (𝒙𝟐 + 𝟏)𝟐 − 𝟐𝒙𝟐 as a difference of squares. 

(𝒙𝟐 + 𝟏)𝟐 − 𝟐𝒙𝟐 = ((𝒙𝟐 + 𝟏) − √𝟐 𝒙) ((𝒙𝟐 + 𝟏) + √𝟐 𝒙) 

 

c. Is it possible to factor 𝒙𝟒 + 𝟏 with real number coefficients?  Explain. 

Yes.  𝒙𝟒 + 𝟏 = ((𝒙𝟐 + 𝟏) − √𝟐 𝒙) ((𝒙𝟐 + 𝟏) + √𝟐 𝒙) 

In an equivalent but more conventional form, we have  

𝒙𝟒 + 𝟏 = (𝒙𝟐 − √𝟐 𝒙 + 𝟏)(𝒙𝟐 + √𝟐 𝒙 + 𝟏). 
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Lesson 13:  Mastering Factoring  

 
Student Outcomes 

 Students use the structure of polynomials to identify factors. 

 

Lesson Notes 

In previous lessons in this module, students practiced the techniques of factoring by completing the square, by applying 

the quadratic formula, and by grouping.  In this lesson, students look for structure in more complicated polynomial 

expressions that allow factorization.  But first, students review several factoring techniques; some they learned about in 

the last lesson, and others they learned about in previous classes. 

 

Opening Exercise  (8 minutes)  

In this exercise, students should begin to factor polynomial expressions by first analyzing their structure, a skill that is 

developed throughout the lesson.  Suggest that students work on their own for five minutes and then compare answers 

with a neighbor; allow students to help each other out for an additional three minutes, if needed.  

 

Opening Exercise 

Factor each of the following expressions.  What similarities do you notice between the examples in the left column and 

those on the right?   

a. 𝒙𝟐 − 𝟏 b. 𝟗𝒙𝟐 − 𝟏 

(𝒙 − 𝟏)(𝒙 + 𝟏) (𝟑𝒙 − 𝟏)(𝟑𝒙 + 𝟏) 

   

c. 𝒙𝟐 + 𝟖𝒙 + 𝟏𝟓 d. 𝟒𝒙𝟐 + 𝟏𝟔𝒙 + 𝟏𝟓 

(𝒙 + 𝟓)(𝒙 + 𝟑) (𝟐𝒙 + 𝟓)(𝟐𝒙 + 𝟑) 

 

e. 𝒙𝟐 − 𝒚𝟐  f. 𝒙𝟒 − 𝒚𝟒 

(𝒙 − 𝒚)(𝒙 + 𝒚) (𝒙𝟐 − 𝒚𝟐)(𝒙𝟐 + 𝒚𝟐) 

 

Students should notice that the structure of each of the factored polynomials is the same; for example, the factored 

forms of part (a) and part (b) are nearly the same, except that part (b) contains 3𝑥 in place of the 𝑥 in part (a).  In parts 

(c) and (d), the factored form of part (d) contains 2𝑥, where there is only an 𝑥 in part (c). The factored form of part (f) is 

nearly the same as the factored form of part (e), with 𝑥2 replacing 𝑥 and 𝑦2 replacing 𝑦. 

  

 

MP.7 
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Discussion  (2 minutes) 

The difference of two squares formula, 

𝑎2 − 𝑏2 = (𝑎 + 𝑏)(𝑎 − 𝑏), 

can be used to factor an expression even when the two squares are not obvious.   

Consider the following examples. 

 

Example 1  (3 minutes)  

 

Example 1 

Write 𝟗 − 𝟏𝟔𝒙𝟒 as the product of two factors. 

𝟗 − 𝟏𝟔𝒙𝟒 = (𝟑)𝟐 − (𝟒𝒙𝟐)𝟐 

= (𝟑 − 𝟒𝒙𝟐)(𝟑 + 𝟒𝒙𝟐) 

 

Example 2  (3 minutes)  

 

Example 2 

Factor 𝟒𝒙𝟐𝒚𝟒 − 𝟐𝟓𝒙𝟒𝒛𝟔. 

𝟒𝒙𝟐𝒚𝟒 − 𝟐𝟓𝒙𝟒𝒛𝟔 =  (𝟐𝒙𝒚𝟐)𝟐 − (𝟓𝒙𝟐𝒛𝟑)𝟐 

= (𝟐𝒙𝒚𝟐 + 𝟓𝒙𝟐𝒛𝟑)(𝟐𝒙𝒚𝟐 − 𝟓𝒙𝟐𝒛𝟑) 

=  [𝒙(𝟐𝒚𝟐 + 𝟓𝒙𝒛𝟑)][𝒙(𝟐𝒚𝟐 − 𝟓𝒙𝒛𝟑)] 

= 𝒙𝟐(𝟐𝒚𝟐 + 𝟓𝒙𝒛𝟑)(𝟐𝒚𝟐 − 𝟓𝒙𝒛𝟑) 

 

Have students discuss with each other the structure of each polynomial expression in the previous two examples and 

how it helps to factor the expressions. 

 

There are two terms that are subtracted, and each term can be written as the square of an expression. 

 

Example 3  (3 minutes)  

Consider the quadratic polynomial expression 9𝑥2 + 12𝑥 − 5.  We can factor this expression by considering 3𝑥 as a 

single quantity as follows:  

9𝑥2 + 12𝑥 − 5 =  (3𝑥)2 + 4(3𝑥) − 5. 

Ask students to suggest the next step in factoring this expression. 

Now, if we rename 𝑢 = 3𝑥, we have a quadratic expression of the form 𝑢2 + 4𝑢 − 5, which we can factor 

𝑢2 + 4𝑢 − 5 = (𝑢 − 1)(𝑢 + 5). 

Replacing 𝑢 by 3𝑥, we have the following form of our original expression: 

9𝑥2 + 12𝑥 − 5 = (3𝑥 − 1)(3𝑥 − 5). 

Scaffolding: 

If students are unfamiliar with the 
difference of squares formula, work 
through a table of numeric 
examples, and ask them to look for 
patterns. 

𝑎 𝑏 𝑎 + 𝑏 𝑎 − 𝑏 𝑎2 − 𝑏2 
3 1 4 2 8 

4 1 5 3 15 

5 2 7 3 21 

6 4 10 2 20 

Students may benefit from teacher 
modeling. 
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Exercise 1  (4 minutes) 

Allow students to work in pairs or small groups on the following exercises. 

 

Exercise 1 

1. Factor the following expressions: 

a. 𝟒𝒙𝟐 + 𝟒𝒙 − 𝟔𝟑  

𝟒𝒙𝟐 + 𝟒𝒙 − 𝟔𝟑 = (𝟐𝒙)𝟐 + 𝟐(𝟐𝒙) − 𝟔𝟑 

= (𝟐𝒙 + 𝟗)(𝟐𝒙 − 𝟕) 

 

b. 𝟏𝟐𝒚𝟐 − 𝟐𝟒𝒚 − 𝟏𝟓 

𝟏𝟐𝒚𝟐 − 𝟐𝟒𝒚 − 𝟏𝟓 = 𝟑(𝟒𝒚𝟐 − 𝟖𝒚 − 𝟓) 

                                    = 𝟑((𝟐𝒚)𝟐 − 𝟒(𝟐𝒚) − 𝟓) 

= 𝟑(𝟐𝒚 + 𝟏)(𝟐𝒚 − 𝟓) 

 

Example 4  (10 minutes)  

Use the example of factoring 𝑥3 − 8 to scaffold the discussion of factoring 𝑥3 + 8.  Students should be pretty familiar by 

now with factors of 𝑥3 − 8.  Let them try the problem on their own to check their understanding. 

 Suppose we want to factor 𝑥3 − 8. 

 Do you see anything interesting about this expression?  

If they do not notice it, guide them toward both terms being perfect cubes. 

 We can rewrite 𝑥3 − 8 as 𝑥3 − 23. 

 Guess a factor.   

 Anticipate that they will suggest 𝑥 − 2 and 𝑥 + 2 as possible factors, or guide them to these 

suggestions.  

Ask half of the students to divide 
𝑥3−8

𝑥−2
 and the other half to divide 

𝑥3−8

𝑥+2
.  They should discover that 𝑥 − 2 is a factor of 

𝑥3 − 8, but 𝑥 + 2 is not.  
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 Use the results of the previous step to factor 𝑥3 − 8. 

 𝑥3 − 8 = (𝑥 − 2)(𝑥2 + 2𝑥 + 4) 

 Repeat the above process for 𝑥3 − 27.  

 𝑥3 − 27 = (𝑥 − 3)(𝑥2 + 3𝑥 + 9) 

 Make a conjecture about a rule for factoring 𝑥3 − 𝑎3. 

 𝑥3 − 𝑎3 = (𝑥 − 𝑎)(𝑥2 + 𝑎𝑥 + 𝑎2) 

 Verify the conjecture:  Multiply out (𝑥 − 𝑎)(𝑥2 + 𝑎𝑥 + 𝑎2) to establish the identity for factoring a difference 

of cubes. 

 While we can factor a difference of squares such as the expression 𝑥2 − 9, we cannot similarly factor a sum of 

squares such as 𝑥2 + 9.  Do we run into a similar problem when trying to factor a sum of cubes such as  

𝑥3 + 8? 

Again, ask students to propose potential factors of 𝑥3 + 8.  Lead students to 𝑥 + 2 if they do not guess it automatically. 

Work through the polynomial long division for 
𝑥3+8

x+2
 as shown. 

Conclude that 𝑥3 + 8 = (𝑥 + 2)(𝑥2 − 2𝑥 + 4).  

 Make a conjecture about a rule for factoring 𝑥3 + 𝑎3. 

 𝑥3 + 𝑎3 = (𝑥 + 𝑎)(𝑥2 − 𝑎𝑥 + 𝑎2) 

 Verify the conjecture:  Multiply out the expression  

(𝑥 + 𝑎)(𝑥2 − 𝑎𝑥 + 𝑎2) to establish the identity for factoring a sum 

of cubes. 

 

Exercises 2–4  (5 minutes) 

 

Exercises 2–4 

Factor each of the following, and show that the factored form is equivalent to the original expression. 

2. 𝒂𝟑 + 𝟐𝟕  

(𝒂 + 𝟑)(𝒂𝟐 − 𝟑𝒂 + 𝟗) 

 

3. 𝒙𝟑 − 𝟔𝟒 

(𝒙 − 𝟒)(𝒙𝟐 + 𝟒𝒙 + 𝟏𝟔) 

 

4. 𝟐𝒙𝟑 + 𝟏𝟐𝟖 

𝟐(𝒙𝟑 + 𝟔𝟒) =  𝟐(𝒙 + 𝟒)(𝒙𝟐 − 𝟒𝒙 + 𝟏𝟔) 

 

Closing  (2 minutes) 

Ask students to summarize the important parts of the lesson in writing, to a partner, or as a class.  Use this as an 

opportunity to informally assess understanding of the lesson.  The following are some important summary elements. 

Scaffolding: 

Ask advanced students to 
generate their own factoring 
problems using the structure of 
𝑎3 + 𝑏3 or 𝑎3 − 𝑏3. 
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Exit Ticket  (5 minutes)  

𝒙𝟑 + 𝒂𝟑 = (𝒙 + 𝒂)(𝒙𝟐 − 𝒂𝒙 + 𝒂𝟐) 

𝒙𝟑 − 𝒂𝟑 = (𝒙 − 𝒂)(𝒙𝟐 + 𝒂𝒙 + 𝒂𝟐). 

Lesson Summary 

In this lesson we learned additional strategies for factoring polynomials.  

 The difference of squares identity 𝒂𝟐 − 𝒃𝟐 = (𝒂 − 𝒃)(𝒂 + 𝒃) can be used to factor more 

advanced binomials.   

 Trinomials can often be factored by looking for structure and then applying our previous 

factoring methods.  

 Sums and differences of cubes can be factored by the formulas 
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Name                                   Date                          

Lesson 13:  Mastering Factoring 

 
Exit Ticket 
 

1. Factor the following expression, and verify that the factored expression is equivalent to the original:  4𝑥2 − 9𝑎6 

 

 

 

 

 

 

 

 

 

 

 

2. Factor the following expression, and verify that the factored expression is equivalent to the original:  16𝑥2 − 8𝑥 − 3 
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Exit Ticket Sample Solutions 

 

1. Factor the following expression, and verify that the factored expression is equivalent to the original:  𝟒𝒙𝟐 − 𝟗𝒂𝟔 

(𝟐𝒙 − 𝟑𝒂𝟑)(𝟐𝒙 + 𝟑𝒂𝟑) = 𝟒𝒙𝟐 + 𝟔𝒂𝟑𝒙 − 𝟔𝒂𝟑𝒙 − 𝟗𝒂𝟔 

= 𝟒𝒙𝟐 − 𝟗𝒂𝟔 

 

2. Factor the following expression, and verify that the factored expression is equivalent to the original:  𝟏𝟔𝒙𝟐 − 𝟖𝒙 − 𝟑 

(𝟒𝒙 − 𝟑)(𝟒𝒙 + 𝟏) = 𝟏𝟔𝒙𝟐 + 𝟒𝒙 − 𝟏𝟐𝒙 − 𝟑 

= 𝟏𝟔𝒙𝟐 − 𝟖𝒙 − 𝟑 

 
 
Problem Set Sample Solutions 

 

1. If possible, factor the following expressions using the techniques discussed in this lesson. 

a. 𝟐𝟓𝒙𝟐 − 𝟐𝟓𝒙 − 𝟏𝟒 

(𝟓𝒙 − 𝟕)(𝟓𝒙 + 𝟐)  
 

g. 𝟗𝒙𝟐 − 𝟐𝟓𝒚𝟒𝒛𝟔 

(𝟑𝒙 − 𝟓𝒚𝟐𝒛𝟑)(𝟑𝒙 + 𝟓𝒚𝟐𝒛𝟑) 

b.  𝟗𝒙𝟐𝒚𝟐 − 𝟏𝟖𝒙𝒚 + 𝟖 

(𝟑𝒙𝒚 − 𝟒)(𝟑𝒙𝒚 − 𝟐) 
 

h. 𝟑𝟔𝒙𝟔𝒚𝟒𝒛𝟐 − 𝟐𝟓𝒙𝟐𝒛𝟏𝟎 

𝒙𝟐𝒛𝟐(𝟔𝒙𝟐𝒚𝟐 − 𝟓𝒛𝟒)(𝟔𝒙𝟐𝒚𝟐 + 𝟓𝒛𝟒) 

c. 𝟒𝟓𝒚𝟐 + 𝟏𝟓𝒚 − 𝟏𝟎 

𝟓(𝟑𝒚 + 𝟐)(𝟑𝒚 − 𝟏) 
 

i. 𝟒𝒙𝟐 + 𝟗 

Cannot be factored. 

d. 𝒚𝟔 − 𝒚𝟑 − 𝟔 

(𝒚𝟑 − 𝟑)(𝒚𝟑 + 𝟐) 
 

j. 𝒙𝟒 − 𝟑𝟔 

(𝒙 − √𝟔)(𝒙 + √𝟔)(𝒙𝟐 + 𝟔) 

e. 𝒙𝟑 − 𝟏𝟐𝟓 

(𝒙 − 𝟓)(𝒙𝟐 + 𝟓𝒙 + 𝟐𝟓) 
 

k. 𝟏 + 𝟐𝟕𝒙𝟗 

(𝟏 + 𝟑𝒙𝟑)(𝟏 − 𝟑𝒙𝟑 + 𝟗𝒙𝟔) 

f. 𝟐𝒙𝟒 − 𝟏𝟔𝒙 

𝟐𝒙(𝒙 − 𝟐)(𝒙𝟐 + 𝟐𝒙 + 𝟒) 
 

l. 𝒙𝟑𝒚𝟔 + 𝟖𝒛𝟑 

(𝒙𝒚𝟐 + 𝟐𝒛)(𝒙𝟐𝒚𝟒 − 𝟐𝒙𝒚𝟐𝒛 + 𝟒𝒛𝟐) 
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2. Consider the polynomial expression 𝒚𝟒 + 𝟒𝒚𝟐 + 𝟏𝟔. 

a. Is 𝒚𝟒 + 𝟒𝒚𝟐 + 𝟏𝟔 factorable using the methods we have seen so far? 

No.  This will not factor into the form (𝒚𝟐 + 𝒂)(𝒚𝟐 + 𝒃) using any of our previous methods. 

 

b. Factor 𝒚𝟔 − 𝟔𝟒 first as a difference of cubes, and then factor completely:  (𝒚𝟐)𝟑 − 𝟒𝟑. 

𝒚𝟔 − 𝟔𝟒 = (𝒚𝟐 − 𝟒)(𝒚𝟒 + 𝟒𝒚𝟐 + 𝟏𝟔) 

= (𝒚 − 𝟐)(𝒚 + 𝟐)(𝒚𝟒 + 𝟒𝒚𝟐 + 𝟏𝟔) 

 

c. Factor 𝒚𝟔 − 𝟔𝟒 first as a difference of squares, and then factor completely: (𝒚𝟑)𝟐 − 𝟖𝟐. 

𝒚𝟔 − 𝟔𝟒 = (𝒚𝟑 − 𝟖)(𝒚𝟑 + 𝟖) 

= (𝒚 − 𝟐)(𝒚𝟐 + 𝟐𝒚 + 𝟒)(𝒚 + 𝟐)(𝒚𝟐 − 𝟐𝒚 + 𝟒) 

= (𝒚 − 𝟐)(𝒚 + 𝟐)(𝒚𝟐 − 𝟐𝒚 + 𝟒)(𝒚𝟐 + 𝟐𝒚 + 𝟒) 

 

d. Explain how your answers to parts (b) and (c) provide a factorization of 𝒚𝟒 + 𝟒𝒚𝟐 + 𝟏𝟔. 

Since 𝒚𝟔 − 𝟔𝟒 can be factored two different ways, those factorizations are equal.  Thus we have  

(𝒚 − 𝟐)(𝒚 + 𝟐)(𝒚𝟒 + 𝟒𝒚𝟐 + 𝟏𝟔) = (𝒚 − 𝟐)(𝒚 + 𝟐)(𝒚𝟐 − 𝟐𝒚 + 𝟒)(𝒚𝟐 + 𝟐𝒚 + 𝟒). 

If we specify that 𝒚 ≠ 𝟐 and 𝒚 ≠ −𝟐, we can cancel the common terms from both sides: 

(𝒚𝟒 + 𝟒𝒚𝟐 + 𝟏𝟔) = (𝒚𝟐 − 𝟐𝒚 + 𝟒)(𝒚𝟐 + 𝟐𝒚 + 𝟒). 

Multiplying this out, we see that 

(𝒚𝟐 − 𝟐𝒚 + 𝟒)(𝒚𝟐 + 𝟐𝒚 + 𝟒) = 𝒚𝟒 + 𝟐𝒚𝟑 + 𝟒𝒚𝟐 − 𝟐𝒚𝟑 − 𝟒𝒚𝟐 − 𝟖𝒚 + 𝟒𝒚𝟐 + 𝟖𝒚 + 𝟏𝟔 
= 𝒚𝟒 + 𝟒𝒚𝟐 + 𝟏𝟔 

for every value of 𝒚. 

 

e. If a polynomial can be factored as either a difference of squares or a difference of cubes, which formula 

should you apply first, and why? 

Based on this example, a polynomial should first be factored as a difference of squares and then as a 

difference of cubes.  This will produce factors of lower degree. 

 

3. Create expressions that have a structure that allows them to be factored using the specified identity.  Be creative, 

and produce challenging problems! 

a. Difference of squares 

𝒙𝟏𝟒𝒚𝟒 − 𝟐𝟐𝟓𝒛𝟏𝟎 

 

b. Difference of cubes 

𝟐𝟕𝒙𝟗𝒚𝟔 − 𝟏 

 

c. Sum of cubes 

𝒙𝟔𝒛𝟑 + 𝟔𝟒𝒚𝟏𝟐  
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Lesson 14:  Graphing Factored Polynomials 

 
Student Outcomes 

 Students use the factored forms of polynomials to find zeros of a function.   

 Students use the factored forms of polynomials to sketch the components of graphs between zeros. 

 

Lesson Notes 

In this lesson, students use the factored form of polynomials to identify important aspects of the graphs of polynomial 

functions and, therefore, important aspects of the situations they model.  Using the factored form, students identify 

zeros of the polynomial (and thus 𝑥-intercepts of the graph of the polynomial function) and see how to sketch a graph of 

the polynomial functions by examining what happens between the 𝑥-intercepts.  They are also introduced to the 

concepts of relative minima and maxima and determining the possible degree of the polynomial by noting the number of 

relative extrema by looking at the graph of a function.  A relative maximum (or minimum) is a property of a function that 

is visible in its graph.  A relative maximum occurs at an 𝑥-value, 𝑐, in the domain of the function, and the relative 

maximum value is the corresponding function value at 𝑐.  If a relative maximum of a function 𝑓 occurs at 𝑐, then 

(𝑐, 𝑓(𝑐)) is a relative maximum point.  As an example, if (10,300) is a relative maximum point of a function 𝑓, then the 

relative maximum value of 𝑓 is 300 and occurs at 10.  When speaking about relative extrema, however, relative 

maximum is often used informally to refer to either a relative maximum at 𝑐, a relative maximum value, or a relative 

maximum point when the context is clear.  Definitions of relevant vocabulary are included at the end of the lesson  

The use of a graphing utility is recommended for some examples in this lesson to encourage students to focus on 

understanding the structure of the polynomials without the tedium of repeated graphing by hand.  

 

Opening Exercise  (10 minutes)  

Prompt students to answer part (a) of the Opening Exercise independently or in pairs 

before continuing with the scaffolded questions.  

 

Opening Exercise 

An engineer is designing a roller coaster for younger children and has tried some functions to 

model the height of the roller coaster during the first 𝟑𝟎𝟎 yards.  She came up with the following 

function to describe what she believes would make a fun start to the ride: 

𝑯(𝒙) = −𝟑𝒙𝟒 + 𝟐𝟏𝒙𝟑 − 𝟒𝟖𝒙𝟐 + 𝟑𝟔𝒙, 

where 𝑯(𝒙) is the height of the roller coaster (in yards) when the roller coaster is 𝟏𝟎𝟎𝒙 yards 

from the beginning of the ride.  Answer the following questions to help determine at which 

distances from the beginning of the ride the roller coaster is at its lowest height. 

a. Does this function describe a roller coaster that would be fun to ride?  Explain.  

Yes, the roller coaster quickly goes to the top and then drops you down.  This looks 

like a fun ride. 

No, I don’t like roller coasters that climb steeply, and this one goes nearly straight up. 

e 

MP.3 

Scaffolding: 

 Consider beginning the 

class by reviewing graphs 

of simpler functions 

modeling simple roller 

coasters, such as  

𝐺(𝑥) = −𝑥2 + 4𝑥. 

 A more visual approach 

may be taken by first 

describing and analyzing 

the graph of 𝐻 before 

connecting each concept 

to the algebra associated 

with the function.  Pose 

questions such as When is 

the roller coaster going 

up?  Going down?  How 

many times does the roller 

coaster touch the bottom? 

MP.5 
& 

MP.7 
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b. Can you see any obvious 𝒙-values from the equation where the roller coaster is at height 𝟎? 

The height is 𝟎 when 𝒙 is 𝟎 because, at that value, each term is equal to 𝟎. 

 

c. Using a graphing utility, graph the function 𝑯 on the interval 𝟎 ≤ 𝒙 ≤ 𝟑, and 

identify when the roller coaster is 𝟎 yards off the ground. 

The lowest points of the graph on 𝟎 ≤ 𝒙 ≤ 𝟑 are when the 𝒙-value satisfies 

𝑯(𝒙) =  𝟎, which occurs when 𝒙 is 𝟎, 𝟐, and 𝟑.   

 

d. What do the 𝒙-values you found in part (c) mean in terms of distance from the 

beginning of the ride? 

The distances represent 𝟎 yards, 𝟐𝟎𝟎 yards, and 𝟑𝟎𝟎 yards, respectively.  

 

e. Why do roller coasters always start with the largest hill first? 

So they can build up speed from gravity to help propel the cars through the rest 

of the track.  

 

f. Verify your answers to part (c) by factoring the polynomial function 𝑯.   

Some students may need some hints or guidance with factoring. 

𝑯(𝒙) = −𝟑𝒙𝟒 + 𝟐𝟏𝒙𝟑 − 𝟒𝟖𝒙𝟐 + 𝟑𝟔𝒙 

= −𝟑𝒙(𝒙𝟑 − 𝟕𝒙𝟐 + 𝟏𝟔𝒙 − 𝟏𝟐) 

From the graph, we suspect that (𝒙 − 𝟑) is a factor; using long division, we obtain 

𝑯(𝒙) = −𝟑𝒙(𝒙 − 𝟑)(𝒙𝟐 − 𝟒𝒙 + 𝟒) 

= −𝟑𝒙(𝒙 − 𝟑)(𝒙 − 𝟐)(𝒙 − 𝟐) 

= −𝟑𝒙(𝒙 − 𝟑)(𝒙 − 𝟐)𝟐. 

The solutions to the equation 𝑯(𝒙) = 𝟎 are 𝟎, 𝟐, and 𝟑.  Therefore, the roller coaster is at the bottom at  

𝟎 yards, 𝟐𝟎𝟎 yards, and 𝟑𝟎𝟎 yards from the start of the ride. 

 

g. How do you think the engineer came up with the function for this model? 

Let students discuss this question in groups or as a whole class.  The following conclusion should be made:   

To start at height 𝟎 yards and end 𝟑𝟎𝟎 yards later at height 𝟎 yards, she multiplied 𝒙 by 𝒙 − 𝟑 (to create 

zeros at 𝟎 and 𝟑).  To create the bottom of the hill at 𝟐𝟎𝟎 yards, she multiplied this function by (𝒙 − 𝟐)𝟐.   

She needed to multiply by −𝟑 to guarantee the roller coaster shape and to adjust the overall height of the 

roller coaster. 

 

h. What is wrong with this roller coaster model at distance 𝟎 yards and 𝟑𝟎𝟎 yards?  Why might this not initially 

bother the engineer when she is first designing the track?  

The model appears to abruptly start at 𝟎 yards and abruptly end at 𝟑𝟎𝟎 yards.  In fact, the roller coaster looks 

as if it will crash into the ground at 𝟑𝟎𝟎 yards!  The engineer may be planning to “smooth” out the track later 

at 𝟎 yards and 𝟑𝟎𝟎 yards after she has selected the overall shape of the roller coaster.  

 

  

MP.5 

MP.3 
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Discussion  (4 minutes) 

By manipulating a polynomial function into its factored form, we can identify the zeros of 

the function as well as identify the general shape of the graph.  Thinking about the 

Opening Exercise, what else can we say about the polynomial function and its graph? 

 The degree of the polynomial function 𝐻 is 4.  How can you find the degree of 

the function from its factored form? 

 Add the highest degree term from each factor:  

 −3 is a degree 0 factor 

 𝑥 is degree 1 factor 

 𝑥 − 3 is degree 1 factor 

 (𝑥 − 2)2 is a degree 2 factor, since (𝑥 − 2)2 = (𝑥 − 2)(𝑥 − 2). 

 Thus, 0 + 1 + 1 + 2 = 4. 

 How many 𝑥-intercepts does the graph of the polynomial function have? 

 For this graph, there are three:  (0,0), (2,0), and (3,0).   

You may want to include a discussion that the zeros of a function correspond to the 𝑥-

intercepts of the graph of the function. 

 Note that there are four factors, but only three 𝑥-intercepts.  Why is that?   

 Two of the factors are the same.   

Remind students that the 𝑥-intercepts of the graph of 𝑦 = 𝑓(𝑥) are solutions to the 

equation 𝑓(𝑥) = 0.  Values of 𝑟 that satisfy 𝑓(𝑟) = 0 are called zeros (or roots) of the 

function.  Some of these zeros may be repeated.  

 Can you make one change to the polynomial function such that the new 

graph would have four 𝑥-intercepts? 

 Change one of the (𝑥 − 2) factors to (𝑥 − 1), for example. 

 

Example 1  (10 minutes)  

Students are now going to examine a few polynomial functions in factored form and compare the zeros of the function 

to the graph of the function on the calculator.  Help students with part (a), and ask them to do part (b) on their own. 

  

Scaffolding: 

Encourage struggling learners 

to graph the original and the 

factored forms using a 

graphing utility to confirm that 

they are the same. 

Scaffolding: 

 For advanced learners, 

consider challenging students 

to construct a variety of 

functions to meet different 

criteria such as three factors 

and no 𝑥-intercepts or four 

factors with two 𝑥-intercepts. 

 Students may enjoy challenging 

each other by trying to guess 

the equation that goes with the 

graph of their classmates. 
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Example 1 

Graph each of the following polynomial functions.  What are the function’s zeros (counting multiplicities)?  What are the 

solutions to 𝒇(𝒙) = 𝟎?  What are the 𝒙-intercepts to the graph of the function?  How does the degree of the polynomial 

function compare to the 𝒙-intercepts of the graph of the function?   

a. 𝒇(𝒙) = 𝒙(𝒙 − 𝟏)(𝒙 + 𝟏) 

 

 

 

Zeros:    −𝟏, 𝟎, 𝟏 

Solutions to 𝒇(𝒙) = 𝟎: −𝟏, 𝟎, 𝟏 

𝒙-intercepts:   −𝟏, 𝟎, 𝟏 

The degree is 𝟑, which is the same as the number of 𝒙-intercepts. 

 

 

 

Before graphing the next equation, ask students where they think the graph of 𝑓 will cross the 𝑥-axis and how the 

repeated factor will affect the graph.  After graphing, students may need to trace near 𝑥 = −3 depending on the 

graphing window to obtain a clear picture of the 𝑥-intercept. 

 

b. 𝒇(𝒙) = (𝒙 + 𝟑)(𝒙 + 𝟑)(𝒙 + 𝟑)(𝒙 + 𝟑) 

 

 

 

Zeros:     −𝟑, −𝟑, −𝟑, −𝟑 (repeated zero) 

Solutions to 𝒇(𝒙) = 𝟎:  −𝟑 

𝒙-intercept:  −𝟑 

The degree is 𝟒, which is greater than the number of 𝒙-intercepts. 

 

 

 

By now, students should have an idea of what to expect in part (c).  It may be worth noting the differences in the end 

behavior of the graphs, which will be explored further in Lesson 15.  Discuss the degree of each polynomial. 
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c. 𝒇(𝒙) = (𝒙 − 𝟏)(𝒙 − 𝟐)(𝒙 + 𝟑)(𝒙 + 𝟒)(𝒙 + 𝟒) 

 

Zeros:   −𝟒, −𝟒, −𝟑, 𝟏, 𝟐 

Solutions to 𝒇(𝒙) = 𝟎:  −𝟒, −𝟑, 𝟏, 𝟐  

𝒙-intercepts:    −𝟒, −𝟑, 𝟏, 𝟐 

The degree is 𝟓, which is greater than the number of 𝒙-intercepts. 

 

 

 

 

 

d. 𝒇(𝒙) = (𝒙𝟐 + 𝟏)(𝒙 − 𝟐)(𝒙 − 𝟑) 

 

Zeros:    𝟐, 𝟑 

Solutions to 𝒇(𝒙) = 𝟎: 𝟐, 𝟑 

𝒙-intercepts:    𝟐, 𝟑 

The degree is 𝟒, which is greater than the number of 𝒙-

intercepts. 

 

 

 

 

 

 

 

 Why is the factor 𝑥2 + 1 never zero and how does this affect the graph of 𝑓?   

(At this point in the module, all polynomial functions are defined from the real numbers to the real numbers; hence, the 

functions can have only real number zeros.  We will extend polynomial functions to the domain of complex numbers 

later, and then it will be possible to consider complex solutions to a polynomial equation.) 

 For real numbers 𝑥, the value of 𝑥2 is always greater than or equal to zero, so 𝑥2 + 1 will always be 

strictly greater than zero.  Thus, 𝑥2 + 1 ≠ 0 for all real numbers 𝑥.  Since there can be no 𝑥-intercept 

from this factor, the graph of 𝑓 can have at most two 𝑥-intercepts.   

If there is time, consider graphing the functions for parts (e)–(h) on the board and asking students to match the functions 

to the graphs.  Encourage students to use a graphing utility to graph their guesses, talk about the differences between 

guesses and the actual graph, and what may cause them in each case.  
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e. 𝒇(𝒙) = (𝒙 − 𝟐)𝟐 

 

Zeros:     𝟐, 𝟐 

Solutions to 𝒇(𝒙) = 𝟎:  𝟐 

𝒙-intercepts:   𝟐 

The degree is 𝟐, which is greater than the number of 𝒙-intercepts. 

 

 

 

 

 

f.  𝒇(𝒙) = (𝒙 − 𝟏)(𝒙 + 𝟏)(𝒙 − 𝟐)(𝒙 + 𝟐)(𝒙 − 𝟑)(𝒙 + 𝟑)(𝒙 − 𝟒) 

 

Zeros:   𝟏, −𝟏, 𝟐, −𝟐, 𝟑, −𝟑, 𝟒 

Solutions to 𝒇(𝒙) = 𝟎: 𝟏, −𝟏, 𝟐, −𝟐, 𝟑, −𝟑, 𝟒 

𝒙-intercepts:    𝟏, −𝟏, 𝟐, −𝟐, 𝟑, −𝟑, 𝟒 

The degree is 𝟕, which is equal to the number of 𝒙-intercepts. 

 

 

 

 

 

g. 𝒇(𝒙) = (𝒙𝟐 + 𝟐)𝟐 

 

Zeros:    None 

Solutions to 𝒇(𝒙) = 𝟎:   No solutions 

𝒙-intercepts:    No 𝒙-intercepts 

The degree is 𝟒, which is greater than the number of 𝒙-intercepts. 
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h. 𝒇(𝒙) = (𝒙 + 𝟏)𝟐(𝒙 − 𝟏)𝟐𝒙 

 

Zeros:   −𝟏, −𝟏, 𝟏, 𝟏, 𝟎 

Solutions to 𝒇(𝒙) = 𝟎: −𝟏, 𝟎, 𝟏   

𝒙-intercepts:   −𝟏, 𝟎, 𝟏 

The degree is 𝟓, which is greater than the number of 𝒙-intercepts. 

 

 

  

 

 

Discussion  (1 minutes) 

Ask students to summarize what they have learned so far, either in writing or with a partner.  Check for understanding of 

the concepts, and help students reach the following conclusions if they do not do so on their own. 

 The 𝑥-intercepts in the graph of a function correspond to the solutions to the equation 𝑓(𝑥) = 0 and 

correspond to the number of distinct zeros of the function (but the 𝑥-intercepts do not help us to determine 

the multiplicity of a given zero). 

 The graph of a polynomial function of degree 𝑛 has at most 𝑛 𝑥-intercepts but may have fewer. 

 A polynomial function whose graph has 𝑚 𝑥-intercepts is at least a degree 𝑚 polynomial. 

 

Example 2  (8 minutes)  

Lead students through the questions in order to arrive at a sketch of the final graph.  The main point of this exercise is 

that if students know the 𝑥-intercepts of a polynomial function, then they can sketch a fairly accurate graph of the 

function by just checking to see if the function is positive or negative at a few points.  They are not graphing by plotting 

points and connecting the dots but by applying properties of polynomial functions. 

Give time for students to work through parts (a) and (b) in pairs or small groups before continuing with the discussion in 

parts (c)-(i).  When sketching the graph in part (j), it is important to let students know that we cannot pinpoint exactly 

the high and low points on the graph—the relative maximum and relative minimum points.  For this reason, omit a scale 

on the 𝑦-axis in the sketch.      

 

Example 2 

Consider the function 𝒇(𝒙) = 𝒙𝟑 − 𝟏𝟑𝒙𝟐 + 𝟒𝟒𝒙 − 𝟑𝟐. 

a. Use the fact that 𝒙 − 𝟒 is a factor of 𝒇 to factor this polynomial. 

Using polynomial division and then factoring, 𝒇(𝒙) = (𝒙 − 𝟒)(𝒙𝟐 − 𝟗𝒙 + 𝟖) = (𝒙 − 𝟒)(𝒙 − 𝟖)(𝒙 − 𝟏). 

 

b. Find the 𝒙-intercepts for the graph of 𝒇. 

The 𝒙-intercepts are 𝟏, 𝟒, and 𝟖. 
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c. At which 𝒙-values can the function change from being positive to negative or from negative to positive? 

Only at the 𝒙-intercepts 𝟏, 𝟒, and 𝟖. 

 

d. To sketch a graph of 𝒇, we need to consider whether the function is positive or negative on the four intervals 

𝒙 < 𝟏, 𝟏 < 𝒙 < 𝟒, 𝟒 < 𝒙 < 𝟖, and 𝒙 > 𝟖.  Why is that? 

The function can only change sign at the 𝒙-intercepts; therefore, on each of those intervals, the graph will 

always be above or always be below the axis.  

 

e. How can we tell if the function is positive or negative on an interval between 𝒙-intercepts?   

Evaluate the function at a single point in that interval.  Since the function is either always positive or always 

negative between 𝒙-intercepts, checking a single point will indicate behavior on the entire interval.  

 

f. For 𝒙 < 𝟏, is the graph above or below the 𝒙-axis?  How can you tell? 

Since 𝒇(𝟎) = −𝟑𝟐 is negative, the graph is below the 𝒙-axis for 𝒙 < 𝟏. 

 

g. For 𝟏 < 𝒙 < 𝟒, is the graph above or below the 𝒙-axis?  How can you tell?   

Since 𝒇(𝟐) = 𝟏𝟐 is positive, the graph is above the 𝒙-axis for 𝟏 < 𝒙 < 𝟒. 

 

h. For 𝟒 < 𝒙 < 𝟖, is the graph above or below the 𝒙-axis?  How can you tell? 

Since 𝒇(𝟓) = −𝟏𝟐 is negative, the graph is below the 𝒙-axis for 𝟒 < 𝒙 < 𝟖. 

 

i. For 𝒙 > 𝟖, is the graph above or below the 𝒙-axis?  How can you tell? 

Since 𝒇(𝟏𝟎) = 𝟏𝟎𝟖 is positive, the graph is above the 𝒙-axis for 𝒙 > 𝟖. 

 

j. Use the information generated in parts (f)–(i) to sketch a graph of 𝒇. 

 

k. Graph 𝒚 = 𝒇(𝒙) on the interval from [𝟎, 𝟗] using a graphing utility, and compare your sketch with the graph 

generated by the graphing utility.  
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Scaffolding: 

For English language learners, 

the term relative may need 

some additional instruction 

and practice to help 

differentiate it from other uses 

of this word.  

It may help to think of the 

other points in the interval 

containing the relative 

maximum as all being related, 

and of all the relatives present, 

𝑐 is the value that gives the 

highest function value.  

Discussion  (6 minutes) 

 Let’s examine the graph of 𝑓(𝑥) = 𝑥3 − 13𝑥2 + 44𝑥 − 32 for 1 ≤ 𝑥 ≤ 4.   

Is there a number 𝑐 in that interval where the value 𝑓(𝑐) is greater than or 

equal to any other value of the function on that interval?  Do we know exactly 

where that is?  

 There is a value of 𝑐 such that 𝑓(𝑐) that is greater than or equal to the 

other values.  It seems that 2 < 𝑐 < 2.5, but we do not know its exact 

value.  

It could be mentioned that the exact value of 𝑐 can be found exactly using calculus, but 

this is a topic for another class.  For now, point out that the relative maximum or relative 

minimum point of a quadratic function can always be found— the only one is the vertex 

of the parabola. 

 If such a number 𝑐 exists, then the function has a relative maximum at 𝑐.  

The relative maximum value, 𝑓(𝑐), may not be the greatest overall value of the 

function, but there is an open interval around 𝑐 so that for every 𝑥 in that 

interval, 𝑓(𝑥) ≤ 𝑓(𝑐).  That is, for values of 𝑥 near 𝑐 (where “near” is a relative  

term), the point (𝑥, 𝑓(𝑥)) on the graph of 𝑓 is not higher than (𝑐, 𝑓(𝑐)).   

 Similarly, a function 𝑓 has a relative minimum at 𝑑 if there is an open interval around 𝑑 so that for every 𝑥 in 

that interval, 𝑓(𝑥) ≥ 𝑓(𝑑).  That is, for values of 𝑥 near 𝑑, the point (𝑥, 𝑓(𝑥)) on the graph of 𝑓 is not lower 

than the point (𝑑, 𝑓(𝑑)).  In this case, the relative minimum value is 𝑓(𝑑). 

 Show the relative maxima and relative minima on the graph.  The image below clarifies the distinction between 

the relative maximum point and the relative minimum value.  Point out that there are values of the function 

that are larger than 𝑓(𝑐), such as 𝑓(9), but that 𝑓(𝑐) is the highest value among the “neighbors” of 𝑐.  
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The precise definitions of relative maxima and relative minima are listed in the glossary of terms for this lesson.  These 

definitions are new to students, so it is worth going over them at the end of the lesson.  Reiterate to students that if a 

relative maximum occurs at a value 𝑐, then that the relative maximum point is the point (𝑐, 𝑓(𝑐)) on the graph, and the 

relative maximum value is the 𝑦-value of the function at that point, 𝑓(𝑐).  Analogous definitions hold for relative 

minimum, relative minimum value, and relative minimum point.   

 

Discussion 

For any particular polynomial, can we determine how many relative maxima or minima there are?  Consider the following 

polynomial functions in factored form and their graphs. 

𝒇(𝒙) = (𝒙 + 𝟏)(𝒙 − 𝟑) 
 

 

𝒈(𝒙) = (𝒙 + 𝟑)(𝒙 − 𝟏)(𝒙 − 𝟒) 
 

 

𝒉(𝒙) = (𝒙)(𝒙 + 𝟒)(𝒙 − 𝟐)(𝒙 − 𝟓) 
 

 
Degree of each polynomial: 

𝟐 𝟑 𝟒 
 

Number of 𝒙-intercepts in each graph: 

𝟐 𝟑 𝟒 
 

Number of relative maximum and minimum points shown in each graph: 

𝟏 𝟐 𝟑 
 

What observations can we make from this information? 

 

The number of relative maximum and minimum points is one less than the degree and one less than the number of 𝒙-

intercepts. 

 

Is this true for every polynomial?  Consider the examples below. 

𝒓(𝒙) = 𝒙𝟐 + 𝟏 
 

 

𝒔(𝒙) = (𝒙𝟐 + 𝟐)(𝒙 − 𝟏) 
 

 

𝒕(𝒙) = (𝒙 + 𝟑)(𝒙 − 𝟏)(𝒙 − 𝟏)(𝒙 − 𝟏) 
 

 

Degree of each polynomial: 

𝟐 𝟑 𝟒 
 

Number of 𝒙-intercepts in each graph: 

𝟎 𝟏 𝟐 
 

Number of relative maximum and minimum points shown in each graph: 

𝟏 𝟎 𝟏 
 

 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
  
  
 

 

    

 

 

NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 14 
ALGEBRA II 

Lesson 14: Graphing Factored Polynomials  
 
 

 

162 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

What observations can we make from this information? 

The observations made in the previous examples do not hold for these examples, so it is difficult to determine from the 

degree of the polynomial function the number of relative maximum and minimum points in the graph of the function.  

What we can say is that for a degree 𝒏 polynomial function, there are at most 𝒏 − 𝟏 relative maxima and minima.   

You can also think about the information you can get from a graph.  If a graph of a polynomial function has 𝒏 relative 

maximum and minimum points, you can say that the degree of the polynomial is at least 𝒏 + 𝟏.  

 

Closing  (1 minute) 

 By looking at the factored form of a polynomial, we can identify important characteristics of the graph such as 

𝑥-intercepts and degree of the function, which in turn allow us to develop a sketch of the graph. 

 A polynomial function of degree 𝑛 may have up to 𝑛 𝑥-intercepts. 

 A polynomial function of degree 𝑛 may have up to 𝑛 − 1 relative maxima and minima.  

 

Relevant Vocabulary 

INCREASING/DECREASING:  Given a function 𝒇 whose domain and range are subsets of the real numbers and 𝑰 is an interval 

contained within the domain, the function is called increasing on the interval 𝑰 if 

𝒇(𝒙𝟏) < 𝒇(𝒙𝟐) whenever 𝒙𝟏 < 𝒙𝟐 in 𝑰. 

It is called decreasing on the interval 𝑰 if 

𝒇(𝒙𝟏) > 𝒇(𝒙𝟐) whenever 𝒙𝟏 < 𝒙𝟐 in 𝑰. 

RELATIVE MAXIMUM:  Let 𝒇 be a function whose domain and range are subsets of the real numbers.  The function has a 

relative maximum at 𝒄 if there exists an open interval 𝑰 of the domain that contains 𝒄 such that  

𝒇(𝒙) ≤ 𝒇(𝒄) for all 𝒙 in the interval 𝑰. 

If 𝒇 has a relative maximum at 𝒄, then the value 𝒇(𝒄) is called the relative maximum value.  

RELATIVE MINIMUM:  Let 𝒇 be a function whose domain and range are subsets of the real numbers.  The function has a 

relative minimum at 𝒄 if there exists an open interval 𝑰 of the domain that contains 𝒄 such that  

𝒇(𝒙) ≥ 𝒇(𝒄) for all 𝒙 in the interval 𝑰. 

If 𝒇 has a relative minimum at 𝒄, then the value 𝒇(𝒄) is called the relative minimum value.  

GRAPH OF 𝒇:  Given a function 𝒇 whose domain 𝑫 and the range are subsets of the real numbers, the graph of 𝒇 is the set 

of ordered pairs in the Cartesian plane given by 

{(𝒙, 𝒇(𝒙)) | 𝒙 ∈ 𝑫}. 

GRAPH OF 𝒚 = 𝒇(𝒙):  Given a function 𝒇 whose domain 𝑫 and the range are subsets of the real numbers, the graph of  

𝒚 = 𝒇(𝒙) is the set of ordered pairs (𝒙, 𝒚) in the Cartesian plane given by 

{(𝒙, 𝒚) | 𝒙 ∈ 𝑫  and  𝒚 = 𝒇(𝒙)}. 
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Lesson Summary 

A polynomial of degree 𝒏 may have up to 𝒏 𝒙-intercepts and up to 𝒏 − 𝟏 relative maximum/minimum points.  

The function 𝒇 has a relative maximum at 𝒄 if there is an open interval around 𝒄 so that for all 𝒙 in that interval, 

𝒇(𝒙) ≤ 𝒇(𝒄).  That is, looking near the point (𝒄, 𝒇(𝒄)) on the graph of 𝒇, there is no point higher than (𝒄, 𝒇(𝒄)) in 

that region.  The value 𝒇(𝒄) is a relative maximum value.   

The function 𝒇 has a relative minimum at 𝒅 if there is an open interval around 𝒅 so that for all 𝒙 in that interval, 

𝒇(𝒙) ≥ 𝒇(𝒅).  That is, looking near the point (𝒅, 𝒇(𝒅)) on the graph of 𝒇, there is no point lower than (𝒅, 𝒇(𝒅)) in 

that region.  The value 𝒇(𝒅) is a relative minimum value.   

The plural of maximum is maxima, and the plural of minimum is minima. 

 
 

 

Exit Ticket  (5 minutes)  
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Name                                   Date                          

Lesson 14:  Graphing Factored Polynomials 

 
Exit Ticket 
 

Sketch a graph of the function 𝑓(𝑥) = 𝑥3 + 𝑥2 − 4𝑥 − 4 by finding the zeros and determining the sign of the function 

between zeros.  Explain how the structure of the equation helps guide your sketch. 
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Exit Ticket Sample Solutions 

 

Sketch a graph of the function 𝒇(𝒙) = 𝒙𝟑 + 𝒙𝟐 − 𝟒𝒙 − 𝟒 by finding the zeros and determining the sign of the function 

between zeros.  Explain how the structure of the equation helps guide your sketch. 

𝒇(𝒙) = (𝒙 + 𝟏)(𝒙 + 𝟐)(𝒙 − 𝟐) 

Zeros:  −𝟏, −𝟐, 𝟐 

For 𝒙 < −𝟐:  𝒇(−𝟑) = −𝟏𝟎, so the graph is below the 𝒙-axis 

on this interval. 

For −𝟐 < 𝒙 < −𝟏: 𝒇(−𝟏. 𝟓) = 𝟎. 𝟖𝟕𝟓, so the graph is above the 

𝒙-axis on this interval. 

For – 𝟏 < 𝒙 < 𝟐:  𝒇(𝟎) = −𝟒, so the graph is below the 𝒙-axis on 

this interval. 

For 𝒙 > 𝟐:  𝒇(𝟑) = 𝟐𝟎, so the graph is above the 𝒙-axis on 

this interval.  

 

 

 
 
Problem Set Sample Solutions 

 

1. For each function below, identify the largest possible number of 𝒙-intercepts and the largest possible number of 

relative maxima and minima based on the degree of the polynomial.  Then use a calculator or graphing utility to 

graph the function and find the actual number of 𝒙-intercepts and relative maxima and minima. 

a. 𝒇(𝒙) = 𝟒𝒙𝟑 − 𝟐𝒙 + 𝟏 

b. 𝒈(𝒙) = 𝒙𝟕 − 𝟒𝒙𝟓 − 𝒙𝟑 + 𝟒𝒙 

c. 𝒉(𝒙) = 𝒙𝟒 + 𝟒𝒙𝟑 + 𝟐𝒙𝟐 − 𝟒𝒙 + 𝟐 

Function 
Largest number of 

𝒙-intercepts 

Largest number of 

relative max/min 

Actual number of 

𝒙-intercepts 

Actual number  of 

relative max/min 

a.     𝒇 𝟑 𝟐 𝟏 𝟐 

b.     𝒈 𝟕 𝟔 𝟓 𝟒 

c.     𝒉 𝟒 𝟑 𝟎 𝟑 
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2. Sketch a graph of the function 𝒇(𝒙) =
𝟏
𝟐

(𝒙 + 𝟓)(𝒙 + 𝟏)(𝒙 − 𝟐) by finding the zeros and determining the sign of the 

values of the function between zeros. 

The zeros are −𝟓, −𝟏, and 𝟐.   

For 𝒙 < −𝟓:  𝒇(−𝟔) = −𝟐𝟎, so the graph is below the 𝒙-axis 

for 𝒙 < −𝟓. 

For – 𝟓 < 𝒙 < −𝟏:  𝒇(−𝟑) = 𝟏𝟎, so the graph is above the 𝒙-axis for 

−𝟓 < 𝒙 < −𝟏. 

For – 𝟏 < 𝒙 < 𝟐:  𝒇(𝟎) = −𝟓, so the graph is below the 𝒙-axis for 

−𝟏 < 𝒙 < 𝟐. 

For 𝒙 > 𝟐:  𝒇(𝟑) = 𝟏𝟔, so the graph is above the 𝒙-axis for 

𝒙 > 𝟐.    

  

a. 𝒇(𝒙) = 𝟒𝒙𝟑 − 𝟐𝒙 + 𝟏 b. 𝒈(𝒙) = 𝒙𝟕 − 𝟒𝒙𝟓 − 𝒙𝟑 + 𝟒𝒙 

c. 𝒉(𝒙) = 𝒙𝟒 + 𝟒𝒙𝟑 + 𝟐𝒙𝟐 − 𝟒𝒙 + 𝟐  
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3. Sketch a graph of the function 𝒇(𝒙) = −(𝒙 + 𝟐)(𝒙 − 𝟒)(𝒙 − 𝟔) by finding the zeros and determining the sign of the 

values of the function between zeros. 

The zeros are −𝟐, 𝟒, and 𝟔.   

For 𝒙 < −𝟐:  𝒇(−𝟑) = 𝟔𝟑, so the graph is above the 𝒙-axis for 

𝒙 < −𝟐. 

For – 𝟐 < 𝒙 < 𝟒:  𝒇(𝟎) = −𝟒𝟖, so the graph is below the 𝒙-axis for 

−𝟐 < 𝒙 < 𝟒. 

For 𝟒 < 𝒙 < 𝟔:  𝒇(𝟓) = 𝟕, so the graph is above the 𝒙-axis for  

𝟒 < 𝒙 < 𝟔. 

For 𝒙 > 𝟔:  𝒇(𝟕) = −𝟐𝟕, so the graph is below the 𝒙-axis for 

𝒙 > 𝟔.    

 

4. Sketch a graph of the function 𝒇(𝒙) = 𝒙𝟑 − 𝟐𝒙𝟐 − 𝒙 + 𝟐 by finding the zeros and determining the sign of the values 

of the function between zeros. 

We can factor by grouping to find 𝒇(𝒙) = (𝒙𝟐 − 𝟏)(𝒙 − 𝟐).  The zeros 

are – 𝟏, 𝟏, and 𝟐.   

For 𝒙 < −𝟏:  𝒇(−𝟐) = −𝟏𝟐, so the graph is below the 𝒙-axis for 

𝒙 < −𝟏. 

For – 𝟏 < 𝒙 < 𝟏:  𝒇(𝟎) = 𝟐, so the graph is above the 𝒙-axis for  

−𝟏 < 𝒙 < 𝟏. 

For 𝟏 < 𝒙 < 𝟐:  𝒇 (
𝟑
𝟐

) = −
𝟓
𝟖

, so the graph is below the 𝒙-axis for 

𝟏 < 𝒙 < 𝟐. 

For 𝒙 > 𝟐:  𝒇(𝟑) = 𝟖, so the graph is above the 𝒙-axis for 𝒙 > 𝟐.    

 

5. Sketch a graph of the function 𝒇(𝒙) = 𝒙𝟒 − 𝟒𝒙𝟑 + 𝟐𝒙𝟐 + 𝟒𝒙 − 𝟑 by determining the sign of the values of the 

function between the zeros −𝟏, 𝟏, and 𝟑. 

We are told that the zeros are −𝟏, 𝟏, and 𝟑.   

For 𝒙 < −𝟏:  𝒇(−𝟐) =  𝟒𝟓, so the graph is above the 𝒙-axis for 

𝒙 < −𝟏. 

For −𝟏 < 𝒙 < 𝟏:  𝒇(𝟎) = −𝟑, so the graph is below the 𝒙-axis for 

−𝟏 < 𝒙 < 𝟏. 

For 𝟏 < 𝒙 < 𝟑:  𝒇(𝟐) = −𝟑, so the graph is below the 𝒙-axis for  

𝟏 < 𝒙 < 𝟑. 

For 𝒙 > 𝟑:  𝒇(𝟒) = 𝟒𝟓, so the graph is above the 𝒙-axis for  

𝒙 > 𝟑.    

 

  

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
  
  
 

 

    

 

 

NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 14 
ALGEBRA II 

Lesson 14: Graphing Factored Polynomials  
 
 

 

168 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

6. A function 𝒇 has zeros at −𝟏, 𝟑, and 𝟓.  We know that 𝒇(−𝟐) and 𝒇(𝟐) are negative, while 𝒇(𝟒) and 𝒇(𝟔) are 

positive.  Sketch a graph of 𝒇. 

From the information given, the graph of 𝒇 lies below the 𝒙-axis for 𝒙 < −𝟏 and −𝟏 < 𝒙 < 𝟑 and that it touches the 

𝒙-axis at −𝟏.  Similarly, we know that the graph of 𝒇 lies above the 𝒙-axis for 𝟑 < 𝒙 < 𝟓 and 𝟓 < 𝒙 and that it 

touches the 𝒙-axis at 𝟓.  We also know that the graph crosses the 𝒙-axis at 𝟑. 

 

7. The function 𝒉(𝒕) = −𝟏𝟔𝒕𝟐 + 𝟑𝟑𝒕 + 𝟒𝟓 represents the height of a ball tossed upward from the roof of a building  

𝟒𝟓 feet in the air after 𝒕 seconds.  Without graphing, determine when the ball will hit the ground. 

Factor:  𝒉(𝒕) = (𝒕 − 𝟑)(−𝟏𝟔𝒕 − 𝟏𝟓) 

Solve 𝒉(𝒕) = 𝟎:  (𝒕 − 𝟑)(−𝟏𝟔𝒕 − 𝟏𝟓) = 𝟎 

𝒕 = 𝟑 seconds or 𝒕 = −
𝟏𝟓
𝟏𝟔

 seconds.   

The ball hits the ground at time 𝟑 seconds; the solution –
𝟏𝟓
𝟏𝟔

 does not make sense in the context of the problem.  
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Lesson 15:  Structure in Graphs of Polynomial Functions  

 
Student Outcomes 

 Students graph polynomial functions and describe end behavior based upon the degree of the polynomial. 

 

Lesson Notes 

So far in this module, students have practiced factoring polynomials using several techniques and examined how they 

can use the factored form of the polynomial to identify interesting characteristics of the graphs of these functions.   

In this lesson, students continue exploring graphs of polynomial functions in order to identify how the degree of the 

polynomial influences the end behavior of these graphs.  They also discuss how to identify 𝑦-intercepts of the graphs of 

polynomial functions and are given an opportunity to construct viable arguments and critique the reasoning of others in 

the Opening Exercise (MP.3).  

 

Opening Exercise  (8 minutes) 

 

Opening Exercise 

Sketch the graph of 𝒇(𝒙) = 𝒙𝟐.  What will the graph of 𝒈(𝒙) = 𝒙𝟒 look like?  Sketch it on the same coordinate plane.  

What will the graph of 𝒉(𝒙) = 𝒙𝟔 look like? 

 

Have students recall and sketch the graph of 𝑓(𝑥) = 𝑥2.  Discuss the characteristics of the graph, where the 𝑥-intercept 

is, and why the graph stays above the 𝑥-axis on either side of the 𝑥-intercept. 

In pairs or in groups, have them discuss or write what they think the graph of 𝑔(𝑥) = 𝑥4 will look like and how they think 

it compares to the graph of 𝑓(𝑥) = 𝑥2.  Once they do so, they should sketch their idea of the graph of 𝑔 on top of the 

graph of 𝑓.  Discuss with students what they have sketched, and emphasize the similarities between the two graphs. 

 

Since 𝒈(𝒙) = (𝒙𝟐)𝟐, 𝒈(𝒙) will increase faster as 𝒙 increases than 𝒇(𝒙) does.  Both graphs pass through (𝟎, 𝟎).  The basic 

shapes are the same, but near the origin the graph of 𝒈 is flatter than the graph of 𝒇.  

 

Finally, in pairs or in groups, have students discuss or write what they think the graph of ℎ(𝑥) = 𝑥6 will look like and 

how they think it will compare to graphs of 𝑓 and 𝑔.  Once they do so, students should sketch on the same graph the 

previous two graphs.  Again, discuss graphs with students, and emphasize the similarities between graphs. 

 

Since 𝒉(𝒙) = 𝒙𝟐 ⋅ 𝒙𝟐 ⋅ 𝒙𝟐, the graph of 𝒉 again passes through the origin.  Since we are squaring and multiplying by 

squares, the graph of 𝒉 should look about the same as the graphs of 𝒇 and 𝒈 but increase even faster and be even flatter 

near the origin.  
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 Using a graphing utility, have students graph all three functions simultaneously to confirm their sketches. 

 

 

 

Discussion  (5 minutes) 

Use the graphs from the Opening Exercise to frame the following discussion about end behavior. 

Ask students to compare and describe the behavior of the value 𝑓(𝑥) as the absolute value of 𝑥 increases without 

bound.  Introduce the term end behavior as a way to talk about the function and what happens to its graph beyond the 

bounded region of the coordinate plane that is drawn on paper.  That is, the end behavior is a way to describe what 

happens to the function as 𝑥 approaches positive and negative infinity without having to draw the graph. 

Note to teacher:  It is important to note that end behavior cannot be given a precise mathematical definition until the 

concept of a limit is introduced in calculus.  To get around this difficulty, most high school textbooks draw pictures and 

state things like, “As 𝑥 → ∞, 𝑓(𝑥) → ∞.”  We do this also, but it is important to carefully describe to students the 

meaning of the phrase, “As 𝑥 approaches positive infinity,” before using the phrase (or its symbol version) to describe end 

behavior.  That is because the phrase appears to mean that the symbol 𝑥 is literally “moving along the number line to 

the right.”  Not true!  Recall that a variable is just a placeholder for which a number can be substituted (think of a blank 

or box used in Grade 2 equations) and, therefore, does not actually move or vary.   

The phrase, “As 𝑥 → ∞,” can be profitably described as a process by which the user of the phrase thinks of 

repeatedly substituting larger and larger positive numbers in for 𝑥, each time performing whatever calculation 

is required by the problem for that number (which in this lesson is finding the value of the function).    

This is how mathematicians often use the phrase even though the precise definition of limit removes any need to think 

of a limit as a process. 

 END BEHAVIOR (description):  Let 𝑓 be a function whose domain and range are subsets of the real numbers.   

The end behavior of a function 𝑓 is a description of what happens to the values of the function  

 as 𝑥 approaches positive infinity, and 

 as 𝑥 approaches negative infinity. 
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Help students understand the description of end behavior using the following picture. 

 

As 𝑥 → −∞,    As 𝑥 → ∞, 

𝑓(𝑥) → −∞    𝑓(𝑥) → ∞ 

 

 

Ask students to make a generalization about the end behavior of polynomials of even degree in writing individually or 

with a partner.  They should conclude that an even degree polynomial function has the same end behavior as 𝑥 → ∞ and 

as 𝑥 → −∞.  After students have generalized the end behavior, have them create their own graphic organizer like the 

following. 

 

 

 

 

 

  

𝑥 → ∞ 

𝑥 → −∞ 

𝑓(𝑥) → −∞ 

𝑓(𝑥) → ∞ 

Graph of 𝑦 = 𝑓(𝑥) 
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If students suspect that end behavior of a polynomial function with even degree will always increase, then suggest 

examining the graphs of 𝑓(𝑥) = 1 − 𝑥2 and 𝑔(𝑥) = −𝑥4. 

 

Example 1  (8 minutes)  

Students are now going to look at a new set of functions but ask similar questions to those asked in the Opening 

Exercise. 

 

Example 1 

Sketch the graph of 𝒇(𝒙) = 𝒙𝟑.  What will the graph of 𝒈(𝒙) = 𝒙𝟓 look like?  Sketch this on the same coordinate plane. 

What will the graph of 𝒉(𝒙) = 𝒙𝟕 look like?  Sketch this on the same coordinate plane.  

 

Have students recall and sketch the graph of 𝑓(𝑥) = 𝑥3.  Discuss the characteristics of the graph, where the 𝑥-intercept 

is, and why the graph is above the 𝑥-axis for 𝑥 > 0 and below the 𝑥-axis for 𝑥 < 0.  

In pairs or in groups, have students discuss or write what they think the graph of 𝑔(𝑥) = 𝑥5 will look like and how it will 

relate to the graph of 𝑓(𝑥) = 𝑥3.  They should sketch their results on top of the original graph of 𝑓.  Discuss with 

students what they have sketched, and emphasize the similarities to the graph of 𝑓(𝑥) = 𝑥3. 

Finally, in pairs or in groups, have students discuss or write what they think the graph of ℎ(𝑥) = 𝑥7 will look like and 

how it will relate to the graphs of 𝑓 and 𝑔.  They should sketch on the same graph they used with the previous two 

graphs.  Again, discuss the graphs with students, and emphasize the similarities between graphs. 

Even-Degree 

P
o

si
ti

ve
 L

ea
d

in
g 

C
o

ef
fi

ci
en

t 
N

eg
at

iv
e 

Le
ad

in
g 

C
o

ef
fi

ci
en

t 

𝑓(𝑥) = 𝑥2 

𝑓(𝑥) = −𝑥2 

As 𝑥 → ∞, 𝑓(𝑥) → ∞ 

As 𝑥 → −∞, 𝑓(𝑥) → ∞ 

As 𝑥 → ∞, 𝑓(𝑥) → −∞ 

As 𝑥 → −∞, 𝑓(𝑥) → −∞ 
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Using a graphing utility, have students graph all three functions simultaneously to confirm their sketches. 

 

 

Ask students to compare and describe the behavior of the value of 𝑓(𝑥) as the absolute value of 𝑥 increases without 

bound.  Guide them to use the terminology of the end behavior of the function. 

Ask students to make a generalization about the end behavior of polynomials of odd degree individually or with a 

partner.  After students have generalized the end behavior, have them create their own graphic organizer like the 

following. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑓(𝑥) = 𝑥3 

𝑓(𝑥) = −𝑥3 

Odd-Degree 
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As 𝑥 → ∞, 𝑓(𝑥) → ∞ 

As 𝑥 → −∞, 𝑓(𝑥) → −∞ 

As 𝑥 → ∞, 𝑓(𝑥) → −∞ 

As 𝑥 → −∞, 𝑓(𝑥) → ∞ 
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If students suspect that polynomial functions with odd degree always have the value of the function increase as 𝑥 

increases, then suggest examining a function with a negative leading coefficient, such as 𝑓(𝑥) = 4 − 𝑥 or 𝑔(𝑥) = −𝑥3. 

 How do these graphs differ from those in the Opening Exercise?  Why are they different? 

 Students may talk about how the Opening Exercise graphs stay above the 𝑥-axis while in this example 

the graphs cut through the 𝑥-axis.  Guide students as necessary to concluding that the end behavior of 

even-degree polynomial functions is that both ends both approach positive infinity or both approach 

negative infinity while the end behavior of odd-degree polynomial functions is that the behavior as  

𝑥 → ∞ is opposite of the behavior as 𝑥 → −∞.  

 

Exercise 1  (8 minutes) 

Keeping the results of the examples above in mind, have students work with partners or in groups to answer the 

following questions. 

 

Exercise 1 

a. Consider the following function, 𝒇(𝒙) = 𝟐𝒙𝟒 + 𝒙𝟑 − 𝒙𝟐 + 𝟓𝒙 + 𝟑, with a mixture of odd and even degree 

terms.  Predict whether its end behavior will be like the functions in the Opening Exercise or more like the 

functions from Example 1.  Graph the function 𝒇 using a graphing utility to check your prediction. 

Students see that this function acts more like the even-degree monomial functions from the Opening Exercise. 

 

b. Consider the following function, 𝒇(𝒙) = 𝟐𝒙𝟓 − 𝒙𝟒 − 𝟐𝒙𝟑 + 𝟒𝒙𝟐 + 𝒙 + 𝟑, with a mixture of odd and even 

degree terms.  Predict whether its end behavior will be like the functions in the Opening Exercise or more like 

the functions from Example 1.  Graph the function 𝒇 using a graphing utility to check your prediction. 

Students see that this function acts more like odd-degree monomial functions from Example 1.  They can draw 

a conclusion such as that the function behaves like the highest degree term. 

 

c. Thinking back to our discussion of 𝒙-intercepts of graphs of polynomial functions from the previous lesson, 

sketch a graph of an even-degree polynomial function that has no 𝒙-intercepts. 

Students may draw the graph of a quadratic function that stays above the 𝒙-axis such as the graph of  

𝒇(𝒙) = 𝒙𝟐 + 𝟏. 

 

d. Similarly, can you sketch a graph of an odd-degree polynomial function with no 𝒙-intercepts? 

Have students work in pairs or groups and discover that because of the “cut through” nature of graphs of  

odd-degree polynomial function there is always an 𝒙-intercept. 

Conclusion:  Graphs of odd-powered polynomial functions always have an 𝒙-intercept, which means that  

odd-degree polynomial functions always have at least one zero (or root) and that polynomial functions of 

odd-degree always have opposite end behaviors as 𝒙 → ∞ and 𝒙 → −∞. 

 

Have students conclude that the graphs of odd-degree polynomial functions always have at least one 𝑥-intercept and so 

the functions always have at least one zero.  The graphs of even-degree polynomial functions may or may not have  

𝑥-intercepts. 
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Exercise 2  (8 minutes) 

In this exercise, students use what they learned today about end behavior to determine whether or not the polynomial 

function used to model the data has an even or odd degree. 

 

Exercise 2 

The Center for Transportation Analysis (CTA) studies all aspects of transportation in the United States, from energy and 

environmental concerns to safety and security challenges.  A 1997 study compiled the following data of the fuel economy 

in miles per gallon (mpg) of a car or light truck at various speeds measured in miles per hour (mph).  The data are 

compiled in the table below.  

                           Fuel Economy by Speed 

Speed (mph) Fuel Economy (mpg) 

𝟏𝟓 𝟐𝟒. 𝟒 

𝟐𝟎 𝟐𝟕. 𝟗 

𝟐𝟓 𝟑𝟎. 𝟓 

𝟑𝟎 𝟑𝟏. 𝟕 

𝟑𝟓 𝟑𝟏. 𝟐 

𝟒𝟎 𝟑𝟏. 𝟎 

𝟒𝟓 𝟑𝟏. 𝟔 

𝟓𝟎 𝟑𝟐. 𝟒 

𝟓𝟓 𝟑𝟐. 𝟒 

𝟔𝟎 𝟑𝟏. 𝟒 

𝟔𝟓 𝟐𝟗. 𝟐 

𝟕𝟎 𝟐𝟔. 𝟖 

𝟕𝟓 𝟐𝟒. 𝟖 

Source:  Transportation Energy Data Book, Table 4.28.  http://cta.ornl.gov/data/chapter4.shtml 

 

a. Plot the data using a graphing utility.  Which variable is the independent variable? 

 

Speed is the independent variable.  

 

 

 

 

 

 

 

b. This data can be modeled by a polynomial function.  Determine if the function that models the data would 

have an even or odd degree.  

It seems we could model this data by an even-degree polynomial function. 

 

c. Is the leading coefficient of the polynomial that can be used to model this data positive or negative? 

The leading coefficient would be negative since the end behavior of this function is to approach negative 

infinity on both sides.   

 

d. List two possible reasons the data might have the shape that it does. 

Possible responses:  Fuel economy improves up to a certain speed, but then wind resistance at higher speeds 

reduces fuel economy; the increased gas needed to go higher speeds reduces fuel economy. 
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As 𝑥 → ∞, 𝑓(𝑥) → ∞ 

As 𝑥 → −∞, 𝑓(𝑥) → −∞ 

 

 

 

 

As 𝑥 → ∞, 𝑓(𝑥) → −∞ 

As 𝑥 → −∞, 𝑓(𝑥) → ∞ 

 

 

As 𝑥 → ∞, 𝑓(𝑥) → ∞ 

As 𝑥 → −∞, 𝑓(𝑥) → ∞ 

 

 

 

 

As 𝑥 → ∞, 𝑓(𝑥) → −∞ 

As 𝑥 → −∞, 𝑓(𝑥) → −∞ 
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Closing  (3 minutes) 

 In this lesson, students explored the characteristics of the graphs of polynomial functions of even and  

odd-degree.  Graphs of even-degree polynomials demonstrate the same end behavior as 𝑥 → ∞ as it does as 

𝑥 → −∞, while graphs of odd-degree polynomials demonstrate opposite end behavior as 𝑥 → ∞ as it does as 

𝑥 → −∞.  Because of this fact, graphs of odd-degree polynomial functions always intersect the 𝑥-axis; 

therefore, odd-degree polynomial functions have at least one zero or root. 

 Students also learned that it is the highest degree term of the polynomial that determines if the graph exhibits 

odd-degree end behavior or even-degree end behavior.  This makes sense because the highest degree term of 

a polynomial determines the degree of the polynomial.  

Have students summarize the lesson either with a graphic organizer or a written summary.  A graphic organizer is 

included below. 

 

 

 

 

 

Relevant Vocabulary 

EVEN FUNCTION:  Let 𝒇 be a function whose domain and range is a subset of the real numbers.  The function 𝒇 is called even 

if the equation 𝒇(𝒙) = 𝒇(−𝒙) is true for every number 𝒙 in the domain.   

Even-degree polynomial functions are sometimes even functions, like 𝒇(𝒙) = 𝒙𝟏𝟎, and sometimes not, like  

𝒈(𝒙) = 𝒙𝟐 − 𝒙. 

ODD FUNCTION:  Let 𝒇 be a function whose domain and range is a subset of the real numbers.  The function 𝒇 is called odd if 

the equation 𝒇(−𝒙) = −𝒇(𝒙) is true for every number 𝒙 in the domain.     

Odd-degree polynomial functions are sometimes odd functions, like 𝒇(𝒙) = 𝒙𝟏𝟏, and sometimes not, like 𝒉(𝒙) = 𝒙𝟑 − 𝒙𝟐. 

 

Exit Ticket  (5 minutes)
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Name                                   Date                          

Lesson 15:  Structure in Graphs of Polynomial Functions 

 
Exit Ticket 
 

Without using a graphing utility, match each graph below in column 1 with the function in column 2 that it represents. 

a. 

 

1. 𝑦 = 3𝑥3 

 

b. 

 2. 𝑦 =
1

2
𝑥2 

 

c. 

 3. 𝑦 = 𝑥3 − 8 

 

d. 

 
4. 𝑦 = 𝑥4 − 𝑥3 + 4𝑥 + 2 

 

e. 

5. 𝑦 = 3𝑥5 − 𝑥3 + 4𝑥 + 2 
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Exit Ticket Sample Solutions 

 

Without using a graphing utility, match each graph below in column 1 with the function in column 2 that it represents. 

a. 

 

 

 

1. 𝒚 = 𝟑𝒙𝟑 

 

b. 

 

 

 

 

2. 𝒚 =
𝟏

𝟐
𝒙𝟐 

 

c. 

 

 

 

 

3. 𝒚 = 𝒙𝟑 − 𝟖 

 

d. 

 

 

 

 

4. 𝒚 = 𝒙𝟒 − 𝒙𝟑 + 𝟒𝒙 + 𝟐 

 

e. 

 

 

 

5. 𝒚 = 𝟑𝒙𝟓 − 𝒙𝟑 + 𝟒𝒙 + 𝟐 
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Problem Set Sample Solutions 

 

1. Graph the functions from the Opening Exercise simultaneously using a graphing utility and zoom in at the origin.   

a. At 𝒙 = 𝟎. 𝟓, order the values of the functions from least to greatest.  

At 𝒙 =  𝟎. 𝟓, 𝒙𝟔 < 𝒙𝟒 < 𝒙𝟐. 

 

b. At 𝒙 = 𝟐. 𝟓, order the values of the functions from least to greatest. 

At 𝒙 = 𝟐. 𝟓, 𝒙𝟐 < 𝒙𝟒 < 𝒙𝟔. 

 

c. Identify the 𝒙-value(s) where the order reverses.  Write a brief sentence on why you think this switch occurs. 

At 𝒙 = 𝟏 and 𝒙 = −𝟏, the values of the functions are equal.  Students may write that when a number 

between 𝟎 and 𝟏 is taken to higher even powers, it gets smaller, and when a number greater than 𝟏 is taken 

to higher even powers, it gets larger, and when a negative number is raised to an even power it becomes 

positive.  So for −𝟏 < 𝒙 < 𝟎 the behavior is the same as for 𝟎 < 𝒙 < 𝟏. 

 

2. The National Agricultural Statistics Service (NASS) is an agency within the USDA that collects and analyzes data 

covering virtually every aspect of agriculture in the United States.  The following table contains information on the 

amount (in tons) of the following vegetables produced in the U.S. from 1988–1994 for processing into canned, 

frozen, and packaged foods:  lima beans, snap beans, beets, cabbage, sweet corn, cucumbers, green peas, spinach, 

and tomatoes.   

Vegetable Production by Year 

Year Vegetable Production (tons) 

1988 𝟏𝟏, 𝟑𝟗𝟑, 𝟑𝟐𝟎 

1989 𝟏𝟒, 𝟒𝟓𝟎, 𝟖𝟔𝟎 

1990 𝟏𝟓, 𝟒𝟒𝟒, 𝟗𝟕𝟎 

1991 𝟏𝟔, 𝟏𝟓𝟏, 𝟎𝟑𝟎 

1992 𝟏𝟒, 𝟐𝟑𝟔, 𝟑𝟐𝟎 

1993 𝟏𝟒, 𝟗𝟎𝟒, 𝟕𝟓𝟎 

1994 𝟏𝟖, 𝟑𝟏𝟑, 𝟏𝟓𝟎 

Source:  NASS Statistics of Vegetables and Melons, 1995, Table 191. 

http://www.nass.usda.gov/Publications/Ag_Statistics/1995-1996/agr95_4.pdf 

 

a. Plot the data using a graphing utility. 

 

b. Determine if the data display the characteristics of an odd- or even-degree polynomial function. 

Looking at the end behavior, the data show the characteristics of an odd-degree polynomial function. 
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c. List two possible reasons the data might have such a shape. 

Possible responses:  Bad weather in 1992 and 1993; shifts in demand for fresh foods vs. processed. 

 

3. The U.S. Energy Information Administration (EIA) is responsible for collecting and analyzing information about 

energy production and use in the United States and for informing policy makers and the public about issues of 

energy, the economy, and the environment.  The following table contains data from the EIA about natural gas 

consumption from 1950–2010, measured in millions of cubic feet.  

U.S. Natural Gas Consumption by Year 

Year U.S. natural gas total consumption 

(millions of cubic feet) 

1950 𝟓. 𝟕𝟕 

1955 𝟖. 𝟔𝟗 

1960 𝟏𝟏. 𝟗𝟕 

1965 𝟏𝟓. 𝟐𝟖 

1970 𝟐𝟏. 𝟏𝟒 

1975 𝟏𝟗. 𝟓𝟒 

1980 𝟏𝟗. 𝟖𝟖 

1985 𝟏𝟕. 𝟐𝟖 

1990 𝟏𝟗. 𝟏𝟕 

1995 𝟐𝟐. 𝟐𝟏 

2000 𝟐𝟑. 𝟑𝟑 

2005 𝟐𝟐. 𝟎𝟏 

2010 𝟐𝟒. 𝟎𝟗 

Source:  U.S. Energy Information Administration. http://www.eia.gov/dnav/ng/hist/n9140us2a.htm 

 

a. Plot the data using a graphing utility. 

 

b. Determine if the data display the characteristics of an odd- or even-degree polynomial function. 

Looking at the end behavior, the data show the characteristics of an odd-degree polynomial function. 

 

c. List two possible reasons the data might have such a shape. 

Possible responses: changes in supply, new sources and technology created new supplies, weather may 

impact usage. 
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4. We use the term even function when a function 𝒇 satisfies the equation 𝒇(−𝒙) = 𝒇(𝒙) for every number 𝒙 in its 

domain.  Consider the function 𝒇(𝒙) = −𝟑𝒙𝟐 + 𝟕.  Note that the degree of the function is even, and each term is of 

an even degree (the constant term is degree 𝟎).   

a. Graph the function using a graphing utility. 

 

 

 

 

 

b. Does this graph display any symmetry?     

Yes, it is symmetric about the 𝒚-axis. 

 

c. Evaluate 𝒇(−𝒙). 

𝒇(−𝒙) = −𝟑(−𝒙)𝟐 + 𝟕 = −𝟑𝒙𝟐 + 𝟕   

 

d. Is 𝒇 an even function?  Explain how you know. 

Yes, because 𝒇(−𝒙) = −𝟑𝒙𝟐 + 𝟕 = 𝒇(𝒙) for all real values of 𝒙. 

 

5. We use the term odd function when a function 𝒇 satisfies the equation 𝒇(−𝒙) = −𝒇(𝒙) for every number 𝒙 in its 

domain.  Consider the function 𝒇(𝒙) = 𝟑𝒙𝟑 − 𝟒𝒙.  The degree of the function is odd, and each term is of an odd 

degree.    

a. Graph the function using a graphing utility. 

 

 

 

 

 

 

 

b. Does this graph display any symmetry?   

Yes, but not the same as in part (a).  This graph is symmetric about the origin.  We can see this because if the 

graph is rotated 𝟏𝟖𝟎° about the origin, it appears to be unchanged. 

 

c. Evaluate 𝒇(−𝒙).    

𝒇(−𝒙) = 𝟑(−𝒙)𝟑 − 𝟒(−𝒙) = −𝟑𝒙𝟑 + 𝟒𝒙   

 

d. Is 𝒇 an odd function?   Explain how you know. 

Yes, we know because 𝒇(−𝒙) = −𝟑𝒙𝟑 + 𝟒𝒙 = −(𝟑𝒙𝟑 − 𝟒𝒙) = −𝒇(𝒙) for all real values of 𝒙. 
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6. We have talked about 𝒙-intercepts of the graph of a function in both this lesson and the previous one.   

The 𝒙-intercepts correspond to the zeros of the function.  Consider the following examples of polynomial functions 

and their graphs to determine an easy way to find the 𝒚-intercept of the graph of a polynomial function. 

 

        𝑓(𝑥) = 2𝑥2 − 4𝑥 − 3  𝑓(𝑥) = 𝑥3 + 3𝑥2 − 𝑥 + 5  𝑓(𝑥) = 𝑥4 − 2𝑥3 − 𝑥2 + 3𝑥 − 6 

   

 

The 𝒚-intercept is the value where the graph of a function 𝒇 intersects the 𝒚-axis, if 𝟎 is in the domain of 𝒇.  

Therefore, for a function 𝒇 whose domain and range are a subset of the real numbers, the 𝒚-intercept is 𝒇(𝟎).   

For polynomial functions, 𝒇(𝟎) is easy to determine—it is just the constant term when the polynomial function is 

written in standard form. 
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Lesson 16:  Modeling with Polynomials—An Introduction  

 
Student Outcomes 

 Students transition between verbal, numerical, algebraic, and graphical thinking in analyzing applied 

polynomial problems. 

 

Lesson Notes 

Creating an open-topped box of maximum volume is a very common problem seen in calculus.  The goal is to optimize 

resources by enclosing the most volume possible given the constraint of the size of the construction material; here, 

students use paper.  The dimensions given can be adjusted depending on the size of the paper chosen; hence, the 

dimensions are omitted from the figure on the student pages.  This is the first part of a two-day lesson on modeling.  

Lesson 16 focuses more on students writing equations to model a situation. 

 

Classwork  

Opening  (5 minutes) 

Each group has a piece of construction paper that measures 45.7 cm × 30.5 cm.  Other sizes of paper may be used if 

necessary, but ensure that each group is using the same-sized paper.  Cut out congruent squares from each corner, and 

fold the sides in order to create an open-topped box.  The goal is to create a box with the maximum possible volume. 

Ask students to make conjectures about what size cut will create the box with the largest volume.  Demonstrate if 

desired using the applet http://mste.illinois.edu/carvell/3dbox/. 

 

Mathematical Modeling Exercise  (30 minutes) 

While students work on their boxes, put the following table on the board.  As students measure their boxes and 

calculate the volume, they should be recording the values in the table.  Stop students once each group has recorded its 

values, and have the discussion below before allowing them to continue working. 

 

Mathematical Modeling Exercise 

You will be assigned to a group, which will create a box from a piece of construction paper.  Each group will record its 

box’s measurements and use said measurement values to calculate and record the volume of its box.  Each group will 

contribute to the following class table on the board. 

Group Length Width Height Volume 

𝟏     

𝟐     

𝟑     

𝟒     

 

 

MP.3 
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Using the given construction paper, cut out congruent squares from each corner, and fold the sides in order to create an 

open-topped box as shown on the figure below. 

 

 

 

 

 

 

 

1. Measure the length, width, and height of the box to the nearest tenth of a centimeter. 

Answers will vary.  Sample answer: 

Length:  𝑳 = 𝟑𝟓. 𝟕 𝐜𝐦 

Width:  𝑾 = 𝟐𝟎. 𝟓 𝐜𝐦 

Height:  𝑯 = 𝟓. 𝟎 𝐜𝐦 

 

2. Calculate the volume. 

Answers will vary.  Sample answer: 

Volume:  𝑽 = 𝑳 ∙ 𝑾 ∙ 𝑯 = 𝟑, 𝟔𝟓𝟗. 𝟐𝟓 𝐜𝐦3 

 

3. Have a group member record the values on the table on the board. 

 

Discuss the results, and compare them with the conjectures made before cutting the paper. 

 Who was able to enclose the most volume?   

 Why would our goal be to enclose the most volume? 

 We are optimizing our resources by enclosing more volume than the other groups using the same-size 

paper.  

Have students continue with the exercise. 

 

4. Create a scatterplot of volume versus height using technology. 

 

 

 

 

Scaffolding: 

Some students may have 
difficulty working with 
technology.  Place them in a 
group with a student who can 
assist them through the steps. 
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5. What type of polynomial function could we use to model the data?   

A cubic or quadratic polynomial; we cannot tell from just this portion of the graph.  

 

6. Use the regression feature to find a function to model the data.  Does a quadratic or a cubic regression provide a 

better fit to the data? 

Answers will vary based on the accuracy of the measurements, but the cubic regression should be a better fit. 

Sample answer:  𝑽(𝒙) = 𝟒𝒙𝟑 − 𝟏𝟓𝟐. 𝟒𝒙𝟐 + 𝟏, 𝟑𝟗𝟖. 𝟖𝒙 

 

7. Find the maximum volume of the box.   

The maximum volume is 𝟑, 𝟕𝟕𝟎. 𝟒 𝐜𝐦3. 

 

8. What size square should be cut from each corner in order to maximize the volume? 

A 𝟔 𝐜𝐦 × 𝟔 𝐜𝐦  square should be cut from each corner. 

 

9. What are the dimensions of the box of maximum volume? 

The dimension are 𝟑𝟑. 𝟕 𝐜𝐦 × 𝟏𝟖. 𝟓 𝐜𝐦 × 𝟔 𝐜𝐦  

 

 What are the possible values for the height of the box? 

 From 0 to 15.25 cm 

 What is the domain of the volume function? 

 The domain is the interval 0 < 𝑥 < 15.25. 

 

Closing  (5 minutes) 

Use the applet http://www.mathopenref.com/calcboxproblem.html to summarize what the students discovered. 

 Revisit your original conjecture either in writing or with a neighbor.  Was it accurate?  How would you change 

it now?   

Have students share responses. 

 Why would our goal be to maximize the volume? 

 Maximizing resources, enclosing as much volume as possible using the least amount of material 

 Is constructing a box in such a way that its volume is maximized always the best option? 

 No, a box may need to have particular dimensions (such as a shoe box).  In some cases, the base of the 

box may need to be stronger, so the material is more expensive.  Minimizing cost may be different than 

maximizing the volume.   

 

Exit Ticket  (5 minutes)  
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Name                                   Date                          

Lesson 16:  Modeling with Polynomials—An Introduction 

 
Exit Ticket 
 

Jeannie wishes to construct a cylinder closed at both ends.  The figure below shows the graph of a cubic polynomial 

function used to model the volume of the cylinder as a function of the radius if the cylinder is constructed using  

150𝜋 cm
2
 of material.  Use the graph to answer the questions below.  Estimate values to the nearest half unit on the 

horizontal axis and to the nearest 50 units on the vertical axis. 

 

1. What is the domain of the volume function?  Explain. 

 

 

2. What is the most volume that Jeannie’s cylinder can enclose? 

 

 

3. What radius yields the maximum volume? 

 

 

4. The volume of a cylinder is given by the formula 𝑉 = 𝜋𝑟2ℎ.  Calculate the height of the cylinder that maximizes the 

volume. 
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Exit Ticket Sample Solutions 

 

Jeannie wishes to construct a cylinder closed at both ends.  The figure below shows the graph of a cubic polynomial 

function used to model the volume of the cylinder as a function of the radius if the cylinder is constructed using  

𝟏𝟓𝟎𝝅 𝐜𝐦2 of material.  Use the graph to answer the questions below.  Estimate values to the nearest half unit on the 

horizontal axis and the nearest 𝟓𝟎 units on the vertical axis. 

 

1. What is the domain of the volume function?  Explain. 

The domain is approximately 𝟎 ≤ 𝒓 ≤ 𝟖. 𝟓 because a negative radius does not make sense, and a radius larger than 

𝟖. 𝟓 gives a negative volume, which also does not make sense. 

 

2. What is the most volume that Jeannie’s cylinder can enclose? 

Approximately 𝟖𝟎𝟎 𝐜𝐦3 

 

3. What radius yields the maximum volume? 

Approximately 𝟓 𝐜𝐦 

 

4. The volume of a cylinder is given by the formula 𝑽 = 𝝅𝒓𝟐𝒉.  Calculate the height of the cylinder that maximizes the 

volume. 

Approximately 𝟏𝟎. 𝟐 𝐜𝐦 
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Problem Set Sample Solutions 

For a bonus, ask students what is meant by the caption on the t-shirt.  (Hint that they can do a web search to find out.) 

 

1. For a fundraiser, members of the math club decide to make and sell “Pythagoras may have been Fermat’s first 

problem but not his last!” t-shirts.  They are trying to decide how many t-shirts to make and sell at a fixed price.  

They surveyed the level of interest of students around school and made a scatterplot of the number of t-shirts sold 

(𝒙) versus profit shown below. 

 

a. Identify the 𝒚-intercept.  Interpret its meaning within the context of this problem. 

The 𝒚-intercept is approximately −𝟏𝟐𝟓.  The −𝟏𝟐𝟓 represents the money that they must spend on supplies in 

order to start making t-shirts.  That is, they will lose $𝟏𝟐𝟓 if they sell 𝟎 t-shirts. 

 

b. If we model this data with a function, what point on the graph of that function represents the number of  

t-shirts they need to sell in order to break even?  Why? 

The break-even point is the first 𝒙-intercept of the graph of the function because at this point profit changes 

from negative to positive.  When profit is 𝟎, the club is breaking even. 

 

c. What is the smallest number of t-shirts they can sell and still make a profit?    

Approximately 𝟏𝟐 or 𝟏𝟑 t-shirts 

 

d. How many t-shirts should they sell in order to maximize the profit? 

Approximately 𝟑𝟓 t-shirts 

 

e. What is the maximum profit? 

Approximately $𝟐𝟖𝟎 

 

f. What factors would affect the profit? 

The price of the t-shirts, the cost of supplies, the number of people who are willing to purchase a t-shirt 
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g. What would cause the profit to start decreasing? 

Making more t-shirts than can be sold 

 

2. The following graph shows the temperature in Aspen, Colorado during a 48-hour period beginning at midnight on 

Thursday, January 21, 2014.  (Source:  National Weather Service) 

 

 

a. We can model the data shown with a polynomial function.   What degree polynomial would be a reasonable 

choice?  

Since the graph has 𝟒 turning points (𝟐 relative minima, 𝟐 relative maxima), a degree 𝟓 polynomial could be 

used.  Students could also argue that the final point is another minimum point and that a degree 𝟔 polynomial 

could be used. 

 

b. Let 𝑻 be the function that represents the temperature, in degrees Fahrenheit, as a function of time 𝒕, in hours.  

If we let 𝒕 = 𝟎 correspond to midnight on Thursday, interpret the meaning of 𝑻(𝟓).  What is 𝑻(𝟓)?   

The value 𝑻(𝟓) represents the temperature at 𝟓 a.m. on Thursday.  From the graph, 𝑻(𝟓) = 𝟏𝟑.  

 

c. What are the relative maximum values?  Interpret their meanings. 

The relative maximum values are approximately 𝑻(𝟏𝟑) = 𝟐𝟖 and 𝑻(𝟑𝟕) = 𝟑𝟒.  These points represent the 

high temperature on Thursday and Friday and the times at which they occurred.  The high on Thursday 

occurred at 𝟏: 𝟎𝟎 (when 𝒕 = 𝟏𝟑) and was 𝟐𝟖°𝐅.  The high on Friday occurred at 𝟏: 𝟎𝟎 (when 𝒕 = 𝟑𝟕) and was 

𝟑𝟒°𝐅. 
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Lesson 17:  Modeling with Polynomials—An Introduction  

 
Student Outcomes  

 Students interpret and represent relationships between two types of quantities with polynomial functions. 

 

Lesson Notes  

In this lesson, students delve more deeply into modeling by writing polynomial equations that can be used to model a 

particular situation.  Students are asked to interpret key features from a graph or table within a contextual situation  

(F-IF.B.4) and select the domain that corresponds to the appropriate graph or table (F-IF.B.5).   

 

Classwork  

Opening Exercise  (8 minutes) 

Give students time to work independently on the Opening Exercise before discussing as a class. 

 

Opening Exercise 

In Lesson 16, we created an open-topped box by cutting congruent squares from each 

corner of a piece of construction paper.   

a. Express the dimensions of the box in terms of 𝒙. 

Length:  𝑳 = 𝟒𝟓. 𝟕 − 𝟐𝒙 

Width:  𝑾 = 𝟑𝟎. 𝟓 − 𝟐𝒙 

Height:  𝑯 = 𝒙 

 

b. Write a formula for the volume of the box as a function of 𝒙.  Give the answer in standard form. 

𝑽(𝒙) = 𝒙(𝟒𝟓. 𝟕 − 𝟐𝒙)(𝟑𝟎. 𝟓 − 𝟐𝒙) 

𝑽(𝒙) = 𝟒𝒙𝟑 − 𝟏𝟓𝟐. 𝟒𝒙𝟐 + 𝟏𝟑𝟗𝟑. 𝟖𝟓𝒙 

 

 How does this compare with the regression function found yesterday? 

 Answers will vary.  Compare each parameter in the function. 

 Which function is more accurate?  Why? 

 The one found today is more accurate.  The one found yesterday depended on measurements that may 

not have been exact. 
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Mathematical Modeling Exercises 1–13  (30 minutes) 

Allow students to work through the exercises in groups.  Circulate the room to monitor students’ progress.  Then, discuss 

results. 

 

Mathematical Modeling Exercises 1–13  

The owners of Dizzy Lizzy’s, an amusement park, are studying the wait time at their most popular roller coaster.  The 

table below shows the number of people standing in line for the roller coaster 𝒕 hours after Dizzy Lizzy’s opens. 

𝒕 (hours) 𝟎 𝟏 𝟐 𝟒 𝟕 𝟖 𝟏𝟎 𝟏𝟐 

𝑷 (people in line) 𝟎 𝟕𝟓 𝟐𝟐𝟓 𝟑𝟒𝟓 𝟑𝟓𝟓 𝟑𝟏𝟎 𝟏𝟖𝟎 𝟒𝟓 

Jaylon made a scatterplot and decided that a cubic function should be used to model the data.  His scatterplot and curve 

are shown below. 

 

 

 

 

 

 

 

 

 

 

 

1. Do you agree that a cubic polynomial function is a good model for this data?  Explain. 

Yes, the curve passes through most of the points and seems to fit the data. 

 

2. What information would Dizzy Lizzy's be interested in learning about from this graph?  How could they determine 

the answer? 

The company should be interested in the time when the line is the longest and how many people are in line at that 

time.  To find this out, they can find a model that could be used to predict the number of people in line at any time 

during the day.  They could then estimate the maximum point from the graph. 

 

3. Estimate the time at which the line is the longest.  Explain how you know. 

From the graph, the line is longest at 𝟓. 𝟓 hours because the relative maximum of the function occurs at 𝟓. 𝟓 hours.  

 

4. Estimate the number of people in line at that time.  Explain how you know.  

From the graph, there are roughly 𝟑𝟕𝟐 people in line when 𝒕 = 𝟓. 𝟓; that is the approximate relative maximum 

value of 𝑷. 

 

5. Estimate the 𝒕-intercepts of the function used to model this data. 

The 𝒕-intercepts are roughly 𝟎, 𝟏𝟐. 𝟓, and 𝟑𝟑. 

 

6. Use the 𝒕-intercepts to write a formula for the function of the number of people in line, 𝒇, after 𝒕 hours. 

𝒇(𝒕) = 𝒄𝒕(𝒕 − 𝟏𝟐. 𝟓)(𝒕 − 𝟑𝟑), where 𝒄 is a constant that has not yet been determined.  

Scaffolding: 

Have early finishers find a 
quadratic model for 
comparison.  Which model 
seems to be a better fit?  Why? 
Answers will vary, but one 
model would be  
𝑃(𝑡) = −10.134𝑡(𝑡 − 12).  
Students should see that the 
quadratic model does not seem 
to fit the data as well as the 
cubic model.  They could 
confirm this using the 
regression feature of a 
graphing calculator. 
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7. Use the relative maximum to find the leading coefficient of 𝒇.  Explain your reasoning. 

Since we have estimated 𝒇(𝟓. 𝟓) = 𝟑𝟕𝟐, we can plug 𝟓. 𝟓 into the function above, and we find that  
𝒇(𝟓. 𝟓) = 𝟏𝟎𝟓𝟖. 𝟕𝟓𝒄 = 𝟑𝟕𝟐.  Solving for 𝒄, we find that 𝒄 ≈ 𝟎. 𝟑𝟓.  The function that could model the data is then 

given by 𝒇(𝒕) = 𝟎. 𝟑𝟓𝒕(𝒕 − 𝟏𝟐. 𝟓)(𝒕 − 𝟑𝟑). 

 

8. What would be a reasonable domain for your function 𝒇?  Why? 

A reasonable domain for 𝒇 would be 𝟎 ≤ 𝒙 ≤ 𝟏𝟐. 𝟓 because the opening of the park corresponds to 𝒕 = 𝟎, and after 

𝟏𝟐. 𝟓 hours the park closes, so there are no people waiting in line.  

 

9. Use your function 𝒇 to calculate the number of people in line 𝟏𝟎 hours after the park opens. 

The formula developed in Exercise 7 gives 𝒇(𝟏𝟎) = 𝟐𝟎𝟏.  After the park has been open for 𝟏𝟎 hours, there will be 

𝟐𝟎𝟏 people in line. 

 

10. Comparing the value calculated above to the actual value in the table, is your function 𝒇 an accurate model for the 

data?  Explain. 

The value of the function differs from the value from the table by about 𝟐𝟏 people, so it is not a perfect fit for the 

data, but it is otherwise very close.  It appears to overestimate the number of people in line. 

 

11. Use the regression feature of a graphing calculator to find a cubic function 𝒈 to model the data. 

The calculator gives 𝒈(𝒕) = 𝟎. 𝟒𝟑𝒕𝟑 − 𝟏𝟕. 𝟕𝟖𝒕𝟐 + 𝟏𝟓𝟔. 𝟔𝟑𝒕 − 𝟐𝟒. 𝟏𝟔. 

 

12. Graph the function 𝒇 you found and the function 𝒈 produced by the graphing calculator.  Use the graphing calculator 

to complete the table.  Round your answers to the nearest integer. 

𝒕 (hours) 𝟎 𝟏 𝟐 𝟒 𝟕 𝟖 𝟏𝟎 𝟏𝟐 

𝑷 (people in line)  𝟎 𝟕𝟓 𝟐𝟐𝟓 𝟑𝟒𝟓 𝟑𝟓𝟓 𝟑𝟏𝟎 𝟏𝟖𝟎 𝟒𝟓 

𝒇(𝒕) (your equation) 𝟎 𝟏𝟐𝟗 𝟐𝟐𝟖 𝟑𝟒𝟓 𝟑𝟓𝟎 𝟑𝟏𝟓 𝟐𝟎𝟏 𝟒𝟒 

𝒈(𝒕) (regression eqn.) −𝟐𝟒 𝟏𝟏𝟓 𝟐𝟐𝟏 𝟑𝟒𝟓 𝟑𝟒𝟗 𝟑𝟏𝟏 𝟏𝟗𝟒 𝟑𝟖 

 

13. Based on the results from the table, which model was more accurate at 𝒕 = 𝟐 hours?  𝒕 = 𝟏𝟎 hours? 

At 𝒕 = 𝟐 hours, the function found by hand was more accurate.  It was off by 𝟑 people whereas the calculator 

function was off by 𝟒 people.  At 𝒕 = 𝟏𝟎 hours, the graphing calculator function was more accurate.  It was off by  

𝟏𝟒 people whereas the function found by hand was off by 𝟐𝟏 people. 

 

Closing  (2 minutes) 

 What type of functions were used to model the data?  Were they good models? 

 Cubic polynomial functions; yes, both functions were reasonably accurate. 

 What information did we use to find the function by hand? 

 We used the 𝑥-intercepts and the relative maximum. 

 Did we have to use the relative maximum specifically to find the leading coefficient? 

 No, we could have chosen a different point on the curve. 

 

 

MP.2 

MP.3 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
  
  
 

 

    

 

 

NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 17 
ALGEBRA II 

Lesson 17: Modeling with Polynomials—An Introduction  
 
 

 

193 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

 How did polynomials help us solve a real-world problem? 

 We were able to model the data using a polynomial function.  The function allows us to estimate the 

number of people in line at any time 𝑡 and also to estimate the time when the line is the longest and the 

maximum number of people are in line. 

 

Exit Ticket  (5 minutes)  
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Name                                   Date                          

Lesson 17:  Modeling with Polynomials—An Introduction 

 
Exit Ticket 
 

Jeannie wishes to construct a cylinder closed at both ends.   

The figure at right shows the graph of a cubic polynomial 

function, 𝑉, used to model the volume of the cylinder as a 

function of the radius if the cylinder is constructed using  

150𝜋 cm3 of material.  Use the graph to answer the questions 

below.  Estimate values to the nearest half unit on the horizontal 

axis and to the nearest 50 units on the vertical axis. 

1. What are the zeros of the function 𝑉? 

 

 

 

 

2. What is the relative maximum value of 𝑉, and where does it occur? 

 

 

 

3. The equation of this function is 𝑉(𝑟) = 𝑐(𝑟3 − 72.25𝑟) for some real number 𝑐.  Find the value of 𝑐 so that this 

formula fits the graph.  

 

 

 

4. Use the graph to estimate the volume of the cylinder with 𝑟 = 2 cm. 

 

 

 

5. Use your formula for 𝑉 to find the volume of the cylinder when 𝑟 = 2 cm.  How close is the value from the formula 

to the value on the graph? 
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Exit Ticket Sample Solutions 

 

Jeannie wishes to construct a cylinder closed at both ends.   

The figure at right shows the graph of a cubic polynomial 

function, 𝑽, used to model the volume of the cylinder as a 

function of the radius if the cylinder is constructed using  

𝟏𝟓𝟎𝝅 𝐜𝐦𝟑 of material.  Use the graph to answer the questions 

below.  Estimate values to the nearest half unit on the 

horizontal axis and to the nearest 𝟓𝟎 units on the vertical axis. 

1. What are the zeros of the function 𝑽? 

Approximately 𝟎, −𝟖. 𝟓, and 𝟖. 𝟓  (Students might round 

up to −𝟗 and 𝟗.) 

 

2. What is the relative maximum value of 𝑽 and where does 

it occur? 

The relative maximum value is 𝟖𝟎𝟎 𝐜𝐦𝟑 at = 𝟓 𝐜𝐦. 

 

3. The equation of this function is 𝑽(𝒓) = 𝒄(𝒓𝟑 − 𝟕𝟐. 𝟐𝟓𝒓) for some real number 𝒄.  Find the value of 𝒄 so that this 

formula fits the graph.  

Substituting 𝒓 = 𝟓 𝐜𝐦 and 𝑽(𝒓) = 𝟖𝟎𝟎 𝒄𝐦𝟑 and solving for 𝒄 gives 𝒄 ≈ −𝟑. 𝟒. 

 

4. Use the graph to estimate the volume of the cylinder with 𝒓 = 𝟐 𝐜𝐦. 

Estimating from the graph, the volume of a cylinder of radius 𝟐 𝐜𝐦 is 𝟒𝟓𝟎 𝐜𝐦𝟑. 

 

5. Use your formula for 𝑽 to find the volume of the cylinder when 𝒓 = 𝟐 𝐜𝐦.  How close is the value from the formula 

to the value on the graph? 

Using the formula:  𝑽(𝟐) = −𝟑. 𝟒(𝟐𝟑 − 𝟕𝟐. 𝟐𝟓(𝟐)) = 𝟒𝟔𝟒. 𝟏.  Therefore, the volume of the cylinder when 𝒓 = 𝟐 𝐜𝐦 

is 𝟒𝟔𝟒. 𝟏 𝐜𝐦𝟑.  This value is close to the value of 𝟒𝟓𝟎 𝐜𝐦𝟑 found using the graph but not exact, particularly because 

we cannot read much detail from the graph. 

 
 
Problem Set Sample Solutions 

Problem 2 requires the use of a graphing calculator.  If students do not have the means to complete this, the last two 

parts could be done in class. 
 

1. Recall the math club fundraiser from the Problem Set of the 

previous lesson.  The club members would like to find a function 

to model their data, so Kylie draws a curve through the data 

points as shown. 

a. What type of function does it appear that she has drawn? 

Degree 𝟑 polynomial (or cubic polynomial) 
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b. The function that models the profit in terms of the number of t-shirts made has the form  

𝑷(𝒙) = 𝒄(𝒙𝟑 − 𝟓𝟑𝒙𝟐 − 𝟐𝟑𝟔𝒙 + 𝟗𝟖𝟐𝟖).  Use the vertical intercept labeled on the graph to find the value of 

the leading coefficient 𝒄. 

𝒄 ≈ −𝟎. 𝟎𝟏𝟐𝟖𝟐,  

so 𝑷(𝒙) = −𝟎. 𝟎𝟏𝟐𝟖𝟐(𝒙𝟑 − 𝟓𝟑𝒙𝟐 − 𝟐𝟑𝟔𝒙 + 𝟗𝟖𝟐𝟖) 

 

c. From the graph, estimate the profit if the math club sells 𝟑𝟎 t-shirts. 

The profit is approximately $𝟐𝟓𝟎 if the club sells 𝟑𝟎 t-shirts. 

 

d. Use your function to estimate the profit if the math club sells 𝟑𝟎 t-shirts. 

𝑷(𝟑𝟎) = 𝟐𝟑𝟎. 𝟏𝟒.  The equation predicts a profit of $𝟐𝟑𝟎. 𝟏𝟒. 

 

e. Which estimate do you think is more reliable?  Why? 

The estimate from the graph is probably more reliable because the equation required estimating the  

𝒙-intercepts.  If these estimates were off, it could have affected the equation.   

 

2. A box is to be constructed so that it has a square base and no top. 

a. Draw and label the sides of the box.  Label the sides of the base as 𝒙 and the height of the box as 𝒉. 

 

b. The surface area is 𝟏𝟎𝟖 𝐜𝐦𝟐.  Write a formula for the surface area 𝑺, and then solve for 𝒉. 

𝑺 = 𝒙𝟐 + 𝟒𝒙𝒉 = 𝟏𝟎𝟖 

𝒉 =
𝟏𝟎𝟖 − 𝒙𝟐

𝟒𝒙
 

 

c. Write a formula for the function of the volume of the box in terms of 𝒙. 

𝑽(𝒙) = 𝒙𝟐𝒉 = 𝒙𝟐 (
𝟏𝟎𝟖 − 𝒙𝟐

𝟒𝒙
) =

𝟏𝟎𝟖𝒙𝟐 − 𝒙𝟒

𝟒𝒙
=

𝟏𝟎𝟖𝒙 − 𝒙𝟑

𝟒
 

 

d. Use a graphing utility to find the maximum volume of the box. 

𝟏𝟎𝟖 𝐜𝐦𝟑  

 

e. What dimensions should the box be in order to maximize its volume? 

𝟔 𝐜𝐦 ×  𝟔 𝐜𝐦 ×  𝟑 𝐜𝐦  
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Lesson 18:  Overcoming a Second Obstacle in Factoring—

What If There Is a Remainder?  

 
Student Outcomes  

 Students rewrite simple rational expressions in different forms, including representing remainders when 

dividing. 

 

Lesson Notes 

Students have worked on dividing two polynomials using both the reverse tabular method and long division.  In this 

lesson, they continue that work but with quotients that have a remainder.  In addition to the two methods of division 

already presented in this module, students also use the method of inspection as stated in standard A-APR.D.6.   

The method of inspection is an opportunity to emphasize the mathematical practice of making use of structure (MP.7).  

The purpose of the Opening Exercise is to get students thinking about this idea of structure by leading them from writing 

rational numbers as mixed numbers to writing rational expressions as “mixed expressions.” 

 

Classwork  

Opening Exercise  (3 minutes)  

Have students work through the Opening Exercise briefly by themselves, and then summarize the exercise as a whole 

class by displaying all three methods.  This starts students thinking about the different ways of rewriting an improper 

fraction as a mixed number.  Students use methods 2 and 3 later today to write rational expressions as “mixed 

expressions.” 

 

Opening Exercise 

Write the rational number 
𝟏𝟑

𝟒
 as a mixed number. 

Method 1: 

 

 

 

 

 

Method 2: Method 3: 

 

 

 

Both  

10

7
= 1

3

7
 

26

3
= 8

2

3
 

Scaffolding: 

If students are struggling with 
the different methods of 
rewriting a rational number as 
a mixed number, provide them 
with extra examples such as 
the following. 
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Example 1  (8 minutes)  

Work through the example as a class.  Relate the process of inspection used in part (b) below to method 2 used in the 

Opening Exercise.  Then, demonstrate how the quotient could have been found using the reverse tabular method or long 

division. 

 

Example 1 

a. Find the quotient by factoring the numerator.  

𝒙𝟐 + 𝟑𝒙 + 𝟐

𝒙 + 𝟐
 

b. Find the quotient. 

𝒙𝟐 + 𝟑𝒙 + 𝟓

𝒙 + 𝟐
 

𝒙𝟐 + 𝟑𝒙 + 𝟐

𝒙 + 𝟐
=

(𝒙 + 𝟏)(𝒙 + 𝟐)

𝒙 + 𝟐
 

= 𝒙 + 𝟏 

See below.  

 

Solutions for part (b): 

Method 1:  Inspection 

 We already know that 
𝑥2+3𝑥+2

𝑥+2
= 𝑥 + 1, as long as 𝑥 ≠ −2.  How could we use this fact to find 

𝑥2+3𝑥+5

𝑥+2
? 

 Since 3 + 2 = 5, there must be 3 left over after performing division. 

 How could we rewrite the problem in a way that is more convenient? 

 
𝑥2+3𝑥+5

𝑥+2
=

(𝑥2+3𝑥+2)+3

𝑥+2
=

𝑥2+3𝑥+2

𝑥+2
+

3

𝑥+2
  

 So, what are the quotient and remainder? 

 The quotient is 𝑥 + 1 with a remainder of 3. 

 Since the 3 is left over and has not been divided by the 𝑥 + 2, it is still written as a quotient. 

 
𝑥2+3𝑥+5

𝑥+2
=

𝑥2+3𝑥+2+3

𝑥+2
=

𝑥2+3𝑥+2

𝑥+2
+

3

𝑥+2
= (𝑥 + 1) +

3

𝑥+2
 

 

Method 2:  Reverse Tabular Method 

 𝒙 𝟏  

 

𝒙𝟐 𝒙 𝒙 

𝒙𝟐 𝟐𝒙 𝟐 𝟐 

𝟑𝒙 𝟓 = 𝟐 + 𝟑  
 

 

𝑥2 + 3𝑥 + 5

𝑥 + 2
= (𝑥 + 1) +

3

𝑥 + 2
 

MP.7 

3 remains and is yet to be 

divided.  So the remainder is 3. 
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Method 3:  Long division 

Work the problem as a class using long division.  Remind the students that we used 

the same process in method 3 of the Opening Exercise. 

 

 

 

 

Example 2  (7 minutes)  

Repeat the process for this example.  Work through the process of inspection as a pair/share exercise.  Then, ask the 

students to repeat the process using either the reverse tabular method or long division.  Share the work from both 

methods.  

 

Example 2 

a. Find the quotient by factoring the numerator. 

𝒙𝟑 − 𝟖

𝒙 − 𝟐
 

b. Find the quotient. 

𝒙𝟑 − 𝟒

𝒙 − 𝟐
 

=  
(𝒙 − 𝟐)(𝒙𝟐 + 𝟐𝒙 + 𝟒)

𝒙 − 𝟐
 

=  𝒙𝟐 + 𝟐𝒙 + 𝟒  

=  
𝒙𝟑 − 𝟖 + 𝟒

𝒙 − 𝟐
=

𝒙𝟑 − 𝟖

𝒙 − 𝟐
+

𝟒

𝒙 − 𝟐
 

=  𝒙𝟐 + 𝟐𝒙 + 𝟒 +
𝟒

𝒙 − 𝟐
 

 

 In pairs, see if you can determine how to use the quotient from (a) to find the quotient of 
𝑥3−4

𝑥−2
 . 

Give students a couple of minutes to discuss, and then elicit responses. 

 How did you rewrite the numerator? 

 
𝑥3−4

𝑥−2
=

𝑥3−8+4

𝑥−2
=

𝑥3−8

𝑥−2
+

4

𝑥−2
   

 Why is this a useful way to rewrite the problem? 

 We know that 
𝑥3−8

𝑥−2
= 𝑥2 + 2𝑥 + 4.  

 So what are the quotient and remainder of 
𝑥3−4

𝑥−2
?  

 The quotient is 𝑥2 + 2𝑥 + 4 with a remainder of 4. 

Therefore, 
𝑥3−4

𝑥−2
= (𝑥2 + 2𝑥 + 4) +

4

𝑥−2
. 

 

  

MP.7 
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Give students a couple of minutes to rework the problem using either the reverse tabular method or long division and 

then share student work. 

 𝒙𝟐 𝟐𝒙 𝟒  

 

𝒙𝟑 𝟐𝒙𝟐 𝟒𝒙 𝒙 

𝒙𝟑 −𝟐𝒙𝟐 −𝟒𝒙 −𝟖 −𝟐 

𝟎𝒙𝟐 𝟎𝒙 −𝟒 = −𝟖 + 𝟒  

 

 Which method is easier?  Allow students to discuss advantages and disadvantages of the three methods. 

 

Exercise  (5 minutes) 

Have students practice finding quotients by factoring the numerator using the cards on the page after next.  Cut out the 

cards and hand each student a card.  The students must move around the room and match their card with the same 

quotient.  Then have students stay in these pairs to work on the exercises. 

 

Exercises 1–10  (15 minutes)  

Allow students to work through the exercises either independently or in pairs.  

Some students may need to be reminded how to complete the square.   

 

Exercises 1–10 

Find each quotient by inspection. 

1. 
𝒙+𝟒

𝒙+𝟏
 2. 

𝟐𝒙−𝟕

𝒙−𝟑
 3. 

𝒙𝟐−𝟐𝟏

𝒙+𝟒
 

𝟏 +
𝟑

𝒙 + 𝟏
 𝟐 −

𝟏

𝒙 − 𝟑
 (𝒙 − 𝟒) −

𝟓

𝒙 + 𝟒
 

 

Find each quotient by using the reverse tabular method. 

4. 
𝒙𝟐+𝟒𝒙+𝟏𝟎

𝒙−𝟖
 5. 

𝒙𝟑−𝒙𝟐+𝟑𝒙−𝟏

𝒙+𝟑
 6. 

𝒙𝟐−𝟐𝒙−𝟏𝟗

𝒙−𝟏
 

(𝒙 + 𝟏𝟐) +
𝟏𝟎𝟔

𝒙 − 𝟖
 𝒙𝟐 − 𝟒𝒙 + 𝟏𝟓 −

𝟒𝟔

𝒙 + 𝟑
 (𝒙 − 𝟏) −

𝟐𝟎

𝒙 − 𝟏
 

 

 

 

The remainder is 4. 

𝑥2 − 5𝑥 + 9

𝑥 − 1
= (𝑥 − 4) +

5

𝑥 − 1
 

2𝑥2 − 5

𝑥 − 3
= 2(𝑥 + 3) +

13

𝑥 − 3
 

Scaffolding: 

 Some students may have difficulty 
with inspection.  Encourage them 
to use the reverse tabular method 
first, and then see if they can use 
that to rewrite the numerator. 

 Early finishers can be given more 
challenging inspection problems 
such as the following. 
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Find each quotient by using long division. 

7. 
𝒙𝟐−𝒙−𝟐𝟓

𝒙+𝟔
 8. 

𝒙𝟒−𝟖𝒙𝟐+𝟏𝟐

𝒙+𝟐
 9. 

𝟒𝒙𝟑+𝟓𝒙−𝟖

𝟐𝒙−𝟓
 

(𝒙 − 𝟕) +
𝟏𝟕

𝒙 + 𝟔
 (𝒙𝟑 − 𝟐𝒙𝟐 − 𝟒𝒙 + 𝟖) −

𝟒

𝒙 + 𝟐
 (𝟐𝒙𝟐 + 𝟓𝒙 + 𝟏𝟓) +

𝟔𝟕

𝟐𝒙 − 𝟓
 

 

Rewrite the numerator in the form (𝒙 − 𝒉)𝟐 + 𝒌 by completing the square.  Then find the quotient. 

10. 
𝒙𝟐+𝟒𝒙−𝟗

𝒙+𝟐
 

(𝒙 + 𝟐) −
𝟏𝟑

𝒙 + 𝟐
 

 

The mental math exercises on the next page can be used for building fluency.  All numerators factor nicely so that there 

are no remainders.  The exercise can be timed and restrictions can be imposed (such as, “Only write your answer in the 

box next to the expression.”).   

It is always a good idea to keep fluency exercises quick and stress-free for students.  Here is one way to do that:   

Tell them that the activity will not be turned in for a grade, but they will be timed.  Give them 2 minutes to write down as 

many answers as possible (using a stopwatch or a cell phone stopwatch feature.).  Afterward, go through the solutions 

with them quickly; allow them only to mark the ones they did correctly/incorrectly—do not let them copy the correct 

answers down.  Celebrate the student who got the greatest number correct, and then provide another 2–4 minutes for 

students to work on the remaining problems that they did not get right.    

 

Mental Math Exercises 

𝒙𝟐 − 𝟗

𝒙 + 𝟑
 

𝒙 − 𝟑 

𝒙𝟐 − 𝟒𝒙 + 𝟑

𝒙 − 𝟏
 

𝒙 − 𝟑 

𝒙𝟐 − 𝟏𝟔

𝒙 + 𝟒
 

𝒙 − 𝟒 

𝒙𝟐 − 𝟑𝒙 − 𝟒

𝒙 + 𝟏
 

𝒙 − 𝟒 

𝒙𝟑 − 𝟑𝒙𝟐

𝒙 − 𝟑
 

𝒙𝟐 

𝒙𝟒 − 𝒙𝟐

𝒙𝟐 − 𝟏
 

𝒙𝟐 

𝒙𝟐 + 𝒙 − 𝟔

𝒙 + 𝟑
 

𝒙 − 𝟐 

𝒙𝟐 − 𝟒

𝒙 + 𝟐
 

𝒙 − 𝟐 

𝒙𝟐 − 𝟖𝒙 + 𝟏𝟐

𝒙 − 𝟐
 

𝒙 − 𝟔 

𝒙𝟐 − 𝟑𝟔

𝒙 + 𝟔
 

𝒙 − 𝟔 

𝒙𝟐 + 𝟔𝒙 + 𝟖

𝒙 + 𝟒
 

𝒙 + 𝟐 

𝒙𝟐 − 𝟒

𝒙 − 𝟐
 

𝒙 + 𝟐 

𝒙𝟐 − 𝒙 − 𝟐𝟎

𝒙 + 𝟒
 

𝒙 − 𝟓 

𝒙𝟐 − 𝟐𝟓

𝒙 + 𝟓
 

𝒙 − 𝟓 

𝒙𝟐 − 𝟐𝒙 + 𝟏

𝒙 − 𝟏
 

𝒙 − 𝟏 

𝒙𝟐 − 𝟑𝒙 + 𝟐

𝒙 − 𝟐
 

𝒙 − 𝟏 

𝒙𝟐 + 𝟒𝒙 − 𝟓

𝒙 − 𝟏
 

𝒙 + 𝟓 

𝒙𝟐 − 𝟐𝟓

𝒙 − 𝟓
 

𝒙 + 𝟓 

𝒙𝟐 − 𝟏𝟎𝒙

𝒙
 

𝒙 − 𝟏𝟎 

𝒙𝟐 − 𝟏𝟐𝒙 + 𝟐𝟎

𝒙 − 𝟐
 

𝒙 − 𝟏𝟎 
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𝒙𝟐 + 𝟓𝒙 + 𝟒

𝒙 + 𝟒
 

𝒙 + 𝟏 

𝒙𝟐 − 𝟏

𝒙 − 𝟏
 

𝒙 + 𝟏 

𝒙𝟐 + 𝟏𝟔𝒙 + 𝟔𝟒

𝒙 + 𝟖
 

𝒙 + 𝟖 

𝒙𝟐 + 𝟗𝒙 + 𝟖

𝒙 + 𝟏
 

𝒙 + 𝟖 

Closing  (2 minutes) 

Consider asking students to respond in pairs or in writing. 

 In the pair/share exercise, how did we use the structure of the expressions to help us to simplify them? 

 We were able to factor the numerator.  Since the numerator and denominator contained a common 

factor, we were able to simplify the expression. 

 How did we use structure in Exercise 10? 

 We rewrote the expression by completing the square and then used inspection.   

 How does this use of structure help us when working with algebraic expressions? 

 We can rewrite expressions into equivalent forms that may be more convenient. 

 What methods were used to find the quotients? 

 Inspection, reverse tabular method, long division 

 What are some pros and cons of the methods? 

 You may not see the answer when trying to divide by inspection, but if you do see the structure of the 

expression, the quotient can often be quickly found.  Using the long division or tabular method can be 

time consuming, but both rely on a known process instead of insight. 

 

Exit Ticket  (5 minutes)  
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Name                                   Date                          

Lesson 18:  Overcoming a Second Obstacle in Factoring—What If 

There Is a Remainder? 

 
Exit Ticket 
 

1. Find the quotient of 
𝑥−6

𝑥−8
 by inspection. 

 

 

 

 

 

 

 

 

 

 

2. Find the quotient of 
9𝑥3−12𝑥2+4

𝑥−2
 by using either long division or the reverse tabular method. 
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Exit Ticket Sample Solutions 

 

1. Find the quotient of 
𝒙−𝟔

𝒙−𝟖
 by inspection. 

𝟏 +
𝟐

𝒙 − 𝟖
 

 

2. Find the quotient of 
𝟗𝒙𝟑−𝟏𝟐𝒙𝟐+𝟒

𝒙−𝟐
 by using either long division or the reverse tabular method. 

(𝟗𝒙𝟐 + 𝟔𝒙 + 𝟏𝟐) +
𝟐𝟖

𝒙 − 𝟐
 

 
 
Problem Set Sample Solutions 

 

1. For each pair of problems, find the first quotient by factoring the numerator.  Then, find the second quotient by 

using the first quotient.   

a.  𝟑𝒙 − 𝟔

𝒙 − 𝟐
 

𝟑𝒙 − 𝟗

𝒙 − 𝟐
 

 𝟑 
𝟑 −

𝟑

𝒙 − 𝟐
 

b.  𝒙𝟐 − 𝟓𝒙 − 𝟏𝟒

𝒙 − 𝟕
 

𝒙𝟐 − 𝟓𝒙 + 𝟐

𝒙 − 𝟕
 

 𝒙 +  𝟐 
(𝒙 + 𝟐) +

𝟏𝟔

𝒙 − 𝟕
 

c.  𝒙𝟑 + 𝟏

𝒙 + 𝟏
 

𝒙𝟑

𝒙 + 𝟏
 

 𝒙𝟐 − 𝒙 + 𝟏 
(𝒙𝟐 − 𝒙 + 𝟏) −

𝟏

𝒙 + 𝟏
 

d.  𝒙𝟐 − 𝟏𝟑𝒙 + 𝟑𝟔

𝒙 − 𝟒
 

𝒙𝟐 − 𝟏𝟑𝒙 + 𝟑𝟎

𝒙 − 𝟒
 

 𝒙 − 𝟗  
(𝒙 − 𝟗) −

𝟔

𝒙 − 𝟒
 

 

Find each quotient by using the reverse tabular method. 

2. 
𝒙𝟑−𝟗𝒙𝟐+𝟓𝒙+𝟐

𝒙−𝟏
 3. 

𝒙𝟐+𝒙+𝟏𝟎

𝒙+𝟏𝟐
 

(𝒙𝟐 − 𝟖𝒙 − 𝟑) −
𝟏

𝒙 − 𝟏
 (𝒙 − 𝟏𝟏) +

𝟏𝟒𝟐

𝒙 + 𝟏𝟐
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4. 
𝟐𝒙+𝟔

𝒙−𝟖
 5. 

𝒙𝟐+𝟖

𝒙+𝟑
 

𝟐 +
𝟐𝟐

𝒙 − 𝟖
 (𝒙 − 𝟑) +

𝟏𝟕

𝒙 + 𝟑
 

Find each quotient by using long division. 

6. 
𝒙𝟒−𝟗𝒙𝟐+𝟏𝟎𝒙

𝒙+𝟐
 7. 

𝒙𝟓−𝟑𝟓

𝒙−𝟐
 

(𝒙𝟑 − 𝟐𝒙𝟐 − 𝟓𝒙 + 𝟐𝟎) −
𝟒𝟎

𝒙 + 𝟐
 (𝒙𝟒 + 𝟐𝒙𝟑 + 𝟒𝒙𝟐 + 𝟖𝒙 + 𝟏𝟔) −

𝟑

𝒙 − 𝟐
 

8. 
𝒙𝟐

𝒙−𝟔
 9. 

𝒙𝟑+𝟐𝒙𝟐+𝟖𝒙+𝟏

𝒙+𝟓
 

(𝒙 + 𝟔) +
𝟑𝟔

𝒙 − 𝟔
 (𝒙𝟐 − 𝟑𝒙 + 𝟐𝟑) −

𝟏𝟏𝟒

𝒙 + 𝟓
 

10. 
𝒙𝟑+𝟐𝒙+𝟏𝟏

𝒙−𝟏
   11. 

𝒙𝟒+𝟑𝒙𝟑−𝟐𝒙𝟐+𝟔𝒙−𝟏𝟓

𝒙
 

(𝒙𝟐 + 𝒙 + 𝟑) +
𝟏𝟒

𝒙 − 𝟏
 (𝒙𝟑 + 𝟑𝒙𝟐 − 𝟐𝒙 + 𝟔) −

𝟏𝟓

𝒙
 

12. Rewrite the numerator in the form (𝒙 − 𝒉)𝟐  +  𝒌 by completing the square.  Then, find the quotient. 

𝒙𝟐−𝟔𝒙−𝟏𝟎

𝒙−𝟑
  

𝒙 − 𝟑 −
𝟏𝟗

𝒙−𝟑
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Lesson 19:  The Remainder Theorem 

 
Student Outcomes   

 Students know and apply the remainder theorem and understand the role zeros play in the theorem. 

 

Lesson Notes  

In this lesson, students are primarily working on exercises that lead them to the concept of the remainder theorem, the 

connection between factors and zeros of a polynomial, and how this relates to the graph of a polynomial function.  

Students should understand that for a polynomial function 𝑃 and a number 𝑎, the remainder on division by 𝑥 − 𝑎 is the 

value 𝑃(𝑎) and extend this to the idea that 𝑃(𝑎) = 0 if and only if (𝑥 − 𝑎) is a factor of the polynomial (A-APR.B.2).  

There should be plenty of discussion after each exercise. 

 

Classwork  

Exercises 1–3  (5 minutes) 

Assign different groups of students one of the three problems from this exercise.  

Have them complete their assigned problem, and then have a student from each 

group put their solution on the board.  Having the solutions readily available allows 

students to start looking for a pattern without making the lesson too tedious.   

 

Exercises 1–3 

1. Consider the polynomial function 𝒇(𝒙) = 𝟑𝒙𝟐 + 𝟖𝒙 − 𝟒.   

a. Divide 𝒇 by 𝒙 − 𝟐. b. Find 𝒇(𝟐). 

𝒇(𝒙)

𝒙 − 𝟐
=  

𝟑𝒙𝟐 + 𝟖𝒙 − 𝟒

𝒙 − 𝟐
 

= (𝟑𝒙 + 𝟏𝟒) +
𝟐𝟒

𝒙 − 𝟐
 

𝒇(𝟐)  =  𝟐𝟒 

 

2. Consider the polynomial function 𝒈(𝒙) = 𝒙𝟑 − 𝟑𝒙𝟐 + 𝟔𝒙 + 𝟖. 

a. Divide 𝒈 by 𝒙 +  𝟏. b. Find 𝒈(−𝟏). 

𝒈(𝒙)

𝒙 + 𝟏
=

𝒙𝟑 − 𝟑𝒙𝟐 + 𝟔𝒙 + 𝟖

𝒙 + 𝟏
 

= (𝒙𝟐 − 𝟒𝒙 + 𝟏𝟎) −
𝟐

𝒙 + 𝟏
 

𝒈(−𝟏)  =  −𝟐 

 

  

 

𝑔(𝑥) = 𝑥2 − 7𝑥 − 11 

    (𝑥 − 8) −
3

𝑥 + 1
              𝑔(−1) = −3 

ℎ(𝑥) = 2𝑥2 + 9 

(2𝑥 + 6) +
27

2𝑥2 + 9
        ℎ(3) = 27 

Scaffolding: 

If students are struggling, replace the 

polynomials in Exercises 2 and 3 with 

easier polynomial functions. 

Examples: 

a.  Divide by 𝑥 + 1. b.  Find 𝑔(−1).       

 

a.  Divide by 𝑥 − 3. b.  Find ℎ(3).   
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3. Consider the polynomial function 𝒉(𝒙) = 𝒙𝟑 + 𝟐𝒙 − 𝟑.   

a. Divide 𝒉 by 𝒙 − 𝟑. b. Find 𝒉(𝟑). 

𝒉(𝒙)

𝒙 − 𝟑
=

𝒙𝟑 + 𝟐𝒙 − 𝟑

𝒙 − 𝟑
 

= (𝒙𝟐 + 𝟑𝒙 + 𝟏𝟏) +
𝟑𝟎

𝒙 − 𝟑
 

𝒉(𝟑)  =  𝟑𝟎 

 

Discussion  (7 minutes)  

 What is 𝑓(2)?  What is 𝑔(−1)?  What is ℎ(3)?  

 𝑓(2) = 24;    𝑔(−1) = −2;    ℎ(3) = 30 

 Looking at the results of the quotient, what pattern do we see?   

 The remainder is the value of the function. 

 Stating this in more general terms, what do we suspect about the connection between the remainder from 

dividing a polynomial 𝑃 by 𝑥 − 𝑎 and the value of 𝑃(𝑎)? 

 The remainder found after dividing 𝑃 by 𝑥 − 𝑎 will be the same value as 𝑃(𝑎). 

 Why would this be?  Think about the quotient 
13

3
.  We could write this as 13 = 4 ∙ 3 + 1, where 4 is the 

quotient and 1 is the remainder. 

 Apply this same principle to Exercise 1.  Write the following on the board, and talk through it: 

𝑓(𝑥)

𝑥 − 2
=

3𝑥2 + 8𝑥 − 4

𝑥 − 2
= (3𝑥 + 14) +

24

𝑥 − 2
 

 How can we rewrite 𝑓 using the equation above? 

 Multiply both sides of the equation by 𝑥 − 2 to get 𝑓(𝑥) = (3𝑥 + 14)(𝑥 − 2) + 24. 

 In general we can say that if you divide polynomial 𝑃 by 𝑥 − 𝑎, then the remainder must be a number; in fact, 

there is a (possibly non-zero degree) polynomial function 𝑞 such that the equation, 

𝑃(𝑥)   =   𝒒(𝒙)   ∙   (𝑥 − 𝑎)       +        𝒓 

 ↑          ↑ 

   quotient           remainder 

is true for all 𝑥. 

 What is 𝑃(𝑎)? 

 𝑃(𝑎) = 𝑞(𝑎)(𝑎 − 𝑎) + 𝑟 = 𝑞(𝑎) ∙ 0 + 𝑟 = 0 + 𝑟 = 𝑟 

We have just proven the remainder theorem, which is formally stated in the box below. 

 Restate the remainder theorem in your own words to your partner.   

𝑃(𝑥) = 𝑞(𝑥)(𝑥 − 𝑎) + 𝑃(𝑎) 

REMAINDER THEOREM:  Let 𝑃 be a polynomial function in 𝑥, and let 𝑎 be any real number.  Then there exists a 

unique polynomial function 𝑞 such that the equation 

is true for all 𝑥.  That is, when a polynomial is divided by (𝑥 − 𝑎), the remainder is the value of the 

polynomial evaluated at 𝑎.  

 

MP.8 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
  
  
 

 

    

 

 

NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 19 
ALGEBRA II 

Lesson 19: The Remainder Theorem  
 
 

 

208 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Scaffolding: 

Challenge early finishers with 

this problem: 

Given that 𝑥 + 1 and 𝑥 − 1 are 

factors of 𝑃(𝑥) = 𝑥4 + 2𝑥3 −

49𝑥2 − 2𝑥 + 48, write 𝑃 in 

factored form. 

Answer:   
(𝑥 + 1)(𝑥 − 1)(𝑥 + 8)(𝑥 − 6) 

While students are doing this, circulate and informally assess student understanding before asking students to share 

their responses as a class. 

 

Exercise 4  (5 minutes) 

Students may need more guidance through this exercise, but allow them to struggle with 

it first.  After a few students have found 𝑘, share various methods used. 

 

Exercise 4–6  

4. Consider the polynomial 𝑷(𝒙) = 𝒙𝟑 + 𝒌𝒙𝟐 + 𝒙 + 𝟔.   

a. Find the value of 𝒌 so that 𝒙 + 𝟏 is a factor of 𝑷. 

In order for 𝒙 + 𝟏 to be a factor of 𝑷, the remainder must be zero.  Hence, since  

𝒙 + 𝟏 = 𝒙 − (−𝟏), we must have 𝑷(−𝟏) = 𝟎 so that 𝟎 = −𝟏 + 𝒌 − 𝟏 + 𝟔.   

Then 𝒌 = −𝟒. 

 

b. Find the other two factors of 𝑷 for the value of 𝒌 found in part (a). 

𝑷(𝒙) = (𝒙 + 𝟏)(𝒙𝟐 − 𝟓𝒙 + 𝟔) = (𝒙 + 𝟏)(𝒙 − 𝟐)(𝒙 − 𝟑) 

 

Discussion  (7 minutes) 

 Remember that for any polynomial function 𝑃 and real number 𝑎, the remainder theorem says that there 

exists a polynomial 𝑞 so that 𝑃(𝑥) = 𝑞(𝑥)(𝑥 − 𝑎) + 𝑃(𝑎). 

 What does it mean if 𝑎 is a zero of a polynomial 𝑃? 

 𝑃(𝑎) = 0 

 So what does the remainder theorem say if 𝑎 is a zero of 𝑃? 

 There is a polynomial 𝑞 so that 𝑃(𝑥) = 𝑞(𝑥)(𝑥 − 𝑎) + 0. 

 How does (𝑥 − 𝑎) relate to 𝑃 if 𝑎 is a zero of 𝑃? 

 If 𝑎 is a zero of 𝑃, then (𝑥 − 𝑎) is a factor of 𝑃. 

 How does the graph of a polynomial function 𝑦 = 𝑃(𝑥) correspond to the equation of the polynomial 𝑃? 

 The zeros are the 𝑥-intercepts of the graph of 𝑃.  If we know a zero of 𝑃, then we know a factor of 𝑃.   

 If we know all of the zeros of a polynomial function, and their multiplicities, do we know the equation of the 

function? 

 Not necessarily.  It is possible that the equation of the function contains some factors that cannot factor 

into linear terms.   

We have just proven the factor theorem, which is a direct consequence of the remainder theorem. 

 

 Give an example of a polynomial function with zeros of multiplicity 2 at 1 and 3. 

 𝑃(𝑥) = (𝑥 − 1)2(𝑥 − 3)2 

FACTOR THEOREM:  Let 𝑃 be a polynomial function in 𝑥, and let 𝑎 be any real number.  If 𝑎 is a zero of 𝑃 then 

(𝑥 − 𝑎) is a factor of 𝑃.   
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 Give another example of a polynomial function with zeros of multiplicity 2 at 1 and 3.  

 𝑄(𝑥) = (𝑥 − 1)2(𝑥 − 3)2(𝑥2 + 1) or 𝑅(𝑥) = 4(𝑥 − 1)2(𝑥 − 3)2 

 If we know the zeros of a polynomial, does the factor theorem tell us the exact formula for the polynomial? 

 No.  But, if we know the degree of the polynomial and the leading coefficient, we can often deduce the 

equation of the polynomial.  

 

Exercise 5  (8 minutes) 

As students work through this exercise, circulate the room to make sure students have 

made the connection between zeros, factors, and 𝑥-intercepts.  Question students to see 

if they can verbalize the ideas discussed in the prior exercise. 

 

5. Consider the polynomial 𝑷(𝒙) = 𝒙𝟒 + 𝟑𝒙𝟑 − 𝟐𝟖𝒙𝟐 − 𝟑𝟔𝒙 + 𝟏𝟒𝟒. 

a. Is 𝟏 a zero of the polynomial 𝑷? 

No 

 

b. Is 𝒙 + 𝟑 one of the factors of 𝑷? 

Yes; 𝑷(−𝟑) = 𝟖𝟏 − 𝟖𝟏 − 𝟐𝟓𝟐 + 𝟏𝟎𝟖 + 𝟏𝟒𝟒 = 𝟎. 

 

c. The graph of 𝑷 is shown to the right.  What are the zeros of 𝑷? 

Approximately −𝟔, −𝟑, 𝟐, and 𝟒. 

 

d. Write the equation of 𝑷 in factored form. 

𝑷(𝒙) = (𝒙 + 𝟔)(𝒙 + 𝟑)(𝒙 − 𝟐)(𝒙 − 𝟒) 

 

 Is 1 a zero of the polynomial 𝑃?  How do you know? 

 No.  𝑃(1) ≠ 0. 

 What are two ways to determine the value of 𝑃(1)? 

 Substitute 1 for 𝑥 into the function or divide 𝑃 by 𝑥 − 1.  The remainder will be 𝑃(1). 

 Is 𝑥 + 3 a factor of 𝑃?  How do you know? 

 Yes.  Because 𝑃(−3) = 0, then when 𝑃 is divided by 𝑥 + 3, the remainder is 0, which means that 𝑥 + 3 

is a factor of the polynomial 𝑃. 

 How do you find the zeros of 𝑃 from the graph? 

 The zeros are the 𝑥-intercepts of the graph. 

 How do you find the factors? 

 By using the zeros:  if 𝑥 = 𝑎 is a zero, then 𝑥 − 𝑎 is a factor of 𝑃. 

 Expand the expression in part (d) to see that it is indeed the original polynomial function. 

  

Scaffolding: 

Encourage students who are 

struggling to work on part (a) 

using two methods: 

 by finding 𝑃(1), and  

 by dividing 𝑃 by 𝑥 − 1. 

This helps to reinforce the 

ideas discussed in Exercises 1 

and 2. 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
  
  
 

 

    

 

 

NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 19 
ALGEBRA II 

Lesson 19: The Remainder Theorem  
 
 

 

210 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Exercise 6  (6 minutes) 

Allow students a few minutes to work on the problem and then share results. 

 

6. Consider the graph of a degree 𝟓 polynomial shown to the right, with 𝒙-intercepts −𝟒, −𝟐, 𝟏, 𝟑, and 𝟓.  

a. Write a formula for a possible polynomial function that the graph 

represents using 𝒄 as the constant factor. 

𝑷(𝒙) = 𝒄(𝒙 + 𝟒)(𝒙 + 𝟐)(𝒙 − 𝟏)(𝒙 − 𝟑)(𝒙 − 𝟓) 

 

b. Suppose the 𝒚-intercept is −𝟒.  Find the value of 𝒄 so that the graph 

of 𝑷 has 𝒚-intercept −𝟒. 

𝑷(𝒙) =
𝟏

𝟑𝟎
(𝒙 + 𝟒)(𝒙 + 𝟐)(𝒙 − 𝟏)(𝒙 − 𝟑)(𝒙 − 𝟓) 

 

 

 

 What information from the graph was needed to write the equation? 

 The 𝑥-intercepts were needed to write the factors. 

 Why would there be more than one polynomial function possible? 

 Because the factors could be multiplied by any constant and still produce a graph with the same  

𝑥-intercepts. 

 Why can’t we find the constant factor 𝑐 by just knowing the zeros of the polynomial? 

 The zeros only determine where the graph crosses the 𝑥-axis, not how the graph is stretched vertically.  

The constant factor can be used to vertically scale the graph of the polynomial function that we found 

to fit the depicted graph.  

 

Closing  (2 minutes) 

Have students summarize the results of the remainder theorem and the factor theorem. 

 What is the connection between the remainder when a polynomial 𝑃 is divided by 𝑥 − 𝑎 and the value of 

𝑃(𝑎)? 

 They are the same. 

 If 𝑥 − 𝑎 is factor, then _________. 

 The number 𝑎 is a zero of 𝑃. 

 If 𝑃(𝑎) = 0, then ____________. 

 (𝑥 − 𝑎) is a factor of 𝑃. 
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Exit Ticket  (5 minutes)  

𝑷(𝒙) = 𝒒(𝒙)(𝒙 − 𝒂) + 𝑷(𝒂) 

Lesson Summary  

REMAINDER THEOREM:  Let 𝑷 be a polynomial function in 𝒙, and let 𝒂 be any real number.  Then there exists a unique 

polynomial function 𝒒 such that the equation 

is true for all 𝒙.  That is, when a polynomial is divided by (𝒙 − 𝒂), the remainder is the value of the polynomial 

evaluated at 𝒂.  

 

FACTOR THEOREM:  Let 𝑷 be a polynomial function in 𝒙, and let 𝒂 be any real number.  If 𝒂 is a zero of 𝑷, then (𝒙 − 𝒂) 

is a factor of 𝑷. 

Example:  If 𝑷(𝒙) = 𝒙𝟐 − 𝟑 and 𝒂 = 𝟒, then 𝑷(𝒙) = (𝒙 + 𝟒)(𝒙 − 𝟒) + 𝟏𝟑 where 𝒒(𝒙) = 𝒙 + 𝟒 and 𝑷(𝟒) = 𝟏𝟑. 

Example:  If 𝑷(𝒙) = 𝒙𝟑 − 𝟓𝒙𝟐 + 𝟑𝒙 + 𝟗, then 𝑷(𝟑) = 𝟐𝟕 − 𝟒𝟓 + 𝟗 + 𝟗 = 𝟎, so (𝒙 − 𝟑) is a factor of 𝑷. 
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Name                                   Date                          

Lesson 19:  The Remainder Theorem 

 
Exit Ticket 
 

Consider the polynomial 𝑃(𝑥) = 𝑥3 + 𝑥2 − 10𝑥 − 10. 

1. Is 𝑥 + 1 one of the factors of 𝑃?  Explain. 

 

 

 

 

 

2. The graph shown has 𝑥-intercepts at √10, −1, and −√10.  Could this be the graph of 𝑃(𝑥) = 𝑥3 + 𝑥2 − 10𝑥 − 10?  

Explain how you know.  
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Exit Ticket Sample Solutions 

 

Consider polynomial 𝑷(𝒙) = 𝒙𝟑 + 𝒙𝟐 − 𝟏𝟎𝒙 − 𝟏𝟎. 

1. Is 𝒙 + 𝟏 one of the factors of 𝑷?  Explain. 

𝑷(−𝟏) = (−𝟏)𝟑 + (−𝟏)𝟐 − 𝟏𝟎(−𝟏) − 𝟏𝟎 = −𝟏 + 𝟏 + 𝟏𝟎 − 𝟏𝟎 = 𝟎 

Yes, 𝒙 + 𝟏 is a factor of 𝑷 because 𝑷(−𝟏) = 𝟎.  Or, using factoring by grouping, we have  

𝑷(𝒙) = 𝒙𝟐(𝒙 + 𝟏) − 𝟏𝟎(𝒙 + 𝟏) = (𝒙 + 𝟏)(𝒙𝟐 − 𝟏𝟎). 

 

2. The graph shown has 𝒙-intercepts at √𝟏𝟎, −𝟏, and −√𝟏𝟎.  Could this be the graph of 𝑷(𝒙) = 𝒙𝟑 + 𝒙𝟐 − 𝟏𝟎𝒙 − 𝟏𝟎?  

Explain how you know. 

Yes, this could be the graph of 𝑷.  Since this graph has 𝒙-intercepts at 

√𝟏𝟎, −𝟏, and −√𝟏𝟎, the factor theorem says that (𝒙 − √𝟏𝟎), (𝒙 − 𝟏), 

and (𝒙 + √𝟏𝟎 ) are all factors of the equation that goes with this graph.  

Since (𝒙 − √𝟏𝟎)(𝒙 + √𝟏𝟎)(𝒙 − 𝟏) = 𝒙𝟑 + 𝒙𝟐 − 𝟏𝟎𝒙 − 𝟏𝟎, the graph 

shown is quite likely to be the graph of 𝑷. 

 

 

 

 
 
 
 
Problem Set Sample Solutions 

 

1. Use the remainder theorem to find the remainder for each of the following divisions. 

a. 
(𝒙𝟐+𝟑𝒙+𝟏)

(𝒙+𝟐)
 b. 

𝒙𝟑−𝟔𝒙𝟐−𝟕𝒙+𝟗

(𝒙−𝟑)
 

−𝟏 −𝟑𝟗 

c. 
𝟑𝟐𝒙𝟒+𝟐𝟒𝒙𝟑−𝟏𝟐𝒙𝟐+𝟐𝒙+𝟏

(𝒙+𝟏)
 

−𝟓 

d. 
𝟑𝟐𝒙𝟒+𝟐𝟒𝒙𝟑−𝟏𝟐𝒙𝟐+𝟐𝒙+𝟏

(𝟐𝒙−𝟏)
 

Hint for part (d):  Can you rewrite the division 

expression so that the divisor is in the form 
(𝒙 − 𝒄) for some constant 𝒄? 

𝟒 
 

2. Consider the polynomial 𝑷(𝒙) = 𝒙𝟑 + 𝟔𝒙𝟐 − 𝟖𝒙 − 𝟏.  Find 𝑷(𝟒) in two ways. 

𝑷(𝟒) = 𝟒𝟑 + 𝟔(𝟒)𝟐 − 𝟖(𝟒) − 𝟏 = 𝟏𝟐𝟕  
𝒙𝟑+𝟔𝒙𝟐−𝟖𝒙−𝟏

𝒙−𝟒
 has a remainder of 𝟏𝟐𝟕, so 𝑷(𝟒) = 𝟏𝟐𝟕. 

 

3. Consider the polynomial function 𝑷(𝒙) = 𝟐𝒙𝟒 + 𝟑𝒙𝟐 + 𝟏𝟐. 

a. Divide 𝑷 by 𝒙 + 𝟐, and rewrite 𝑷 in the form (divisor)(quotient)+remainder. 

𝑷(𝒙) = (𝒙 + 𝟐)(𝟐𝒙𝟑 − 𝟒𝒙𝟐 + 𝟏𝟏𝒙 − 𝟐𝟐) + 𝟓𝟔 
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b. Find 𝑷(−𝟐). 

𝑷(−𝟐) = (−𝟐 + 𝟐)(𝒒(−𝟐)) + 𝟓𝟔 = 𝟓𝟔 

 

4. Consider the polynomial function 𝑷(𝒙) = 𝒙𝟑 + 𝟒𝟐. 

a. Divide 𝑷 by 𝒙 − 𝟒, and rewrite 𝑷 in the form (divisor)(quotient) + remainder. 

𝑷(𝒙) = (𝒙 − 𝟒)(𝒙𝟐 + 𝟒𝒙 + 𝟏𝟔) + 𝟏𝟎𝟔 
 

b. Find 𝑷(𝟒).  

𝑷(𝟒) = (𝟒 − 𝟒)(𝒒(𝟒)) + 𝟏𝟎𝟔 = 𝟏𝟎𝟔 

 

5. Explain why for a polynomial function 𝑷, 𝑷(𝒂) is equal to the remainder of the quotient of 𝑷 and 𝒙 − 𝒂. 

The polynomial 𝑷 can be rewritten in the form 𝑷(𝒙) = (𝒙 − 𝒂)(𝒒(𝒙)) + 𝒓, where 𝒒(𝒙) is the quotient function and  

𝒓 is the remainder.  Then 𝑷(𝒂) = (𝒂 − 𝒂)(𝒒(𝒂)) + 𝒓.  Therefore, 𝑷(𝒂) = 𝒓. 

 

6. Is 𝒙 − 𝟓 a factor of the function 𝒇(𝒙) = 𝒙𝟑 + 𝒙𝟐 − 𝟐𝟕𝒙 − 𝟏𝟓?  Show work supporting your answer. 

Yes, because 𝒇(𝟓) = 𝟎 means that dividing by 𝒙 − 𝟓 leaves a remainder of 𝟎. 

 

7. Is 𝒙 + 𝟏 a factor of the function 𝒇(𝒙) = 𝟐𝒙𝟓 − 𝟒𝒙𝟒 + 𝟗𝒙𝟑 − 𝒙 + 𝟏𝟑?  Show work supporting your answer. 

No, because 𝒇(−𝟏) = −𝟏 means that dividing by 𝒙 + 𝟏 has a remainder of −𝟏. 

 

8. A polynomial function 𝒑 has zeros of 𝟐, 𝟐, −𝟑, −𝟑, −𝟑, and 𝟒.  Find a possible formula for 𝑷, and state its degree. 

Why is the degree of the polynomial not 𝟑?  

One solution is 𝑷(𝒙) = (𝒙 − 𝟐)𝟐(𝒙 + 𝟑)𝟑(𝒙 − 𝟒).  The degree of 𝑷 is 𝟔.  This is not a degree 𝟑 polynomial function 

because the factor (𝒙 − 𝟐) appears twice, and the factor (𝒙 + 𝟑) appears 𝟑 times, while the factor (𝒙 − 𝟒) appears 

once.     

 

9. Consider the polynomial function 𝑷(𝒙) = 𝒙𝟑 − 𝟖𝒙𝟐 − 𝟐𝟗𝒙 + 𝟏𝟖𝟎. 

a. Verify that 𝑷(𝟗) = 𝟎.  Since 𝑷(𝟗) = 𝟎, what must one of the factors of 𝑷 be? 

𝑷(𝟗) = 𝟗𝟑 − 𝟖(𝟗𝟐) − 𝟐𝟗(𝟗) + 𝟏𝟖𝟎 = 𝟎; 𝒙 − 𝟗 

 

b. Find the remaining two factors of 𝑷. 

𝑷(𝒙) = (𝒙 − 𝟗)(𝒙 − 𝟒)(𝒙 + 𝟓) 

 

c. State the zeros of 𝑷. 

𝒙 = 𝟗, 𝟒, −𝟓 

 

d. Sketch the graph of 𝑷. 
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10. Consider the polynomial function 𝑷(𝒙) = 𝟐𝒙𝟑 + 𝟑𝒙𝟐 − 𝟐𝒙 − 𝟑. 

a. Verify that 𝑷(−𝟏) = 𝟎.  Since 𝑷(−𝟏) = 𝟎, what must one of the factors of 𝑷 be? 

𝑷(−𝟏) = 𝟐(−𝟏)𝟑 + 𝟑(−𝟏)𝟐 − 𝟐(−𝟏) − 𝟑 = 𝟎;  𝒙 + 𝟏 

 

b. Find the remaining two factors of 𝑷. 

𝑷(𝒙) = (𝒙 + 𝟏)(𝒙 − 𝟏)(𝟐𝒙 + 𝟑) 

 

c. State the zeros of 𝑷. 

𝒙 = −𝟏, 𝟏, −
𝟑

𝟐
 

 

d. Sketch the graph of 𝑷. 

 

 

 

 

 

 

 

 

 

 

 

11. The graph to the right is of a third-degree polynomial function 𝒇. 

a. State the zeros of 𝒇. 

𝒙 = −𝟏𝟎, − 𝟏, 𝟐 

 

b. Write a formula for 𝒇 in factored form using 𝒄 for the constant 

factor. 

𝒇(𝒙) = 𝒄(𝒙 + 𝟏𝟎)(𝒙 + 𝟏)(𝒙 − 𝟐) 

 

c. Use the fact that 𝒇(−𝟒) = −𝟓𝟒 to find the constant factor 𝒄. 

−𝟓𝟒 = 𝒄(−𝟒 + 𝟏𝟎)(−𝟒 + 𝟏)(−𝟒 − 𝟐) 

𝒄 = −
𝟏

𝟐
 

𝒇(𝒙) = −
𝟏

𝟐
(𝒙 + 𝟏𝟎)(𝒙 + 𝟏)(𝒙 − 𝟐) 

 

d. Verify your equation by using the fact that 𝒇(𝟏) = 𝟏𝟏. 

𝒇(𝟏) = −
𝟏

𝟐
(𝟏 + 𝟏𝟎)(𝟏 + 𝟏)(𝟏 − 𝟐) = −

𝟏

𝟐
(𝟏𝟏)(𝟐)(−𝟏) = 𝟏𝟏 
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12. Find the value of 𝒌 so that 
𝒙𝟑−𝒌𝒙𝟐+𝟐

𝒙−𝟏
 has remainder 𝟖. 

𝒌 = −𝟓 

 

13. Find the value 𝒌 so that 
𝒌𝒙𝟑+𝒙−𝒌

𝒙+𝟐
 has remainder 𝟏𝟔. 

𝒌 = −𝟐 

 

14. Show that 𝒙𝟓𝟏 − 𝟐𝟏𝒙 + 𝟐𝟎 is divisible by 𝒙 − 𝟏. 

Let 𝑷(𝒙) = 𝒙𝟓𝟏 − 𝟐𝟏𝒙 + 𝟐𝟎. 

Then 𝑷(𝟏) = 𝟏𝟓𝟏 − 𝟐𝟏(𝟏) + 𝟐𝟎 = 𝟏 − 𝟐𝟏 + 𝟐𝟎 = 𝟎. 

Since 𝑷(𝟏) = 𝟎, the remainder of the quotient (𝒙𝟓𝟏 − 𝟐𝟏𝒙 + 𝟐𝟎) ÷ (𝒙 − 𝟏) is 𝟎. 

Therefore, 𝒙𝟓𝟏 − 𝟐𝟏𝒙 + 𝟐𝟎 is divisible by 𝒙 − 𝟏. 

 

15. Show that 𝒙 + 𝟏 is a factor of 𝟏𝟗𝒙𝟒𝟐 + 𝟏𝟖𝒙 − 𝟏. 

Let 𝑷(𝒙) = 𝟏𝟗𝒙𝟒𝟐 + 𝟏𝟖𝒙 − 𝟏. 

Then 𝑷(−𝟏) = 𝟏𝟗(−𝟏)𝟒𝟐 + 𝟏𝟖(−𝟏) − 𝟏 = 𝟏𝟗 − 𝟏𝟖 − 𝟏 = 𝟎. 

Since 𝑷(−𝟏) = 𝟎, 𝒙 + 𝟏 must be a factor of 𝑷. 

 

Note to Teacher:  The following problems have multiple correct solutions.  The answers provided here are polynomials 

with leading coefficient 1 and the lowest degree that meet the specified criteria.  As an example, the answer to Exercise 

16 is given as 𝑝(𝑥) = (𝑥 + 2)(𝑥 − 1), but the following are also correct responses:  𝑞(𝑥) = 14(𝑥 + 2)(𝑥 − 1),  

𝑟(𝑥) = (𝑥 + 2)4(𝑥 − 1)8, and 𝑠(𝑥) = (𝑥2 + 1)(𝑥 + 2)(𝑥 − 1). 

 

Write a polynomial function that meets the stated conditions.    

16. The zeros are −𝟐 and 𝟏.  

𝒑(𝒙) = (𝒙 + 𝟐)(𝒙 − 𝟏) or, equivalently,  𝒑(𝒙) = 𝒙𝟐 + 𝒙 − 𝟐 

 

17. The zeros are −𝟏, 𝟐, and 𝟕. 

𝒑(𝒙) = (𝒙 + 𝟏)(𝒙 − 𝟐)(𝒙 − 𝟕) or, equivalently, 𝒑(𝒙) = 𝒙𝟑 − 𝟖𝒙𝟐 + 𝟓𝒙 + 𝟏𝟒 

 

18. The zeros are –
𝟏
𝟐

 and 
𝟑

𝟒
. 

𝒑(𝒙) = (𝒙 +
𝟏
𝟐

) (𝒙 −
𝟑

𝟒
) or, equivalently, 𝒑(𝒙) = 𝒙𝟐 −

𝒙
𝟒

−
𝟑
𝟖

   

 

19. The zeros are  −
𝟐
𝟑

 and 𝟓, and the constant term of the polynomial is −𝟏𝟎. 

𝒑(𝒙) = (𝒙 − 𝟓)(𝟑𝒙 + 𝟐) or, equivalently, 𝒑(𝒙) = 𝟑𝒙𝟐 − 𝟏𝟑𝒙 − 𝟏𝟎 

 

20. The zeros are 𝟐 and –
𝟑
𝟐

, the polynomial has degree 𝟑, and there are no other zeros. 

𝒑(𝒙) = (𝒙 − 𝟐)𝟐(𝟐𝒙 + 𝟑) or, equivalently, 𝒑(𝒙) = (𝒙 − 𝟐)(𝟐𝒙 + 𝟑)𝟐 
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Lesson 20:  Modeling Riverbeds with Polynomials  

 
Student Outcomes  

 Students learn to fit polynomial functions to data values. 

 

Lesson Notes  

In previous modeling lessons, students relied on the graphing calculator to find polynomial functions that fit a set of 

data.  Lessons 20 and 21 comprise a two-lesson modeling exercise in which students model the shape of a riverbed in 

order to calculate flow rate of the river; this can be used to determine if the river is vulnerable to flooding.  In this first 

lesson, students use the remainder theorem as a way to fit a polynomial function to data points without relying on 

technology.  In the second lesson, students use technology, particularly Wolfram Alpha, to find the equation of the 

interpolating polynomial that best fits the data.  The online calculations through Wolfram Alpha can be done as a 

demonstration for the class or individually if students have access to computers.  They can also be replaced by 

polynomial regression on a graphing calculator.   

Students have some experience with modeling with polynomials from previous lessons in this module, but this is the first 

lesson sequence that takes them through the full modeling cycle as outlined in the modeling standard and as shown in 

the figure below.  Students must first formulate a plan and develop a method for using the remainder theorem to fit a 

polynomial function to data.  They must then use the model to compute the cross-sectional area of the riverbed and 

then volumetric flow of the water in the river.  Students interpret their results and discuss how the results would be 

useful to the EPA.  

 

 

 

 

 

Classwork  

Mathematical Modeling Exercise  (7 minutes):  Discussion  

Have students read through the Mathematical Modeling Exercise.  Have them discuss with a partner what questions 

need to be answered and brainstorm some ideas of how to answer them before having the discussion below.  Tell the 

students that at the end of the next lesson, they will be expected to write a short report about the volumetric flow of the 

river.  They will need to include their data and calculations in their report and should be preparing the report throughout 

the modeling exercise.  Some pertinent vocabulary for this lesson includes the following: 

Flow Rate (or volumetric flow rate):  The volume of fluid that passes through a given surface per unit time. 

Riverbed:  The channel in which a river flows. 

Cross-Section:  A two-dimensional view of a slice through an object. 

 

 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
  
  
 

 

    

 

 

NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 20 
ALGEBRA II 

Lesson 20: Modeling Riverbeds with Polynomials  
 
 

 

218 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

In order for students to formulate a plan for modeling the shape of the 

riverbed, they must change their perspective from working with a three-

dimensional idea of a river to the idea of working solely with a two-dimensional 

cross section.  A figure such as the one to the right helps students see how the 

cross-sectional slice of the river relates to the river as a whole.  The lower edge 

of the cross-section (shown in darker blue) is the curve that we need to find 

that goes through the given data points. 

 Read through the statement of the Mathematical Modeling Exercise.  

What is our goal? 

 We need to find the flow rate of water through the riverbed. 

 How can we estimate the flow rate of water? 

 We need the area of the cross-section and the current speed of the water.  Then the flow rate is the 

product of the cross-sectional area (in square feet) and the speed of the water (in feet per second). 

 To estimate the area of the cross-section, what information do we need? 

 We need enough data points to make a good estimate.   

 To gather enough data points, we will need to make an assumption that the riverbed changes smoothly 

between the data points we have.  With that assumption, we could estimate other data points by 

approximating the curve of the cross-section using a polynomial function. 

 What is our first task? 

 We need to find a polynomial function to fit the data. 

 Draw the graph of a polynomial function that passes through the 5 given data points. 

 

Mathematical Modeling Exercise 

The Environmental Protection Agency (EPA) is studying the flow of a river in order to establish flood zones.  The EPA hired 

a surveying company to determine the flow rate of the river, measured as volume of water per minute.  The firm set up a 

coordinate system and found the depths of the river at five locations as shown on the graph below.  After studying the 

data, the firm decided to model the riverbed with a polynomial function and divide the cross-sectional area into six 

regions that are either trapezoidal or triangular so that the overall area can be easily estimated.  The firm needs to 

approximate the depth of the river at two more data points in order to do this. 
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Draw the four trapezoids and two triangles that will be used to estimate the cross-sectional area of the riverbed. 

 

 

 

 

  

 

 

 

 

 

 We have five data points.  What information are we missing? 

 The depths at 𝑥 = 40 and 𝑥 = 80 

 How can we find the missing values? 

 Find a polynomial function 𝑃 that fits the given data and then use its equation to find 𝑃(40) and 

𝑃(80), which should approximate the depths at 𝑥 = 40 and 𝑥 = 80. 

 What is the lowest-degree polynomial that could be used to model this data?   

 Degree four, because we have three relative maximum and minimum points.   

 What constraints must our polynomial meet? 

 𝑃(0) = 0,  𝑃(20) = −20,  𝑃(60) = −15,  𝑃(100) = −25, and 𝑃(120) = 0  

 

Example 1  (12 minutes)  

Work this example out two ways.  First, let students find the equation by setting up a system of equations (as in  

Lesson 1).  Then, demonstrate how the remainder theorem can be used to find the polynomial.   

 Before trying to find a polynomial function whose graph goes through all five points, let’s try a simpler problem 

and find a polynomial whose graph goes through just three of the points:  (0,28), (2,0), and (8, 12).   

Display these three points on a coordinate grid to use as reference through this discussion.  

 Will the polynomial function that we find through these points be linear? 

 No, looking at the graph, we see that the points do not lie on a line. 

 What do you think is the lowest-degree polynomial we can find that passes through the three points (0,28), 

(2,0), and (8, 12)?  (Remind students to look at the locations of these points in the plane as they decide on the 

lowest possible degree.) 

 It appears that we could fit a quadratic polynomial to these points; that is, they seem to lie on a 

parabola. 

 Try to find a quadratic polynomial whose graph passes through these points.  (Give students a hint to find a 

system of equations by plugging in 𝑥 and 𝑃(𝑥) values into the equation 𝑃(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 as they did in 

Lesson 1.) 

MP.1 
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Allow students time to work, and then discuss the process as a class. 

 

Example 1 

Find a polynomial 𝑷 such that 𝑷(𝟎) = 𝟐𝟖, 𝑷(𝟐) = 𝟎, and 𝑷(𝟖) = 𝟏𝟐. 

Since 𝑷(𝟎) = 𝟐𝟖, 𝒄 = 𝟐𝟖 → 𝑷(𝒙) = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝟐𝟖 

Since 𝑷(𝟐) = 𝟎 → 𝟒𝒂 + 𝟐𝒃 + 𝟐𝟖 = 𝟎, so 𝟐𝒂 + 𝒃 = −𝟏𝟒 (1) 

Since 𝑷(𝟖) = 𝟏𝟐 → 𝟔𝟒𝒂 + 𝟖𝒃 + 𝟐𝟖 = 𝟏𝟐, so 𝟖𝒂 + 𝒃 = −𝟐 (2) 

Subtract (1) from (2). → 𝟔𝒂 = 𝟏𝟐, so 𝒂 = 𝟐 

Substitute to find 𝒃. → 𝟐(𝟐) + 𝒃 = −𝟏𝟒, so 𝒃 = −𝟏𝟖 

 𝑷(𝒙) = 𝟐𝒙𝟐 − 𝟏𝟖𝒙 + 𝟐𝟖 

 

Have students check their equation by finding 𝑃(0), 𝑃(2), and 𝑃(8) and showing that 𝑃(0) = 28, 𝑃(2) = 0, and 

𝑃(8) = 12.  Now work the problem again using the remainder theorem. 

 We can also use the remainder theorem to find the quadratic polynomial 𝑃 that satisfies 𝑃(0) = 28,  

𝑃(2) = 0, and 𝑃(8) = 12.  We have already seen a technique that finds this quadratic polynomial, but the 

method using the remainder theorem generalizes to higher degree polynomials.   

 

 Use the first data point:   

Since 𝑃(0) = 28, the remainder theorem tells us that for some polynomial 𝑎, 

𝑃(𝑥) = (𝑥 − 0)𝑎(𝑥) + 28 

= 𝑥 𝑎(𝑥) + 28. 

 What do we know about the degree of the polynomial 𝑎?  How do we know? 

 Since 𝑃 will be a quadratic polynomial, 𝑎 must be a linear polynomial. 

 

 Use the second data point:  

Since 𝑃(2) =  0, we have  

𝑃(2) = 2 𝑎(2) + 28 = 0 

2 𝑎(2) = −28 

𝑎(2) = −14. 

Thus, the remainder theorem tells us that for some polynomial 𝑏, 

𝑎(𝑥) = (𝑥 − 2)𝑏(𝑥) −  14. 

 What do we know about the degree of the polynomial 𝑏?  How do we know? 

 Since 𝑎 is a linear polynomial, 𝑏 must be a constant polynomial.   

 Rewrite 𝑃 in terms of 𝑏: 

𝑃(𝑥) = 𝑥 𝑎(𝑥) + 28 

= 𝑥[(𝑥 − 2)𝑏(𝑥) − 14] + 28. 
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 Use the third data point: 

Since 𝑃(8) = 12, we have  

𝑃(8) = 8[(8 − 2)𝑏(𝑥) − 14] + 28 = 12 

48𝑏(𝑥) − 104 + 28 = 12 

48𝑏(𝑥) = 96 

𝑏(𝑥) = 2. 

 Remember that we said the function 𝑏(𝑥) would be constant, and we found that 𝑏(𝑥) = 2 for all values of 𝑥.   

 Now we can rewrite the function 𝑃: 

𝑃(𝑥) = 𝑥[(𝑥 − 2)𝑏(𝑥) − 14] + 28 

= 𝑥[(𝑥 − 2)2 − 14] + 28. 

 Do the three points satisfy this equation? 

 𝑃(0) = 0[(0 − 2) ∙ 2 − 14] + 28 = 28  

 𝑃(2) = 2[(2 − 2) ∙ 2 − 14] + 28 = 0  

 𝑃(8) = 8[(8 − 2) ∙ 2 − 14] + 28 = 12  

 For a final check, write the polynomial we just found in standard form. 

𝑃(𝑥) =  𝑥[(𝑥 − 2)2 − 14] + 28 

= 2𝑥2 − 18𝑥 − 28. 

 What if we wanted to fit a polynomial function to two data points?  What is the lowest degree of a polynomial 

that fits two data points? 

 We know from geometry that two points determine a unique line, so a polynomial of degree one fits 

two data points.  

 In the next example, we fit a polynomial to four data points.  What is the lowest degree of a polynomial that 

fits four data points? 

 Since two data points can be fit by a degree 1 polynomial, and three data points can be fit by a degree 

2 polynomial, it makes sense that four data points can be fit by a degree 3 polynomial.  

  

Example 2  (15 minutes)  

The table below helps students organize their work as they proceed to find the cubic polynomial that fits four data 

points.  Work through the first line of the table with students, and then have students work in groups to complete the 

table to determine the equation of the polynomial 𝑃.  Point out to students that this would be a difficult task if we used 

systems of equations as we did first in Example 1.  Have students present their work on the board. 
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Example 2 

Find a degree 𝟑 polynomial 𝑷 such that 𝑷(−𝟏) = −𝟑, 𝑷(𝟎) = −𝟐, 𝑷(𝟏) = −𝟏, and 𝑷(𝟐) = 𝟔. 

Function 

Value 

Substitute the data point into the 

current form of the equation for 𝑷. 

Apply the remainder 

theorem to 𝒂, 𝒃, or 𝒄. 

Rewrite the equation for 𝑷 in terms of 𝒂, 

𝒃, or 𝒄. 

𝑷(−𝟏) = −𝟑   𝑷(𝒙) = (𝒙 + 𝟏)𝒂(𝒙) − 𝟑 

𝑷(𝟎) = −𝟐 (𝟎 + 𝟏)𝒂(𝟎) − 𝟑 = −𝟐 𝒂(𝒙) = 𝒙𝒃(𝒙) + 𝟏 𝑷(𝒙) = (𝒙 + 𝟏)(𝒙𝒃(𝒙) + 𝟏) − 𝟑 

𝑷(𝟏) = −𝟏 (𝟏 + 𝟏)(𝒃(𝟏) + 𝟏) − 𝟑 = −𝟏 𝒃(𝒙) = (𝒙 − 𝟏)𝒄(𝒙) 𝑷(𝒙) = (𝒙 + 𝟏)(𝒙(𝒙 − 𝟏)𝒄(𝒙) + 𝟏) − 𝟑 

𝑷(𝟐) = 𝟔 (𝟐 + 𝟏)(𝟐(𝟐 − 𝟏)𝒄(𝟐) + 𝟏) − 𝟑 = 𝟔 𝒄(𝒙) = 𝟏 𝑷(𝒙) = (𝒙 + 𝟏)(𝒙(𝒙 − 𝟏) ∙ 𝟏 + 𝟏) − 𝟑 

 

 Write the polynomial 𝑃 in standard form. 

 𝑃(𝑥) = (𝑥 + 1)(𝑥2 − 𝑥 + 1) − 3 

 𝑃(𝑥) = 𝑥3 − 𝑥2 + 𝑥 + 𝑥2 − 𝑥 + 1 − 3 

 𝑃(𝑥) = 𝑥3 − 2 

 Verify that 𝑃 satisfies the four given constraints. 

 𝑃(−1) = (−1)3 − 2 = −3 

 𝑃(0) = 03 − 2 = −2 

 𝑃(1) = 13 − 2 = −1 

 𝑃(2) = 23 − 2 = 6 
 

Closing  (5 minutes) 

 What methods have we used to find polynomial functions that fit given data? 

 We plugged in data values to obtain a system of equations and used the remainder theorem.  In 

previous lessons, we used the graphing calculator. 

 If we want a polynomial to perfectly fit data points, how does the degree of the polynomial relate to the 

number of data points?  

 The degree of the polynomial whose graph passes through a set of data points is one less than the 

number of data points.   

Ask students to summarize the important parts of the lesson in writing, to a partner, or as a class.  Use this as an 

opportunity to informally assess understanding of the lesson.  The following are some important summary elements.  

 

Exit Ticket  (6 minutes)  

MP.7 

Lesson Summary 

A linear polynomial is determined by 𝟐 points on its graph. 

A degree 𝟐 polynomial is determined by 𝟑 points on its graph. 

A degree 𝟑 polynomial is determined by 𝟒 points on its graph. 

A degree 𝟒 polynomial is determined by 𝟓 points on its graph. 

The remainder theorem can be used to find a polynomial 𝑷 whose graph will pass through a given set of points.  
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Name                                   Date                          

Lesson 20:  Modeling Riverbeds with Polynomials 

 
Exit Ticket 
 

Use the remainder theorem to find a quadratic polynomial 𝑃 so that 𝑃(1) = 5, 𝑃(2) = 12, and 𝑃(3) = 25.  Give your 

answer in standard form.  
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Exit Ticket Sample Solutions 

 

Use the remainder theorem to find a quadratic polynomial 𝑷 so that 𝑷(𝟏) = 𝟓, 𝑷(𝟐) = 𝟏𝟐, and 𝑷(𝟑) = 𝟐𝟓.  GIve your 

answer in standard form.  

Since 𝑷(𝟏) = 𝟓, there is a linear polynomial 𝒂 so that 𝑷(𝒙) = (𝒙 − 𝟏)𝒂(𝒙) + 𝟓.   

Since 𝑷(𝟐) = 𝟏𝟐, we have 𝑷(𝟐) = (𝟐 − 𝟏)𝒂(𝟐) + 𝟓 = 𝟏𝟐, so 𝒂(𝟐) = 𝟕. 

Because 𝒂(𝟐) = 𝟕, there exists a constant 𝒃 so that 𝒂(𝒙) = (𝒙 − 𝟐)𝒃 + 𝟕.   

Substituting into 𝑷(𝒙) gives 𝑷(𝒙) = (𝒙 − 𝟏)[(𝒙 − 𝟐)𝒃 + 𝟕].   

Since 𝑷(𝟑) = 𝟐𝟓, we have 𝑷(𝟑) = (𝟑 − 𝟏)[(𝟑 − 𝟐)𝒃 + 𝟕] = 𝟐𝟓.  Solving for 𝒃 gives 𝒃 = 𝟑. 

It follows that 𝑷(𝒙) = (𝒙 − 𝟏)[(𝒙 − 𝟐)𝟑 + 𝟕], and in standard form we have 𝑷(𝒙) = 𝟑𝒙𝟐 − 𝟐𝒙 + 𝟒. 

 
 
Problem Set Sample Solutions   

 

1. Suppose a polynomial function 𝑷 is such that 𝑷(𝟐) = 𝟓 and 𝑷(𝟑) = 𝟏𝟐. 

a. What is the largest-degree polynomial that can be uniquely determined given the information? 

Degree one 

 

b. Is this the only polynomial that satisfies 𝑷(𝟐) = 𝟓 and 𝑷(𝟑) = 𝟏𝟐? 

No, there are an infinite number of polynomials that pass through those two points.  However, two points will 

determine a unique equation for a linear function. 

 

c. Use the remainder theorem to find the polynomial 𝑷 of least degree that satisfies the two points given. 

𝑷(𝒙) = 𝟕𝒙 − 𝟗 

 

d. Verify that your equation is correct by demonstrating that it satisfies the given points. 

𝑷(𝟐) = 𝟕(𝟐) − 𝟗 = 𝟓 

𝑷(𝟑) = 𝟕(𝟑) − 𝟗 = 𝟏𝟐 

 

2. Write a quadratic function 𝑷 such that 𝑷(𝟎) = −𝟏𝟎, 𝑷(𝟓) = 𝟎, and 𝑷(𝟕) = 𝟏𝟖 using the specified method.   

a. Setting up a system of equations 

𝑷(𝒙) = 𝒙𝟐 − 𝟑𝒙 − 𝟏𝟎 

b. Using the remainder theorem 

𝑷(𝒙) = 𝒙𝟐 − 𝟑𝒙 − 𝟏𝟎 
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3. Find a degree-three polynomial function 𝑷 such that 𝑷(−𝟏) = 𝟎, 𝑷(𝟎) = 𝟐, 𝑷(𝟐) = 𝟏𝟐, and 𝑷(𝟑) = 𝟑𝟐.  Use the 

table below to organize your work.  Write your answer in standard form, and verify by showing that each point 

satisfies the equation.   

Function 

Value 

Substitute the data point 

into the current form of 

the equation for 𝑷. 

Apply the remainder 

theorem to 𝒂, 𝒃, or 𝒄. 

Rewrite the equation for 𝑷 in terms of 𝒂, 

𝒃, or 𝒄. 

𝑷(−𝟏) = 𝟎 
 

 
 𝑷(𝒙) = (𝒙 + 𝟏)𝒂(𝒙) 

𝑷(𝟎) = 𝟐 𝒂(𝟎) = 𝟐 𝒂(𝒙) = 𝒙𝒃(𝒙) + 𝟐 𝑷(𝒙) = (𝒙 + 𝟏)(𝒙𝒃(𝒙) + 𝟐) 

𝑷(𝟐) = 𝟏𝟐 
𝟑(𝟐𝒃(𝟐)) + 𝟐) = 𝟏𝟐 

𝒃(𝟐) = 𝟏 
𝒃(𝒙) = (𝒙 − 𝟐)𝒄(𝒙) + 𝟏 𝑷(𝒙) = (𝒙 + 𝟏)[𝒙[(𝒙 − 𝟐)𝒄(𝒙) + 𝟏] + 𝟐]  

𝑷(𝟑) = 𝟑𝟐 

𝟒[𝟑(𝒄(𝟑) + 𝟏)] + 𝟐 = 𝟑𝟐 

𝒄(𝟑) = 𝟏 
𝒄(𝟑) = 𝟏 𝑷(𝒙) = (𝒙 + 𝟏)[𝒙[(𝒙 − 𝟐) + 𝟏] + 𝟐]  

𝑷(𝒙) = 𝒙𝟑 + 𝒙 + 𝟐 

𝑷(−𝟏) = −𝟏 − 𝟏 + 𝟐 = 𝟎  

𝑷(𝟎) = 𝟎 + 𝟎 + 𝟐 = 𝟐   

𝑷(𝟐) = 𝟖 + 𝟐 + 𝟐 = 𝟏𝟐   

𝑷(𝟑) = 𝟐𝟕 + 𝟑 + 𝟐 = 𝟑𝟐  

 

4. The method used in Problem 𝟑 is based on the Lagrange interpolation method.  Research Joseph-Louis Lagrange, 

and write a paragraph about his mathematical work. 

Answers will vary.  
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Lesson 21:  Modeling Riverbeds with Polynomials 

 
Student Outcomes  

 Students model a cross-section of a riverbed with a polynomial function and estimate fluid flow with their 

algebraic model.   

 

Lesson Notes  

This is the second half of a two-day modeling lesson.  In previous modeling lessons, students relied on the graphing 

calculator to find polynomial functions that fit a set of data, and in the previous lesson the polynomial was found 

algebraically.  In this lesson, we use the website Wolfram Alpha (www.wolframalpha.com) to find the polynomial to fit 

the data.  If students do not have access to computers or the Internet during class, the polynomial can be found using 

quartic regression on a graphing calculator.   

The previous lesson introduced the problem of modeling the shape of a riverbed and computing the volumetric flow.   

In this lesson, students can actually do the modeling, with the help of technology, and then interpret the results and 

create a report detailing their findings, thus completing the modeling cycle.   

 

 

 

 

 

 

Classwork  

Opening  (3 minutes) 

Review the Mathematical Modeling Exercise with students.  In this lesson, students:  

1. Find a function that models the shape of the riverbed based on the five data points given in the graph below. 

2. Approximate the area of the cross-sectional region using triangles and trapezoids. 

3. Calculate the volumetric flow rate of the water in gallons per minute. 

4. Create a report of the findings.   

 

 

 

 

 

 

1 
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Mathematical Modeling Exercise 

The Environmental Protection Agency (EPA) is studying the flow of a river in order to establish flood zones.  The EPA hired 

a surveying company to determine the flow rate of the river, measured as volume of water per minute.  The firm set up a 

coordinate system and found the depths of the river at five locations as shown on the graph below.  After studying the 

data, the firm decided to model the riverbed with a polynomial function and divide the area into six regions that are 

either trapezoidal or triangular so that the overall area can be easily estimated.  The firm needs to approximate the depth 

of the river at two more data points in order to do this. 

 

Mathematical Modeling Exercises 1–5  (32 minutes) 

Now return to the Mathematical Modeling Exercise. 

 How many data points are we given?  What is the lowest degree of a polynomial 

that passes through these points? 

 We were given five data points, so we can model the data using a  

fourth-degree polynomial function.   

 We are going to use Wolfram Alpha to find the fourth-degree polynomial that 

fits the data.  It follows a procedure based on the remainder theorem that we 

used in the previous two examples to find the equation.   

Go to www.wolframalpha.com.  Type in the following command: 

Interpolating polynomial [{(0,0), (20, −20), (60, −15), (100, −25), (120,0)}, 𝑥]. 

Students can find 𝑃(40) and 𝑃(80) either by substituting into the function displayed or by editing the command on 

Wolfram Alpha as follows: 

Interpolating polynomial [{(0,0), (20, −20), (60, −15), (100, −25), (120,0)}, 40] 

Interpolating polynomial [{(0,0), (20, −20), (60, −15), (100, −25), (120,0)}, 80]. 

Allow students time to work through the remainder of the exercise either individually or in groups.  The conversion from 

cubic feet per minute to gallons per minute can also be done using Wolfram Alpha. 

 

  

Scaffolding: 

If students are overwhelmed 

with the new technology along 

with new content, most 

graphing calculators perform 

polynomial regression up to 

degree 4, so consider having 

students use that more familiar 

technological tool. 

 

MP.5 
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1. Find a polynomial 𝑷 that fits the five given data points. 

𝑷(𝒙) =
𝟏𝟕

𝟑𝟖𝟒𝟎𝟎𝟎𝟎
𝒙𝟒 −

𝟑𝟑

𝟑𝟐𝟎𝟎𝟎
𝒙𝟑 +

𝟕𝟓𝟏

𝟗𝟔𝟎𝟎
𝒙𝟐 −

𝟑𝟓

𝟏𝟔
𝒙 

 

2. Use the polynomial to estimate the depth of the river at 𝒙 = 𝟒𝟎 and 𝒙 = 𝟖𝟎. 

𝑷(𝟒𝟎) = −𝟏𝟕 and 𝑷(𝟖𝟎) = −𝟐𝟏 

 

3. Estimate the area of the cross section. 

 

𝑨 = 𝑨𝟏 + 𝑨𝟐 + 𝑨𝟑 + 𝑨𝟒 + 𝑨𝟓 + 𝑨𝟔 

= 𝟐𝟎𝟎 𝐟𝐭𝟐 + 𝟑𝟕𝟎 𝐟𝐭𝟐 + 𝟑𝟐𝟎 𝐟𝐭𝟐 + 𝟑𝟔𝟎 𝐟𝐭𝟐 + 𝟒𝟔𝟎 𝐟𝐭𝟐 + 𝟐𝟓𝟎 𝐟𝐭𝟐 

= 𝟏, 𝟗𝟔𝟎 𝐟𝐭𝟐 

 

 

 

 

 

Suppose that the river flow speed was measured to be an average speed of 𝟏𝟕𝟔
𝐟𝐭.

𝐦𝐢𝐧
 at the cross section. 

4. What is the volumetric flow of the water (the volume of water per minute)?   

(𝟏, 𝟗𝟔𝟎 𝐟𝐭𝟐) (𝟏𝟕𝟔
𝐟𝐭.

𝐦𝐢𝐧
) = 𝟑𝟒𝟒, 𝟗𝟔𝟎

𝐟𝐭𝟑

𝐦𝐢𝐧
 

 

5. Convert the flow to gallons per minute.  [Note:  𝟏 cubic foot ≈ 𝟕. 𝟒𝟖𝟎𝟓𝟐 gallons.] 

𝟐, 𝟓𝟖𝟎, 𝟒𝟖𝟎 
𝐠𝐚𝐥𝐥𝐨𝐧𝐬

𝐦𝐢𝐧
 

 

 How could the surveyors measure the speed of the water? 

 They could time an object (like a ball) floating over a set distance. 

 What factors would need to be considered when measuring the flow? 

 Water may flow faster below the surface.  The flow rate may vary from the edge of the river to the 

middle of the river and around obstacles such as rocks. 

 Remember that the EPA is interested in identifying flood-prone areas.  How might the information you have 

gathered help the EPA? 

 If the normal volumetric flow of the river has been recorded by the EPA, then they can record the 

normal water levels in the river and use that knowledge to predict what level of volumetric flow would 

result in flooding.  In cases of heavy rain, the EPA could identify if an area is likely to flood due to the 

increased volumetric flow.  
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Closing  (5 minutes) 

Ask students to summarize the important parts of the lesson in writing, to a partner, or as a class.  Use this as an 

opportunity to informally assess understanding of the lesson.  

 

Exit Ticket  (5 minutes)  

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
  
  
 

 

    

 

 

NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 21 
ALGEBRA II 

Lesson 21: Modeling Riverbeds with Polynomials  
 
 

 

230 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Name                                   Date                          

Lesson 21:  Modeling Riverbeds with Polynomials 

 
Exit Ticket 
 

Explain the process you used to estimate the volumetric flow of the river, from accumulating the data to calculating the 

flow of water.   
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Exit Ticket Sample Solutions 

 

Explain the process you used to estimate the volumetric flow of the river, from accumulating the data to calculating the 

flow of water.   

We were given data points that represented the depth of the river at various points in the cross-section.  We used 

Wolfram Alpha to find a polynomial 𝑷 that passed through those given points.  We used the polynomial 𝑷 to find more 

data points.  Then we approximated the area of the cross-section using triangles and trapezoids; figures whose area we 

know how to calculate.  Once we had an approximate area of the cross-section, we multiplied that area by the speed of 

the water across the cross-section to find the amount of volumetric flow in units of cubic feet per minute.  The last step 

was to convert cubic feet to gallons to get the amount of volumetric flow in units of gallons per minute. 

 
 
Problem Set Sample Solutions 

Problem 2 requires the use of a computer.  This could be completed in class if students do not have access to computers.   

 

1. As the leader of the surveying team, write a short report to the EPA on your findings from the in-class exercises.   

Be sure to include data and calculations.  

After collecting data at the site, we decided that the cross-sectional area could be approximated using trapezoids.   

In order to increase the accuracy of our area approximation, more data points were needed.  We chose to use the 

data collected to model the riverbed using a degree 𝟒 polynomial function.  We used the computational knowledge 

engine Wolfram Alpha to find the polynomial that fit the data, which is 𝑷(𝒙) =
𝟏𝟕

𝟑 𝟖𝟒𝟎 𝟎𝟎𝟎
𝒙𝟒 −

𝟑𝟑

𝟑𝟐 𝟎𝟎𝟎
𝒙𝟑 +

𝟕𝟓𝟏

𝟗𝟔𝟎𝟎
𝒙𝟐 −

𝟑𝟓

𝟏𝟔
𝒙.  Using the polynomial 𝑷, we were able to estimate enough data points to calculate the cross-

sectional area and determined that it was 𝟏, 𝟗𝟔𝟎 𝐟𝐭𝟐.  Using this information and the average speed of the water at 

the cross-section, which was  
𝐟𝐭.

𝐦𝐢𝐧
 , we were able to compute the volumetric flow of the river at that cross-section.  

We determined that the volumetric flow is approximately 𝟑𝟒𝟒, 𝟗𝟔𝟎 
𝐟𝐭𝟑

𝐦𝐢𝐧
, which is 𝟐, 𝟓𝟖𝟎, 𝟒𝟖𝟎 

𝐠𝐚𝐥𝐥𝐨𝐧𝐬
𝐦𝐢𝐧

. 

 

2. Suppose that depths of the riverbed were measured for a different cross-section of the river.   

a. Use Wolfram Alpha to find the interpolating polynomial 𝑸 with values:  

𝑸(𝟎) = 𝟎, 𝑸(𝟏𝟔. 𝟓) = −𝟐𝟕. 𝟒, 𝑸(𝟒𝟒. 𝟒) = −𝟏𝟗. 𝟔, 𝑸(𝟕𝟕. 𝟔) = −𝟐𝟓. 𝟏, 

𝑸(𝟏𝟐𝟑. 𝟑) = −𝟏𝟓. 𝟎, 𝑸(𝟏𝟑𝟏. 𝟏) = −𝟏𝟓. 𝟏, 𝑸(𝟏𝟓𝟎) = 𝟎.  

𝑸(𝒙) =
𝟕

𝟖 𝟕𝟖𝟗 𝟎𝟔𝟐 𝟓𝟎𝟎
𝒙𝟔 −

𝟏𝟏

𝟐𝟗 𝟐𝟗𝟔 𝟖𝟕𝟓
𝒙𝟓 +

𝟏𝟗𝟏

𝟐 𝟖𝟏𝟐 𝟓𝟎𝟎
𝒙𝟒 −

𝟏𝟏

𝟏𝟖𝟕𝟓
𝒙𝟑 +

𝟐𝟕𝟓𝟗

𝟏𝟏 𝟐𝟓𝟎
𝒙𝟐 −

𝟑𝟐𝟗

𝟕𝟓
𝒙 
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b. Sketch the cross-section of the river, and estimate its area.  

   

 

Area estimates: 

𝑨𝟏 =
𝟏

𝟐
(𝟐𝟕. 𝟒)(𝟏𝟔. 𝟓) = 𝟐𝟐𝟔. 𝟎𝟓 

𝑨𝟐 =
𝟏

𝟐
(𝟐𝟕. 𝟒 + 𝟏𝟗. 𝟔)(𝟒𝟒. 𝟒 − 𝟏𝟔. 𝟓) = 𝟔𝟓𝟓. 𝟔𝟓 

𝑨𝟑 =
𝟏

𝟐
(𝟐𝟓. 𝟏 + 𝟏𝟗. 𝟔)(𝟕𝟕. 𝟔 − 𝟒𝟒. 𝟒) = 𝟕𝟒𝟐. 𝟎𝟐 

𝑨𝟒 =
𝟏

𝟐
(𝟏𝟓. 𝟎 + 𝟐𝟓. 𝟏)(𝟏𝟐𝟑. 𝟑 − 𝟕𝟕. 𝟔) = 𝟗𝟏𝟔. 𝟐𝟖𝟓 

𝑨𝟓 =
𝟏

𝟐
(𝟏𝟓. 𝟏 + 𝟏𝟓. 𝟎)(𝟏𝟑𝟏. 𝟎 − 𝟏𝟐𝟑. 𝟑) = 𝟏𝟏𝟓. 𝟖𝟖𝟓 

𝑨𝟔 =
𝟏

𝟐
(𝟏𝟓. 𝟏)(𝟏𝟓𝟎. 𝟎 − 𝟏𝟑𝟏. 𝟎) = 𝟏𝟒𝟑. 𝟒𝟓 

So, the total area can be estimated by  

𝑨 = 𝑨𝟏 + 𝑨𝟐 + 𝑨𝟑 + 𝑨𝟒 + 𝑨𝟓 + 𝑨𝟔 

= 𝟐𝟕𝟗𝟗. 𝟑𝟒. 

 

c. Suppose that the speed of the water was measured at 𝟏𝟐𝟒
𝐟𝐭.

𝐦𝐢𝐧
.  What is the approximate volumetric flow in 

this section of the river, measured in gallons per minute? 

The volumetric flow is approximately 𝟐𝟕𝟗𝟗. 𝟑𝟒 𝐟𝐭𝟐 (𝟏𝟐𝟒
𝐟𝐭.

𝐦𝐢𝐧
) ≈ 𝟑𝟒𝟕, 𝟏𝟏𝟖

𝐟𝐭𝟑

𝐦𝐢𝐧
.  Converting to gallons per 

minute, this is  

(𝟑𝟒𝟕 𝟏𝟏𝟖 
𝐟𝐭𝟑

𝐦𝐢𝐧
) (𝟕. 𝟒𝟖𝟎𝟓𝟐

𝐠𝐚𝐥𝐥𝐨𝐧𝐬

𝐟𝐭𝟑
) ≈ 𝟐 𝟓𝟗𝟔 𝟔𝟐𝟑 𝐠𝐚𝐥𝐥𝐨𝐧𝐬/𝐦𝐢𝐧. 
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Lesson 22:  Equivalent Rational Expressions 

 
Student Outcomes 

 Students define rational expressions and write them in equivalent forms.   

 

Lesson Notes 

In this module, students have been working with polynomial expressions and polynomial functions.  In elementary 

school, students mastered arithmetic operations with integers before advancing to performing arithmetic operations 

with rational numbers.  Just as a rational number is built from integers, a rational expression is built from polynomial 

expressions.  A precise definition of a rational expression is included at the end of the lesson.   

Informally, a rational expression is any expression that is made by a finite sequence of addition, subtraction, 

multiplication, and division operations on polynomials.  After algebraic manipulation, a rational expression can always be 

written as 
𝑃

𝑄
, where 𝑃 is any polynomial, and 𝑄 is any polynomial except the zero polynomial.  Remember that constants, 

such as 2, and variables, such as 𝑥, count as polynomials, so the rational numbers are also considered to be rational 

expressions.  Standard A-APR.C.6 focuses on rewriting rational expressions in equivalent forms, and the next three 

lessons apply that standard to write complicated rational expressions in the simplified form 
𝑃

𝑄
.  However, the prompt 

simplify the rational expression does not only mean putting expressions in the form 
𝑃

𝑄
 but also any form that is conducive 

to solving the problem at hand.  The skills developed in Lessons 22–25 are necessary prerequisites for addressing 

standard A-REI.A.2, solving rational equations, which is the focus of Lessons 26 and 27.  

 

Classwork 

Opening Exercise  (8 minutes) 

The Opening Exercise serves two purposes:  (1) to reactivate prior knowledge of equivalent fractions, and (2) as a review 

for students who struggle with fractions.  The goal is for students to see that the process they use to reduce a fraction to 

lowest terms is the same process they will use to reduce a rational expression to lowest terms.  To begin, pass out 2–3 

notecard-sized slips of paper to each student or pair of students. 

 We are going to start with a review of how to visualize equivalent fractions.   

 

Opening Exercise 

On your own or with a partner, write two fractions that are equivalent to 
𝟏

𝟑
, and use the slips of paper to create visual 

models to justify your response.   

 

  

0 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
 
 
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 22 

ALGEBRA II 

Lesson 22: Equivalent Rational Expressions 
 
 

 

246 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Use the following to either walk through the exercise for scaffolding or as an example of likely student responses.  

 We can use the following area model to represent the fraction 
1

3
.  Because the three boxes have the same 

area, shading one of the three boxes shows that 
1

3
 of the area in the figure is shaded. 

 

       

 

 Now, if we draw a horizontal line dividing the columns in half, we have six 

congruent rectangles, two of which are shaded so that 
2

6
 of the area in the figure 

is shaded. 

 

      

 

 In the figure below, we have now divided the original rectangle into nine 

congruent sub-rectangles, three of which are shaded so that 
3

9
 of the area in the 

figure is shaded. 

 

     

 

 Let’s suppose that the area of the original rectangle is 1.  In walking the class through the example, point out 

that the shaded area in the first figure is 
1

3
, the shaded area in the second figure is 

2

6
, and the shaded area in 

the third figure is 
3

9
.  Since the area of the shaded regions are the same in all three figures, we see that 

1

3
=

2

6
=

3

9
.  Thus, 

1

3
, 
2

6
, and 

3

9
 are equivalent fractions.   

If students come up with different equivalent fractions, then incorporate those into the discussion of equivalent areas, 

noting that the shaded regions are the same for every student.  

 Now, what if we were to choose any positive integer 𝑛 and draw lines across our figure so that the columns are 

divided into 𝑛 pieces of the same size?  What is the area of the shaded region?   

Scaffolding: 

Students who are already 

comfortable with fractions can 

instead reduce the following 

rational expressions to lowest 

terms.   

5

15
, 
27

36
, 
√75

5
, 
𝜋4

𝜋2
 

In any case, do not spend too 

much time on these exercises; 

instead, use them as a bridge 

to reducing rational 

expressions that contain 

variables.  

 

   

MP.8 
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If 𝑎, 𝑏, and 𝑛 are integers with 𝑛 ≠ 0 and 𝑏 ≠ 0, then 
𝑛𝑎

𝑛𝑏
=
𝑎

𝑏
. 

Give students time to think and write, and ask them to share their answers with a partner.  Anticipate that students will 

express the generalization in words or suggest either 
1

3
 or 

𝑛

3𝑛
.  Both are correct and, ideally, both will be suggested.   

 Thus, we have the rule: 

 

The result summarized in the box above is also true for real numbers 𝑎, 𝑏, and 𝑛, as well as for polynomial and 

rational expressions.   

 Then 
2

6
=

2(1)

2(3)
=

1

3
 and 

3

9
=

3(1)

3(3)
=

1

3
. 

 We say that a rational number is simplified, or reduced to lowest terms, when the numerator and denominator 

do not have a factor in common.  Thus, while 
1

3
, 
2

6
, and 

3

9
 are equivalent, only 

1

3
 is in lowest terms.  

 

Discussion  (10 minutes) 

 Which of the following are rational numbers, and which are not? 

3

4
, 3.14, 𝜋,

5

0
, −√17, 23,

1 + √5

2
,−1, 6.022 × 1023, 0 

 Rational: 
3

4
, 3.14, 23, −1, 6.022 × 1023, 0 

 Not rational:   𝜋,
5
0
, −√17,

1+√5
2

 

 Of the numbers that were not rational, were they all irrational numbers? 

 No.  Since division by zero is undefined, 
5

0
 is neither rational nor 

irrational. 

 Today we learn about rational expressions, which are related to the polynomials 

we've been studying.  Just as the integers are the foundational building blocks of 

rational numbers, polynomial expressions are the foundational building blocks 

for rational expressions.  Based on what we know about rational numbers, give 

an example of what you think a rational expression is.   

Ask students to write down an example and share it with their partner or small group.  Allow groups to debate and 

present one of the group’s examples to the class.    

  

Scaffolding: 

Students may also express the 

generalization in words. 

Scaffolding: 

Relate the new ideas of 

rational expressions back to 

the more familiar ideas of 

rational numbers throughout 

this lesson.   
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 Recall that a rational number is a number that we can write as 
𝑝

𝑞
, where 𝑝 and 𝑞 are integers, and 𝑞 is nonzero.  

We can consider a new type of expression, called a rational expression, which is made from polynomials by 

adding, subtracting, multiplying, and dividing them.  Any rational expression can be expressed as 
𝑃

𝑄
, where 𝑃 

and 𝑄 are polynomial expressions, and 𝑄 is not zero, even though it may not be presented in this form 

originally. 

Remind students that numbers are also polynomial expressions, which means that rational numbers are included in the 

set of rational expressions. 

 The following are examples of rational expressions.  Notice that we need to exclude values of the variables that 

make the denominators zero so that we do not divide by zero. 

 
31

47
  

 The denominator is never zero, so we do not need to exclude any values. 

 
𝑎𝑏2

3𝑎−2𝑏
 

 We need 3𝑎 ≠ 2𝑏. 

 
5𝑥+1

3𝑥2+4
 

 The denominator is never zero, so we do not need to exclude any values. 

 
3

𝑏2−7
 

 We need 𝑏 ≠ √7 and 𝑏 ≠ −√7. 

Have students create a Frayer model in their notebooks, such as the one provided.  Circulate around the classroom to 

informally assess student understanding.  Since a formal definition of rational expressions has not yet been given, there 

is some leeway on the description and characteristics sections, but make sure that nothing they have written is incorrect.  

Ask students to share their characteristics, examples, and non-examples to populate a class model on the board.  

      

  

Description 

An expression that can be written 

as 
𝑃

𝑄
, where 𝑃 and 𝑄 are 

polynomials, and 𝑄 is not zero. 

Characteristics 

Follows similar rules as rational 

numbers do. 

 
𝑥+1

0
    (cannot divide by 0) 

2𝑥

3𝑥
    (2𝑥is not a polynomial) 

Non-examples 

3

5
, 
𝑥2−4𝑥

𝑥+1
 with 𝑥 ≠ −1 

𝑥2𝑦

2
, 

𝑎2+𝑏2

(𝑎+2)(𝑎−1)
, with 𝑎 ≠ −2, 1 

Examples 

Rational Expression 
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It is important to note that the excluded values of the variables remain even after 

simplification.  This is because the two expressions would not be equal if the variables 

were allowed to take on these values.  Discuss with a partner when the following are not 

equivalent and why: 

 
2𝑥

3𝑥
 and 

2

3
 

 These are equivalent everywhere except at 𝑥 = 0.  At 𝑥 = 0, 
2𝑥

3𝑥
 is 

undefined, whereas 
2

3
 is equal to 

2

3
. 

 
3𝑥(𝑥−5)

4(𝑥−5)
 and 

3𝑥

4
 

 At 𝑥 = 5, 
3𝑥(𝑥−5)

4(𝑥−5)
 is undefined, whereas 

3𝑥

4
=

3(5)

4
=

15

4
. 

 
𝑥−3

𝑥2−𝑥−6
 and 

1

𝑥+2
 

 At 𝑥 = 3, 
𝑥−3

𝑥2−𝑥−6
 is undefined, whereas 

1

𝑥+2
=

1

3+2
=

1

5
. 

 Summarize with your partner or in writing any conclusions you can draw about equivalent rational expressions.  

Circulate around the classroom to assess understanding.  

 

Example  (6 minutes)  

 

Example 

Consider the following rational expression:  
𝟐(𝒂−𝟏)−𝟐

𝟔(𝒂−𝟏)−𝟑𝒂
.  Turn to your neighbor, and discuss the following:  For what 

values of 𝒂 is the expression undefined?   

 

Sample students’ answers.  When they suggest that the denominator cannot be zero, give the class a minute to work out 

that the denominator is zero when 𝑎 = 2. 

 

𝟐(𝒂 − 𝟏) − 𝟐

𝟔(𝒂 − 𝟏) − 𝟑𝒂
 

𝟔(𝒂 − 𝟏) − 𝟑𝒂 = 𝟎 
𝟔𝒂 − 𝟔 − 𝟑𝒂 = 𝟎 

𝟑𝒂 − 𝟔 = 𝟎 
𝒂 = 𝟐 

  

Scaffolding: 

Encourage struggling students 

to plug in various values of the 

variables to see that the 

expressions are equivalent for 

almost all values of the 

variables.  But for values in 

which the denominator of one 

expression is equal to zero, 

they are not equivalent. 
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 Let’s reduce the rational expression 
2(𝑎−1)−2

6(𝑎−1)−3𝑎
 with 𝑎 ≠ 2 to lowest terms.  

Since no common factor is visible in the given form of the expression, we first 

simplify the numerator and denominator by distributing and combining like 

terms. 

2(𝑎 − 1) − 2

6(𝑎 − 1) − 3𝑎
=

2𝑎 − 2 − 2

6𝑎 − 6 − 3𝑎
 

=
2𝑎 − 4

3𝑎 − 6
 

 Next, we factor the numerator and denominator, and divide both by any 

common factors.  This step shows clearly why we had to specify that 𝑎 ≠ 2. 

2(𝑎 − 1) − 2

6(𝑎 − 1) − 3𝑎
=
2𝑎 − 4

3𝑎 − 6
 

=
2(𝑎 − 2)

3(𝑎 − 2)
 

=
2

3
 

 As long as 𝑎 ≠ 2, we see that 
2(𝑎−1)−2

6(𝑎−1)−3𝑎
 and 

2

3
 are equivalent rational expressions.   

If we allow 𝑎 to take on the value of 2, then 
2(𝑎−1)−2

6(𝑎−1)−3𝑎
 is undefined.  However, the expression 

2

3
 is always defined, so 

these expressions are not equivalent. 

 

Exercise  (10 minutes) 

Allow students to work on the following exercises in pairs. 

 

Exercise 

Reduce the following rational expressions to lowest terms, and identify the values of the variable(s) that must be 

excluded to prevent division by zero. 

a. 
𝟐(𝒙+𝟏)+𝟐

(𝟐𝒙+𝟑)(𝒙+𝟏)−𝟏
 

𝟐(𝒙+𝟏)+𝟐

(𝟐𝒙+𝟑)(𝒙+𝟏)−𝟏
=

𝟐𝒙+𝟒

𝟐𝒙𝟐+𝟓𝒙+𝟐
=

𝟐(𝒙+𝟐)

(𝟐𝒙+𝟏)(𝒙+𝟐)
=

𝟐

𝟐𝒙+𝟏
, for 𝒙 ≠ −𝟐 and 𝒙 ≠ −

𝟏
𝟐

. 

 

b. 
𝒙𝟐−𝒙−𝟔

𝟓𝒙𝟐+𝟏𝟎𝒙
 

𝒙𝟐−𝒙−𝟔

𝟓𝒙𝟐+𝟏𝟎𝒙
=

(𝒙+𝟐)(𝒙−𝟑)

𝟓𝒙(𝒙+𝟐)
=

𝒙−𝟑

𝟓𝒙
, for 𝒙 ≠ 𝟎 and 𝒙 ≠ −𝟐. 

 

  

Scaffolding: 

Students may need to be 

reminded that although  

(𝑎 − 1) appears in the 

numerator and denominator, it 

is not a common factor to the 

numerator and denominator, 

and thus, we cannot simplify 

the expression by dividing by 

(𝑎 − 1).    
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c. 
𝟑−𝒙

𝒙𝟐−𝟗
 

𝟑−𝒙

𝒙𝟐−𝟗
=

−(𝒙−𝟑)

(𝒙−𝟑)(𝒙+𝟑)
= −

𝟏

𝒙+𝟑
 , for 𝒙 ≠ 𝟑 and 𝒙 ≠ −𝟑. 

 

d. 
𝟑𝒙−𝟑𝒚

𝒚𝟐−𝟐𝒙𝒚+𝒙𝟐
 

𝟑𝒙−𝟑𝒚

𝒚𝟐−𝟐𝒙𝒚+𝒙𝟐
=

−𝟑(𝒚−𝒙)

(𝒚−𝒙)(𝒚−𝒙)
= − (

𝟑

𝒚−𝒙
), for 𝒚 ≠ 𝒙. 

 

Closing  (5 minutes) 

The precise definition of a rational expression is presented here for teacher reference and may be shared with students.  

Discussion questions for closing this lesson follow the definition.  Notice the similarity between the definition of a 

rational expression given here and the definition of a polynomial expression given in the closing of Lesson 5 earlier in this 

module. 

RATIONAL EXPRESSION:  A rational expression is either a numerical expression or a variable symbol or the result of placing 

two previously generated rational expressions into the blanks of the addition operator (__+__), the subtraction operator 

(__−__), the multiplication operator (__×__), or the division operator (__÷__). 

Have students discuss the following questions with a partner and write down their conclusions.  Circulate around the 

room to assess their understanding.  

 How do you reduce a rational expression of the form 
𝑃

𝑄
 to lowest terms? 

 Factor the polynomial expressions in the numerator and denominator, and divide any common factors 

from both the numerator and denominator.  

 How do you know which values of the variable(s) to exclude for a rational expression? 

 Any value of the variable(s) that makes the denominator zero at any point of the process must be 

excluded. 

 

 

 

Exit Ticket  (6 minutes)  

𝒏𝒂

𝒏𝒃
=
𝒂

𝒃
. 

Lesson Summary 

 If 𝒂, 𝒃, and 𝒏 are integers with 𝒏 ≠ 𝟎 and 𝒃 ≠ 𝟎, then  

 The rule for rational expressions is the same as the rule for integers but requires the domain of the 

rational expression to be restricted (i.e., no value of the variable that can make the denominator of the 

original rational expression zero is allowed).  
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Name                                   Date                          

Lesson 22:  Equivalent Rational Expressions 

 
Exit Ticket 
 

1. Find an equivalent rational expression in lowest terms, and identify the value(s) of the variables that must be 

excluded to prevent division by zero. 

𝑥2 − 7𝑥 + 12

6 − 5𝑥 + 𝑥2
 

 

 

 

 

 

 

 

 

 

 

 

 

2. Determine whether or not the rational expressions 
𝑥+4

(𝑥+2)(𝑥−3)
 and 

𝑥2+5𝑥+4

(𝑥+1)(𝑥+2)(𝑥−3)
 are equivalent for 𝑥 ≠ −1,  

𝑥 ≠ −2, and 𝑥 ≠ 3.  Explain how you know.  
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Exit Ticket Sample Solutions 

 

1. Find an equivalent rational expression in lowest terms, and identify the value(s) of the variables that must be 

excluded to prevent division by zero. 

If 𝒙 ≠ 𝟑 and 𝒙 ≠ 𝟐, then we have 

𝒙𝟐 − 𝟕𝒙 + 𝟏𝟐

𝟔 − 𝟓𝒙 + 𝒙𝟐
=
(𝒙 − 𝟒)(𝒙 − 𝟑)

(𝒙 − 𝟑)(𝒙 − 𝟐)
=
𝒙 − 𝟒

𝒙 − 𝟐
. 

 

2. Determine whether or not the rational expressions 
𝒙+𝟒

(𝒙+𝟐)(𝒙−𝟑)
 and 

𝒙𝟐+𝟓𝒙+𝟒

(𝒙+𝟏)(𝒙+𝟐)(𝒙−𝟑)
 are equivalent for 𝒙 ≠ −𝟏, 

𝒙 ≠ −𝟐, and 𝒙 ≠ 𝟑.  Explain how you know.  

Since 
𝒙𝟐+𝟓𝒙+𝟒

(𝒙+𝟏)(𝒙+𝟐)(𝒙−𝟑)
=

(𝒙+𝟏)(𝒙+𝟒)

(𝒙+𝟏)(𝒙+𝟐)(𝒙−𝟑)
=

𝒙+𝟒

(𝒙+𝟐)(𝒙−𝟑)
 as long as 𝒙 ≠ −𝟏, 𝒙 ≠ −𝟐, and 𝒙 ≠ 𝟑, the rational 

expressions 
𝒙+𝟒

(𝒙+𝟐)(𝒙−𝟑)
 and 

𝒙𝟐+𝟓𝒙+𝟒

(𝒙+𝟏)(𝒙+𝟐)(𝒙−𝟑)
 are equivalent.  

 
 
Problem Set Sample Solutions 

 

1. Find an equivalent rational expression in lowest terms, and identify the value(s) of the variable that must be 

excluded to prevent division by zero. 

a. 
𝟏𝟔𝒏

𝟐𝟎𝒏
 

𝟒

𝟓
; 𝒏 ≠ 𝟎 

 

b. 
𝒙𝟑𝒚

𝒚𝟒𝒙
 

𝒙𝟐

𝒚𝟑
; 𝒙 ≠ 𝟎 and 𝒚 ≠ 𝟎 

 

c. 
𝟐𝒏−𝟖𝒏𝟐

𝟒𝒏
 

𝟏−𝟒𝒏

𝟐
; 𝒏 ≠ 𝟎 

 

d. 
𝒅𝒃+𝒅𝒄

𝒅𝒃
 

𝒃+𝒄

𝒃
; 𝒃 ≠ 𝟎 and 𝒅 ≠ 𝟎. 

 

e. 
𝒙𝟐−𝟗𝒃𝟐

𝒙𝟐−𝟐𝒙𝒃−𝟑𝒃𝟐
 

𝒙+𝟑𝒃

𝒙+𝒃
; 𝒙 ≠ 𝟑𝒃 and 𝒙 ≠ −𝒃 

 

f. 
𝟑𝒏𝟐−𝟓𝒏−𝟐

𝟐𝒏−𝟒
 

𝟑𝒏+𝟏

𝟐
; 𝒏 ≠ 𝟐 

 

g. 
𝟑𝒙−𝟐𝒚

𝟗𝒙𝟐−𝟒𝒚𝟐
 

𝟏

𝟑𝒙+𝟐𝒚
; 𝒚 ≠

𝟑
𝟐
𝒙 and 𝒚 ≠ −

𝟑
𝟐
𝒙 
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h. 
𝟒𝒂𝟐−𝟏𝟐𝒂𝒃

𝒂𝟐−𝟔𝒂𝒃+𝟗𝒃𝟐
  

𝟒𝒂

𝒂−𝟑𝒃
; 𝒂 ≠ 𝟑𝒃 

 

i. 
𝒚−𝒙

𝒙−𝒚
 −𝟏; 𝒙 ≠ 𝒚 

 

j. 
𝒂𝟐−𝒃𝟐

𝒃+𝒂
 𝒂 − 𝒃; 𝒂 ≠ −𝒃 

 

k. 
𝟒𝒙−𝟐𝒚

𝟑𝒚−𝟔𝒙
 −

𝟐
𝟑

; 𝒚 ≠ 𝟐𝒙 

 

l. 
𝟗−𝒙𝟐

(𝒙−𝟑)𝟑
 −

𝟑+𝒙

(𝒙−𝟑)
𝟐; 𝒙 ≠ 𝟑 

 

m. 
𝒙𝟐−𝟓𝒙+𝟔

𝟖−𝟐𝒙−𝒙𝟐
  −

𝒙−𝟑
𝟒+𝒙

; 𝒙 ≠ 𝟐 and 𝒙 ≠ −𝟒 

 

n. 
𝒂−𝒃

𝒙𝒂−𝒙𝒃−𝒂+𝒃
 

𝟏

𝒙−𝟏
; 𝒙 ≠ 𝟏 and 𝒂 ≠ 𝒃 

 

o. 
(𝒙+𝒚)𝟐−𝟗𝒂𝟐

𝟐𝒙+𝟐𝒚−𝟔𝒂
 

𝒙+𝒚+𝟑𝒂

𝟐
; 𝒂 ≠

𝒙+𝒚
𝟑

 

 

p. 
𝟖𝒙𝟑−𝒚𝟑

𝟒𝒙𝟐−𝒚𝟐
 

𝟒𝒙𝟐+𝟐𝒙𝒚+𝒚𝟐

𝟐𝒙+𝒚
;   𝒚 ≠ 𝟐𝒙 and 𝒚 ≠ −𝟐𝒙 

 

2. Write a rational expression with denominator 𝟔𝒃 that is equivalent to 

a. 
𝒂

𝒃
.  

𝟔𝒂

𝟔𝒃
 

 

b. one-half of 
𝒂

𝒃
. 

𝟑𝒂

𝟔𝒃
 

 

c. 
𝟏

𝟑
. 

𝟐𝒃

𝟔𝒃
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3. Remember that algebra is just a symbolic method for performing arithmetic.   

a. Simplify the following rational expression:  
(𝒙𝟐𝒚)

𝟐
(𝒙𝒚)𝟑𝒛𝟐

(𝒙𝒚𝟐)𝟐𝒚𝒛
. 

(𝒙𝟐𝒚)𝟐(𝒙𝒚)𝟑𝒛𝟐

(𝒙𝒚𝟐)𝟐𝒚𝒛
=
𝒙𝟒𝒚𝟐 ∙ 𝒙𝟑𝒚𝟑 ∙ 𝒛𝟐

𝒙𝟐𝒚𝟒 ∙ 𝒚𝒛
=
𝒙𝟕𝒚𝟓𝒛𝟐

𝒙𝟐𝒚𝟓𝒛
= 𝒙𝟓𝒛 

 

b. Simplify the following rational expression without using a calculator:  
𝟏𝟐𝟐∙𝟔𝟑∙𝟓𝟐

𝟏𝟖𝟐∙𝟏𝟓
. 

𝟏𝟐𝟐 ∙ 𝟔𝟑 ∙ 𝟓𝟐

𝟏𝟖𝟐 ∙ 𝟏𝟓
=
𝟒𝟐 ∙ 𝟑𝟐 ∙ 𝟔𝟑 ∙ 𝟓𝟐

𝟐𝟐 ∙ 𝟗𝟐 ∙ 𝟑 ∙ 𝟓
=
𝟐𝟒 ∙ 𝟑𝟐 ∙ 𝟐𝟑 ∙ 𝟑𝟑 ∙ 𝟓𝟐

𝟐𝟐 ∙ 𝟑𝟒 ∙ 𝟑 ∙ 𝟓
=
𝟐𝟕 ∙ 𝟑𝟓 ∙ 𝟓𝟐

𝟐𝟐 ∙ 𝟑𝟓 ∙ 𝟓
= 𝟐𝟓 ∙ 𝟓 = 𝟑𝟐 ∙ 𝟓 = 𝟏𝟔𝟎 

 

c. How are the calculations in parts (a) and (b) similar?  How are they different?  Which expression was easier to 

simplify?  

Both simplifications relied on using the rules of exponents.  It was easier to simplify the algebraic expression 

in part (a) because we did not have to factor any numbers, such as 𝟏𝟖, 𝟏𝟓, and 𝟏𝟐.  However, if we substitute 

𝒙 = 𝟐, 𝒚 = 𝟑, and 𝒛 = 𝟓, these two expressions have the exact same structure.  Algebra allows us to do this 

calculation more quickly.   

MP.7 
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Lesson 23:  Comparing Rational Expressions 

 
Student Outcomes 

 Students compare rational expressions by writing them in different but equivalent forms.   

 

Lesson Notes 

The skills developed in Lessons 22–25 are prerequisites for addressing standard A-REI.A.2, solving rational equations, 

which is the focus of Lessons 26 and 27.  In this lesson, students extend comparisons of rational numbers to comparing 

rational expressions and using numerical, graphical, and algebraic analysis.  Although students use graphing calculators 

to compare certain rational expressions, learning to graph rational functions is not the focus of this lesson.  

 

Classwork 

Opening Exercise  (10 minutes) 

The Opening Exercise serves two purposes:  (1) to reactivate prior knowledge of comparing fractions and (2) as a review 

for students who struggle with fractions.  The goal is for students to see that the same process is used to compare 

fractions and to compare rational expressions.  

As done in the previous lesson, give students slips of notecard-sized paper on which to make visual arguments for which 

fraction is larger.  Each student (or pair of students) should get at least two slips of paper.  This exercise leads to the 

graphical analysis employed in the last example of the lesson.  

 

Opening Exercise 

Use the slips of paper you have been given to create visual arguments for whether 
𝟏

𝟑
 or 

𝟑

𝟖
 is larger.  

 

Ask students to make visual arguments as to whether 
1

3
 or 

3

8
 is larger.  Use the following as 

either scaffolding for struggling students or as an example of student work. 

 We can use the following area models to represent the fraction 
1

3
 and 

3

8
 as we 

did in Lesson 22.  

 

 

 

 

 

  

20 

Scaffolding: 

Students already comfortable 

with fractions may wish to only 

briefly review the visual 

representations.  However, it is 

important for each student to 

be aware of the three methods 

of comparison:  graphical (or 

visual), numerical, and 

algebraic (by finding a common 

denominator).  

In any case, do not spend too 

much time on these exercises, 

but instead use them as a 

bridge to comparing rational 

expressions that contain 

variables. 
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 We see that these visual representations of the fractions give us strong evidence that 
1

3
<

3

8
. 

 Discuss with your neighbor another way to make a comparison between the two fractions and why we might 

not want to always rely on visual representations.  

 Students should suggest finding decimal approximations of fractions and converting the fractions to 

equivalent fractions with common denominators.  Reasons for not using visual representations may 

include the difficulty with fractions with large denominators.  

Once students have had a chance to discuss alternative methods, ask them to choose one of the two methods to verify 

that the visual representations above are accurate.  

 Decimal approximations:  We have 
1

3
≈ 0.333 and 

3

8
= 0.375; thus, 

1

3
<

3

8
. 

 Common denominators:  We have 
1

3
=

8

24
 and 

3

8
=

9

24
.  Since 

8

24
<

9

24
, we know that 

1

3
<

3

8
. 

 Discuss with your partner the pros and cons of both methods before discussing as a class.  

 Decimal approximations are quick with a calculator but may take a while if long division is needed.  

Many students prefer decimals to fractions, but they use approximations of the numbers instead of the 

exact values of the numbers.  Common denominators use the actual numbers but require working with 

fractions.   

 Just as we can determine whether two rational expressions are equivalent in a similar way as we can with 

rational numbers, we can extend our ideas of comparing rational numbers to comparing rational expressions.  

 

Exercises  (11 minutes) 

As students work on Exercises 1–5, circulate through the class to assess their understanding.  

 

Exercises 

We will start by working with positive integers.  Let 𝒎 and 𝒏 be positive integers.  Work through the following exercises 

with a partner.  

1. Fill out the following table. 

𝒏 
𝟏

𝒏
 

𝟏 𝟏 

𝟐 
𝟏

𝟐
 

𝟑 
𝟏

𝟑
 

𝟒 
𝟏

𝟒
 

𝟓 
𝟏

𝟓
 

𝟔 
𝟏

𝟔
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2. Do you expect 
𝟏

𝒏
 to be larger or smaller than 

𝟏

𝒏+𝟏
?  Do you expect 

𝟏

𝒏
 to be larger or smaller than 

𝟏

𝒏+𝟐
?  Explain why.  

From the table, as 𝒏 increases, 
𝟏

𝒏
 decreases.  This means that since 𝟏 + 𝒏 > 𝒏, we will have 

𝟏

𝟏+𝒏
<

𝟏

𝒏
.  That is,  

𝟏

𝒏
>

𝟏

𝒏+𝟏
>

𝟏

𝒏+𝟐
. 

 

3. Compare the rational expressions 
𝟏

𝒏
, 

𝟏

𝒏+𝟏
, and 

𝟏

𝒏+𝟐
 for 𝒏 = 𝟏, 𝟐, and 𝟑.  Do your results support your conjecture 

from Exercise 2?  Revise your conjecture if necessary.  

For 𝒏 = 𝟏, 
𝟏

𝒏
= 𝟏, 

𝟏

𝒏+𝟏
=

𝟏

𝟐
, and 

𝟏

𝒏+𝟐
=

𝟏

𝟑
, and we know 𝟏 >

𝟏
𝟐

>
𝟏
𝟑

. 

For 𝒏 = 𝟐, we have 
𝟏

𝟐
, 

𝟏

𝟑
, and 

𝟏

𝟒
, and we know 

𝟏

𝟐
>

𝟏

𝟑
>

𝟏

𝟒
. 

For 𝒏 = 𝟑, we have 
𝟏

𝟑
, 

𝟏

𝟒
, and 

𝟏

𝟓
, and we know 

𝟏

𝟑
>

𝟏

𝟒
>

𝟏

𝟓
. 

This supports the conjecture that 
𝟏

𝒏
>

𝟏

𝒏+𝟏
>

𝟏

𝒏+𝟐
. 

 

4. From your work in Exercises 1 and 2, generalize how 
𝟏

𝒏
 compares to 

𝟏

𝒏+𝒎
, where 𝒎 and 𝒏 are positive integers. 

Since 𝒎 is a positive integer being added to 𝒏, the denominator will increase, which will decrease the value of the 

rational expression overall.  That is, 
𝟏

𝒏
>

𝟏

𝒏+𝒎
 for positive integers 𝒎 and 𝒏. 

 

5. Will your conjecture change or stay the same if the numerator is 𝟐 instead of 𝟏?  Make a conjecture about what 

happens when the numerator is held constant, but the denominator increases for positive numbers.  

It will stay the same because this would be the same as multiplying the inequality by 𝟐, and multiplication by a 

positive number does not change the direction of the inequality.  If the numerator is held constant and the 

denominator increases, you are dividing by a larger number, so you get a smaller number overall.  

 

Example  (11 minutes)  

 Suppose we want to compare the values of the rational expressions 
𝑥+1

𝑥
 and 

𝑥+2

𝑥+1
 for positive values of 𝑥.  

What are some ways to do this? 

Ask students to suggest some methods of comparison.  If needed, guide them to the ideas of using a numerical 

comparison through a table of values and a graphical comparison of the related rational functions 𝑦 =
𝑥+1

𝑥
 and 𝑦 =

𝑥+2
𝑥+1

 

for 𝑥 > 0.   

 Let’s start our comparison of 
𝑥+1

𝑥
 and 

𝑥+2

𝑥+1
 by looking at a table of values.   
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Have students complete the table below using their calculators and rounding to four decimal places. 

 

Example 

𝒙 
𝒙 + 𝟏

𝒙
 

𝒙 + 𝟐

𝒙 + 𝟏
 

𝟎. 𝟓 𝟑 𝟏. 𝟔𝟔𝟔𝟕 

𝟏 𝟐 𝟏. 𝟓𝟎𝟎𝟎 

𝟏. 𝟓 𝟏. 𝟔𝟔𝟔𝟕 𝟏. 𝟒𝟎𝟎𝟎 

𝟐 𝟏. 𝟓 𝟏. 𝟑𝟑𝟑𝟑 

𝟓 𝟏. 𝟐 𝟏. 𝟏𝟔𝟔𝟕 

𝟏𝟎 𝟏. 𝟏 𝟏. 𝟎𝟗𝟎𝟗 

𝟏𝟎𝟎 𝟏. 𝟎𝟏 𝟏. 𝟎𝟎𝟗𝟗 

 

Discussion 

 From the table of values, it appears that 
𝑥+1

𝑥
>

𝑥+2

𝑥+1
 for positive values of 𝑥.  However, we have only checked 

7 values of 𝑥, so we cannot yet say that this is the case for every positive value of 𝑥.  How else can we compare 

the values of these two expressions?   

 Students should suggest graphing the functions 𝑦 =
𝑥+1

𝑥
 and 𝑦 =

𝑥+2
𝑥+1

. 

Have students graph the two functions 𝑦 =
𝑥+1

𝑥
 and 𝑦 =

𝑥+2
𝑥+1

 on their 

calculators, and ask them to share their observations.  Does the graph 

verify the conclusions we drew from the table above?   

 It seems from both the table of data and from the graph that 
𝑥+1

𝑥
>

𝑥+2

𝑥+1
 for positive values of 𝑥, but we have not shown it 

conclusively.  How can we use algebra to determine if this 

inequality is always true? 

 We want to compare 
𝑥+1

𝑥
 and 

𝑥+2

𝑥+1
. 

Ask students what they need to do before comparing fractions such as 
3

8
 

and 
2

7
.  Wait for someone to suggest that they need to find a common 

denominator. 

 Let’s take a step back and see how we would compare the two fractions 
3

8
 and 

2

7
.  First, we find the common 

denominator. 

  

𝑦 =
𝑥+1

𝑥
  

 

𝑦 =
𝑥+2

𝑥+1
  

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
 
 
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 23 

ALGEBRA II 

Lesson 23: Comparing Rational Expressions 
 
 

 

260 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Wait for a student to volunteer that the common denominator is 56. 

 Next, we rewrite each fraction as an equivalent fraction with denominator 56: 

3

8
=

21

56
 and 

2

7
=

16

56
. 

 Since 21 > 16, and 56 is a positive number, we know that 
21

56
>

16

56
; thus, we know that 

3

8
>

2

7
. 

 The process for comparing rational expressions is the same as the process for comparing fractions.  As is 

always the case with inequalities, we need to be careful about changing the inequality if we multiply or divide 

by a negative number. 

 What is the common denominator of the two expressions 
𝑥+1

𝑥
 and 

𝑥+2

𝑥+1
? 

 𝑥(𝑥 + 1) 

 First, multiply the numerator and denominator of the first expression by (𝑥 + 1): 

𝑥 + 1

𝑥
=

(𝑥 + 1)(𝑥 + 1)

𝑥(𝑥 + 1)
 

𝑥 + 1

𝑥
=

𝑥2 + 2𝑥 + 1

𝑥(𝑥 + 1)
. 

 Next, multiply the numerator and denominator of the second expression by 𝑥: 

𝑥 + 2

𝑥 + 1
=

𝑥(𝑥 + 2)

𝑥(𝑥 + 1)
 

𝑥 + 2

𝑥 + 1
=

𝑥2 + 2𝑥

𝑥(𝑥 + 1)
. 

 Clearly, we have  

𝑥2 + 2𝑥 + 1 > 𝑥2 + 2𝑥, 

and since 𝑥 is always positive, we know that the denominator 𝑥(𝑥 + 1) is always positive.  Thus, we see that  

𝑥2 + 2𝑥 + 1

𝑥(𝑥 + 1)
>

𝑥2 + 2𝑥

𝑥(𝑥 + 1)
, 

so we have established that 
𝑥+1

𝑥
>

𝑥+2

𝑥+1
 for all positive values of 𝑥. 

 For rational expressions, numerical and visual comparisons can provide evidence that one expression is larger 

than another for specified values of the variable.  However, finding common denominators and doing the 

algebra to show that one is larger than the other is the conclusive way to show that the values of one rational 

expression are consistently larger than the values of another.  
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Closing  (6 minutes) 

Ask students to do a side-by-side comparison of the different methods for comparing rational numbers to the extended 

method used for comparing rational expressions.  

Rational Numbers 

 Visually:  Use area models or number lines to 

represent fractions and compare their relative 

sizes.  Difficult with large numbers  

 Numerically:  Perform the division to find a 

decimal approximation to compare the sizes.  

 Algebraically:  Find equivalent fractions with 

common denominators and compare their 

numerators. 

 

Rational Expressions 

 Visually:  Use a graphing utility to graph 

functions representing each expression and 

compare their relative heights.  Easy with 

technology but inconclusive 

 Numerically:  Compare several values of the 

functions to see their relative sizes.  

Straightforward but tells us even less than 

graphing 

 Algebraically:  Find equivalent fractions with 

common denominators and compare their 

numerators.  Best way, but special care needs 

to be taken with values that may be negative. 

 How do you compare two rational expressions of the form 
𝑃

𝑄
? 

 Before comparing the expressions, find equivalent rational expressions with the same denominator.  

Then we can compare the numerators for values of the variable that do not cause the positive/negative 

signs to switch.  Numerical and graphical analysis may be used to help understand the relative sizes of 

the expressions.  

 

 

 

Exit Ticket  (7 minutes)  

Lesson Summary 

To compare two rational expressions, find equivalent rational expression with the same denominator.  Then we can 

compare the numerators for values of the variable that do not cause the rational expression to change from 

positive to negative or vice versa.  

We may also use numerical and graphical analysis to help understand the relative sizes of expressions.  
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Name                                   Date                          

Lesson 23:  Comparing Rational Expressions 

 
Exit Ticket 
 

Use the specified methods to compare the following rational expressions:  
𝑥+1

𝑥2
 and 

1

𝑥
. 

1. Fill out the table of values. 

𝒙 
𝒙 + 𝟏

𝒙𝟐
 

𝟏

𝒙
 

1   

10   

25   

50   

100   

500   

 

2. Graph 𝑦 =
𝑥+1

𝑥2  and 𝑦 =
1
𝑥

 for positive values of 𝑥. 

 

 

 

 

 

 

 

 

 

 

3. Find the common denominator, and compare numerators for positive values of 𝑥.  

 

  

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
 
 
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 23 

ALGEBRA II 

Lesson 23: Comparing Rational Expressions 
 
 

 

263 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Exit Ticket Sample Solutions 

 

Use the specified methods to compare the following rational expressions:  
𝒙+𝟏

𝒙𝟐  and 
𝟏

𝒙
. 

1. Fill out the table of values. 

𝒙 
𝒙 + 𝟏

𝒙𝟐
 

𝟏

𝒙
 

𝟏 
𝟐

𝟏
= 𝟐 

𝟏

𝟏
= 𝟏 

𝟏𝟎 
𝟏𝟏

𝟏𝟎𝟎
= 𝟎. 𝟏𝟏 

𝟏

𝟏𝟎
= 𝟎. 𝟏 

𝟐𝟓 
𝟐𝟔

𝟔𝟐𝟓
= 𝟎. 𝟎𝟒𝟏𝟔 

𝟏

𝟐𝟓
= 𝟎. 𝟎𝟒 

𝟓𝟎 
𝟓𝟏

𝟐𝟓𝟎𝟎
= 𝟎. 𝟎𝟐𝟎𝟒 

𝟏

𝟓𝟎
= 𝟎. 𝟎𝟐 

𝟏𝟎𝟎 
𝟏𝟎𝟏

𝟏𝟎𝟎𝟎𝟎
= 𝟎. 𝟎𝟏𝟎𝟏 

𝟏

𝟏𝟎𝟎
= 𝟎. 𝟎𝟏 

𝟓𝟎𝟎 
𝟓𝟎𝟏

𝟐𝟓𝟎𝟎𝟎𝟎
= 𝟎. 𝟎𝟎𝟐𝟎𝟎𝟒 

𝟏

𝟓𝟎𝟎
= 𝟎. 𝟎𝟎𝟐 

 

2. Graph 𝒚 =
𝒙+𝟏

𝒙𝟐  and 𝒚 =
𝟏
𝒙

 for positive values of 𝒙. 

 
  

𝒚 =
𝟏

𝒙
 

𝒚 =
𝒙 + 𝟏

𝒙𝟐
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3. Find the common denominator, and compare numerators for positive values of 𝒙.  

The common denominator of 𝒙 and 𝒙𝟐 is 𝒙𝟐.  

𝟏

𝒙
=

𝟏

𝒙
⋅

𝒙

𝒙
=

𝒙

𝒙𝟐
 

𝒙 + 𝟏

𝒙𝟐
=

𝒙 + 𝟏

𝒙𝟐
 

For any value of 𝒙, 𝒙𝟐 is positive.  Since 

𝒙 + 𝟏 > 𝒙, 

we then have,  

𝒙 + 𝟏

𝒙𝟐
>

𝒙

𝒙𝟐
 

𝒙 + 𝟏

𝒙𝟐
>

𝟏

𝒙
. 

 
 
Problem Set Sample Solutions 

 

1. For parts (a)–(d), rewrite each rational expression as an equivalent rational expression so that all expressions have a 

common denominator.   

a. 
𝟑

𝟓
, 

𝟗

𝟏𝟎
, 

𝟕

𝟏𝟓
, 

𝟕

𝟐𝟏
 

𝟏𝟖

𝟑𝟎
, 

𝟐𝟕

𝟑𝟎
, 

𝟏𝟒

𝟑𝟎
, 

𝟏𝟎

𝟑𝟎
 

 

b. 
𝒎

𝒔𝒅
, 

𝒔

𝒅𝒎
, 

𝒅

𝒎𝒔
 

𝒎𝟐

𝒎𝒔𝒅
, 

𝒔𝟐

𝒔𝒅𝒎
, 

𝒅𝟐

𝒅𝒎𝒔
 

 

c. 
𝟏

(𝟐−𝒙)𝟐 , 
𝟑

(𝟐𝒙−𝟓)(𝟐−𝒙)
 

(𝟐𝒙−𝟓)

(𝟐−𝒙)𝟐(𝟐𝒙−𝟓)
, 

−𝟑(𝟐−𝒙)

(𝟐𝒙−𝟓)(𝟐−𝒙)𝟐 

 

d. 
𝟑

𝒙𝟐−𝒙
, 

𝟓

𝒙
, 

𝟐𝒙+𝟐

𝟐𝒙𝟐−𝟐
 

𝟑(𝒙+𝟏)

𝒙(𝒙−𝟏)(𝒙+𝟏)
, 

𝟓(𝒙−𝟏)(𝒙+𝟏)

𝒙(𝒙−𝟏)(𝒙+𝟏)
, 

𝒙(𝒙+𝟏)

𝒙(𝒙−𝟏)(𝒙+𝟏)
 

 

2. If 𝒙 is a positive number, for which values of 𝒙 is 𝒙 <
𝟏
𝒙

? 

Before we can compare two rational expressions, we need to express them as equivalent expressions with a 

common denominator.  Since 𝒙 ≠ 𝟎, we have 𝒙 =
𝒙𝟐

𝒙
.  Then 𝒙 <

𝟏
𝒙

 exactly when 
𝒙𝟐

𝒙
<

𝟏

𝒙
, which happens when  

𝒙𝟐 < 𝟏.  The only positive real number values of 𝒙 that satisfy 𝒙𝟐 < 𝟏 are 𝟎 < 𝒙 < 𝟏. 
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3. Can we determine if 
𝒚

𝒚−𝟏
>

𝒚+𝟏

𝒚
 for all values 𝒚 > 𝟏?  Provide evidence to support your answer.  

Before we can compare two rational expressions, we need to express them as equivalent expressions with a 

common denominator.  Since 𝒚 > 𝟏, neither denominator is ever zero.  Then 
𝒚

𝒚−𝟏
=

𝒚𝟐

𝒚(𝒚−𝟏)
 and  

𝒚+𝟏

𝒚
=

(𝒚+𝟏)(𝒚−𝟏)

𝒚(𝒚−𝟏)
=

𝒚𝟐−𝟏

𝒚(𝒚−𝟏)
.  Since 𝒚𝟐 > 𝒚𝟐 − 𝟏 for all values of 𝒚, we know that 

𝒚𝟐

𝒚(𝒚−𝟏)
>

𝒚𝟐−𝟏

𝒚(𝒚−𝟏)
.  Then we 

can conclude that 
𝒚

𝒚−𝟏
>

𝒚+𝟏

𝒚
 for all values 𝒚 > 𝟏. 

 

4. For positive 𝒙, determine when the following rational expressions have negative denominators.  

a. 
𝟑

𝟓
 

Never; 𝟓 is never less than 𝟎.  

 

b. 
𝒙

𝟓−𝟐𝒙
 

𝟓 − 𝟐𝒙 < 𝟎 when 𝟓 < 𝟐𝒙, which is equivalent to 
𝟓

𝟐
< 𝒙.  

 

c. 
𝒙+𝟑

𝒙𝟐+𝟒𝒙+𝟖
 

For any real number 𝒙, 𝒙𝟐 + 𝟒𝒙 + 𝟖 is never negative.  One way to see this is that  

𝒙𝟐 + 𝟒𝒙 + 𝟖 = (𝒙 + 𝟐)𝟐 + 𝟒, which is the sum of two positive numbers.  

 

d. 
𝟑𝒙𝟐

(𝒙−𝟓)(𝒙+𝟑)(𝟐𝒙+𝟑)
 

For positive 𝒙, 𝒙 + 𝟑 and 𝟐𝒙 + 𝟑 are always positive.  The number 𝒙 − 𝟓 is negative when 𝒙 < 𝟓, so the 

denominator is negative when 𝒙 < 𝟓.  

 

5. Consider the rational expressions 
𝒙

𝒙−𝟐
 and 

𝒙

𝒙−𝟒
.   

a. Evaluate each expression for 𝒙 = 𝟔. 

If 𝒙 = 𝟔, then 
𝒙

𝒙−𝟐
= 𝟏. 𝟓 and 

𝒙

𝒙−𝟒
= 𝟑.   

 

b. Evaluate each expression for 𝒙 = 𝟑. 

If 𝒙 = 𝟑, then 
𝒙

𝒙−𝟐
= 𝟑 and 

𝒙

𝒙−𝟒
= −𝟑. 

 

c. Can you conclude that 
𝒙

𝒙−𝟐
<

𝒙

𝒙−𝟒
 for all positive values of 𝒙?  Explain how you know.  

No, because 
𝒙

𝒙−𝟐
>

𝒙

𝒙−𝟒
 when 𝒙 = 𝟑, it is not true that 

𝒙

𝒙−𝟐
<

𝒙

𝒙−𝟒
 for every positive value of 𝒙. 
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d. Extension:  Raphael claims that the calculation below shows that 
𝒙

𝒙−𝟐
<

𝒙

𝒙−𝟒
 for all values of 𝒙, where  

𝒙 ≠ 𝟐 and 𝒙 ≠ 𝟒.  Where is the error in the calculation? 

Starting with the rational expressions 
𝒙

𝒙−𝟐
 and 

𝒙

𝒙−𝟒
, we need to first find equivalent rational expressions with 

a common denominator.  The common denominator we will use is (𝒙 − 𝟒)(𝒙 − 𝟐).  We then have 

𝒙

𝒙 − 𝟐
=

𝒙(𝒙 − 𝟒)

(𝒙 − 𝟒)(𝒙 − 𝟐)
 

𝒙

𝒙 − 𝟒
=

𝒙(𝒙 − 𝟐)

(𝒙 − 𝟒)(𝒙 − 𝟐)
. 

Since 𝒙𝟐 − 𝟒𝒙 < 𝒙𝟐 − 𝟐𝒙 for 𝒙 > 𝟎, we can divide each expression by (𝒙 − 𝟒)(𝒙 − 𝟐).  We then have 
𝒙(𝒙−𝟒)

(𝒙−𝟒)(𝒙−𝟐)
<

𝒙(𝒙−𝟐)

(𝒙−𝟒)(𝒙−𝟐)
, and we can conclude that 

𝒙

𝒙−𝟐
<

𝒙

𝒙−𝟒
 for all positive values of 𝒙. 

The error in logic in this calculation is that the denominator (𝒙 − 𝟒)(𝒙 − 𝟐) is not always a positive number 

for all positive values of 𝒙.  In fact, if 𝟐 < 𝒙 < 𝟒, then (𝒙 − 𝟒)(𝒙 − 𝟐) < 𝟎.  Thus, even though  

𝒙𝟐 − 𝟒𝒙 < 𝒙𝟐 − 𝟐𝒙 when 𝒙 > 𝟎, the inequality 
𝒙𝟐−𝟒𝒙

(𝒙−𝟒)(𝒙−𝟐)
<

𝒙𝟐−𝟐𝒙

(𝒙−𝟒)(𝒙−𝟐)
 is not valid for every positive 

value of 𝒙. 

 

6. Consider the populations of two cities within the same state where the large city’s population is 𝑷, and the small 

city’s population is 𝑸.  For each of the following pairs, state which of the expressions has a larger value.  Explain 

your reasoning in the context of the populations.   

a. 𝑷 + 𝑸 and 𝑷 

The value of 𝑷 + 𝑸 is larger than 𝑷.  The expression 𝑷 + 𝑸 represents the total population of the two cities, 

and 𝑷 represents the population of the larger city.  Since these quantities are populations of cities, we can 

assume they are greater than zero.  

 

b. 
𝑷

𝑷+𝑸
 and 

𝑸

𝑷+𝑸
 

The value of 
𝑷

𝑷+𝑸
 is larger.  As stated in part (a), 𝑷 + 𝑸 represents the total population of the two cities.  

Hence, 
𝑷

𝑷+𝑸
 and 

𝑸

𝑷+𝑸
 represent each city’s respective fraction of the total population.  Since 𝑷 > 𝑸,  

𝑷

𝑷+𝑸
>

𝑸

𝑷+𝑸
.  

 

c. 𝟐𝑸 and 𝑷 + 𝑸 

The value of 𝑷 + 𝑸 is larger than the value of 𝟐𝑸.  The population of the smaller of the two cities is 

represented by 𝑸, so 𝟐𝑸 represents a population twice the size of the smaller city, but  

𝑷 > 𝑸 so 𝑷 + 𝑸 > 𝑸 + 𝑸 and thus 𝑷 + 𝑸 > 𝟐𝑸.  

 

d. 
𝑷

𝑸
 and 

𝑸

𝑷
 

The value of 
𝑷

𝑸
 is larger.  These expressions represent the ratio between the populations of the cities.  For 

instance, the larger city is 
𝑷

𝑸
 times larger than the smaller city.  Since 𝑷 > 𝑸, 

𝑷

𝑸
> 𝟏 >

𝑸

𝑷
, we can say that 

there are 
𝑷

𝑸
 people in the larger city for every one person in the smaller city.  

  

MP.3 

MP.2 
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e. 
𝑷

𝑷+𝑸
 and 

𝟏

𝟐
 

The value of 
𝑷

𝑷+𝑸
 is larger.  Since 𝑷 is the population of the larger city, the first city represents more than half 

of the total.  

 

f. 
𝑷+𝑸

𝑷
 and 𝑷 − 𝑸 

The value of 𝑷 − 𝑸 is larger.  The expression 𝑷 − 𝑸 represents the difference in population between the two 

cities.  The expression 
𝑷+𝑸

𝑷
 can represent the ratio of how much larger the total is compared to the 

population of the larger city, but we know that 𝑷 represents more than half of the total; therefore, 
𝑷+𝑸

𝑷
 

cannot be larger than 𝟐.  Without the context, we could not say that 𝑷 − 𝑸 is larger than 𝟐, but in the context 

of the problem, since 𝑷 is the population of a large city, and 𝑸 is the population of a small city, 𝑷 − 𝑸 > 𝟐.   

Thus, 𝑷 − 𝑸 >
𝑷+𝑸

𝑷
.  

 

g. 
𝑷+𝑸

𝟐
 and 

𝑷+𝑸

𝑸
 

The value of 
𝑷+𝑸

𝟐
 is larger.  The sum divided by the number of cities represents the average population of the 

two cities and will be significantly higher than the ratio represented by 
𝑷+𝑸

𝑸
.  Alternatively, 𝑸 is much larger 

than 𝟐, so 
𝑷+𝑸

𝟐
<

𝑷+𝑸

𝑸
. 

 

h. 
𝟏

𝑷
 and 

𝟏

𝑸
 

The value of 
𝟏

𝑸
 is larger.  The expression 

𝟏

𝑸
 represents the proportion of the population of the second city a 

single citizen represents.  Similarly for 
𝟏

𝑷
, since the second city has a smaller population, each individual 

represents a larger proportion of the whole than in the first city. 

MP.2 
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Lesson 24:  Multiplying and Dividing Rational Expressions 

 
Student Outcomes 

 Students multiply and divide rational expressions and simplify using equivalent expressions.    

 

Lesson Notes 

This lesson quickly reviews the process of multiplying and dividing rational numbers using techniques students already 

know and translates that process to multiplying and dividing rational expressions (MP.7).  This enables students to 

develop techniques to solve rational equations in Lesson 26 (A-APR.D.6).  This lesson also begins developing facility with 

simplifying complex rational expressions, which is important for later work in trigonometry.  Teachers may consider 

treating the multiplication and division portions of this lesson as two separate lessons.  

 

Classwork 

Opening Exercise  (5 minutes) 

Distribute notecard-sized slips of paper to students, and ask them to shade the paper to 

represent the result of 
2

3
⋅

4

5
.  Circulate around the classroom to assess student proficiency.  

If many students are still struggling to remember the area model after the scaffolding, 

present the problem to them as shown.  Otherwise, allow them time to do the 

multiplication on their own or with their neighbor and then progress to the question of the 

general rule. 

 First, we represent 
4

5
 by dividing our region into five vertical strips of equal area 

and shading 4 of the 5 parts. 

 Now we need to find 
2

3
 of the shaded area.  So we divide the area horizontally 

into three parts of equal area and then shade two of those parts.  

  

 

Scaffolding: 

If students do not remember 

the area model for 

multiplication of fractions, 

have them discuss it with their 

neighbor.  If necessary, use an 

example like 
1

2
⋅

1

2
 to see if they 

can scale this to the problem 

presented. 

If students are comfortable 

with multiplying rational 

numbers, omit the area model, 

and ask them to determine the 

following products. 

 
2

3
∙

3

8
=

1

4
 

 
1

4
∙

5

6
=

5

24
 

 
4

7
∙

8

9
=

32

63
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If 𝒂, 𝒃, 𝒄, and 𝒅 are rational expressions with 𝒃 ≠ 𝟎, 𝒅 ≠ 𝟎, then 

𝒂

𝒃
∙

𝒄

𝒅
=

𝒂𝒄

𝒃𝒅
. 

 Thus, 
2

3
∙

4

5
 is represented by the region that is shaded twice.  Since 8 out of 15 subrectangles are shaded 

twice, we have 
2

3
∙

4

5
=

8

15
.  With this in mind, can we create a general rule about multiplying rational 

numbers?  

Allow students to come up with this rule based on the example and prior experience.  Have them discuss their thoughts 

with their neighbor and write the rule.  

The rule summarized above is also valid for real numbers. 

 

Discussion  (2 minutes) 

 To multiply rational expressions, we follow the same procedure we use when multiplying rational numbers:  

we multiply together the numerators and multiply together the denominators.  We finish by reducing the 

product to lowest terms. 

 

 

Lead students through Examples 1 and 2, and ask for their input at each step. 

 

Example 1  (4 minutes)  

Give students time to work on this problem and discuss their answers with a 

neighbor before proceeding to class discussion.  

 

Example 1 

Make a conjecture about the product 
𝒙𝟑

𝟒𝒚
∙

𝒚𝟐

𝒙
.  What will it be?  Explain your 

conjecture, and give evidence that it is correct.   

 

 We begin by multiplying the numerators and denominators.  

𝑥3

4𝑦
∙

𝑦2

𝑥
=

𝑥3𝑦2

4𝑦𝑥
 

 

Scaffolding: 

 To assist students in making the 

connection between rational numbers 

and rational expressions, show a side-

by-side comparison of a numerical 

example from a previous lesson like the 

one shown. 

2

3
⋅

4

5
=

8

15
 

𝑥3

4𝑦
⋅

𝑦2

𝑥
= ? 

 If students are struggling with this 

example, include some others, such as 

𝑥2

3
⋅

6

𝑥
    OR    

𝑦

𝑥2
⋅

𝑦4

𝑥
. 

𝑎

𝑐
∙

𝑏

𝑑
=

𝑎𝑏

𝑐𝑑
. 

If 𝑎, 𝑏, 𝑐, and 𝑑 are integers with 𝑐 ≠ 0 and 𝑑 ≠ 0, then  
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 Identify the greatest common factor (GCF) of the numerator and denominator.  The GCF of 𝑥3𝑦2 and 4𝑥𝑦 is 

𝑥𝑦. 

𝑥3

4𝑦
∙

𝑦2

𝑥
=

(𝑥𝑦)𝑥2𝑦

4(𝑥𝑦)
 

 Finally, we divide the common factor 𝑥𝑦 from the numerator and denominator to find the reduced form of the 

product: 

𝑥3

4𝑦
∙

𝑦2

𝑥
=

𝑥2𝑦

4
. 

Note that the phrases “cancel 𝑥𝑦” or “cancel the common factor” are intentionally avoided in this lesson.  The goal is to 

highlight that it is division that allows these expressions to be simplified.  Ambiguous words like “cancel” can lead 

students to simplify 
sin(𝑥)

𝑥
 to sin—they “canceled” the 𝑥! 

It is important to understand why the numerator and denominator may be divided by 𝑥.  The rule 
𝑛𝑎

𝑛𝑏
=

𝑎

𝑏
 works for 

rational expressions as well.  Performing a simplification such as 
𝑥

𝑥3𝑦
=

1

𝑥2𝑦
 requires doing the following steps:   

𝑥

𝑥3𝑦
=

𝑥∙1

𝑥∙𝑥2𝑦
=

𝑥

𝑥
⋅

1

𝑥2𝑦
= 1 ⋅

1

𝑥2𝑦
=

1

𝑥2𝑦
. 

 

Example 2  (3 minutes)  

Before walking students through the steps of this example, ask them to try to find the product using the ideas of the 

previous example.  

 

Example 2 

Find the following product:  (
𝟑𝒙−𝟔
𝟐𝒙+𝟔

) ∙ (
𝟓𝒙+𝟏𝟓
𝟒𝒙+𝟖

). 

 

First, factor the numerator and denominator of each rational expression. 

 Identify any common factors in the numerator and denominator.   

(
3𝑥 − 6

2𝑥 + 6
) ∙ (

5𝑥 + 15

4𝑥 + 8
) = (

3(𝑥 − 2)

2(𝑥 + 3)
) ∙ (

5(𝑥 + 3)

4(𝑥 + 2)
) 

=
15(𝑥 − 2)(𝑥 + 3)

8(𝑥 + 3)(𝑥 + 2)
 

The GCF of the numerator and denominator is 𝑥 + 3.  

Then, divide the common factor (𝑥 + 3) from the numerator and denominator, and obtain the reduced form of the 

product. 

(
3𝑥 − 6

2𝑥 + 6
) ∙ (

5𝑥 + 15

4𝑥 + 8
) =

15(𝑥 − 2)

8(𝑥 + 2)
 

  

MP.7 
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Exercises 1–3  (5 minutes) 

Students can work in pairs on the following three exercises.  Circulate around the class to informally assess their 

understanding.  For Exercise 1, listen for key points such as “factoring the numerator and denominator can help” and 

“multiplying rational expressions is similar to multiplying rational numbers.” 

 

Exercises 1–3 

1. Summarize what you have learned so far with your neighbor. 

Answers will vary. 

 

2. Find the following product and reduce to lowest terms:  (
𝟐𝒙+𝟔

𝒙𝟐+𝒙−𝟔
) ∙ (

𝒙𝟐−𝟒
𝟐𝒙

). 

(
𝟐𝒙 + 𝟔

𝒙𝟐 + 𝒙 − 𝟔
) ∙ (

𝒙𝟐 − 𝟒

𝟐𝒙
) = (

𝟐(𝒙 + 𝟑)

(𝒙 + 𝟑)(𝒙 − 𝟐)
) ∙ (

(𝒙 − 𝟐)(𝒙 + 𝟐)

𝟐𝒙
) 

=
𝟐(𝒙 + 𝟑)(𝒙 − 𝟐)(𝒙 + 𝟐)

𝟐𝒙(𝒙 + 𝟑)(𝒙 − 𝟐)
 

The factors 𝟐, 𝒙 + 𝟑, and 𝒙 − 𝟐 can be divided from the numerator and the denominator in order to reduce the 

rational expression to lowest terms. 

(
𝟐𝒙 + 𝟔

𝒙𝟐 + 𝒙 − 𝟔
) ∙ (

𝒙𝟐 − 𝟒

𝟐𝒙
) =

𝒙 + 𝟐

𝒙
 

 

3. Find the following product and reduce to lowest terms:  (
𝟒𝒏−𝟏𝟐
𝟑𝒎+𝟔

)
−𝟐

∙ (
𝒏𝟐−𝟐𝒏−𝟑

𝒎𝟐+𝟒𝒎+𝟒
). 

(
𝟒𝒏 − 𝟏𝟐

𝟑𝒎 + 𝟔
)

−𝟐

∙ (
𝒏𝟐 − 𝟐𝒏 − 𝟑

𝒎𝟐 + 𝟒𝒎 + 𝟒
) = (

𝟑𝒎 + 𝟔

𝟒𝒏 − 𝟏𝟐
)

𝟐

∙ (
𝒏𝟐 − 𝟐𝒏 − 𝟑

𝒎𝟐 + 𝟒𝒎 + 𝟒
) 

=
𝟑𝟐(𝒎 + 𝟐)𝟐(𝒏 − 𝟑)(𝒏 + 𝟏)

𝟒𝟐(𝒏 − 𝟑)𝟐(𝒎 + 𝟐)𝟐
 

=
𝟗(𝒏 + 𝟏)

𝟏𝟔(𝒏 − 𝟑)
 

 

Discussion  (5 minutes) 

Recall that division of numbers is equivalent to multiplication of the numerator by the 

reciprocal of the denominator.  That is, for any two numbers 𝑎 and 𝑏, where 𝑏 ≠ 0, we 

have  

𝑎

𝑏
= 𝑎 ∙

1

𝑏
, 

where the number 
1

𝑏
 is the multiplicative inverse of 𝑏.  But, what if 𝑏 is itself a fraction?  

How do we evaluate a quotient such as 
3

5
÷

4

7
?   

 How do we evaluate 
3

5
÷

4

7
? 

Have students work in pairs to answer this and then discuss.  

Scaffolding: 

Students may need to be reminded 

how to interpret a negative 

exponent.  If so, ask them to 

calculate these values. 

 3−2 =
1

3
2 =

1
9

 

 (
2
5

)
−3

= (
5
2

)
3

=
5

3

2
3 =

125
8

 

 (
𝑥

𝑦2)
−5

= (
𝑦2

𝑥
)

5

=
(𝑦2)

5

𝑥5 =
𝑦10

𝑥5  

Scaffolding: 

Students may be better able to 

generalize the procedure for 

dividing rational numbers by 

repeatedly dividing several 

examples, such as 
1

2
÷

3

4
, 

2

3
÷

7

10
, and 

1

5
÷

2

9
.  After 

dividing several of these 

examples, ask students to 

generalize the process (MP.8). 
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If 𝒂, 𝒃, 𝒄, and 𝒅 are rational expressions with 𝒃 ≠ 𝟎, 𝒄 ≠ 𝟎, and 𝒅 ≠ 𝟎, then 

𝒂

𝒃
÷

𝒄

𝒅
=

𝒂

𝒃
∙

𝒅

𝒄
=

𝒂𝒅

𝒃𝒄
. 

By our rule above, 
3

5
÷

4

7
=

3

5
∙

1

4
7⁄

.  But, what is the value of 
1

4
7⁄

?  Let 𝑥 represent 
1

4
7⁄

, which is the multiplicative 

inverse of 
4

7
.  Then we have 

𝑥 ∙
4

7
= 1 

4𝑥 = 7 

𝑥 =
7

4
. 

Since we have shown that 
1

4
7⁄

=
7

4
, we can continue our calculation of 

3

5
÷

4

7
 as follows: 

3

5
÷

4

7
=

3

5
∙

1

4
7⁄

 

=
3

5
∙

7

4
 

=
21

20
. 

This same process applies to dividing rational expressions, although we might need to perform the additional step of 

reducing the resulting rational expression to lowest terms.  Ask students to generate the rule for division of rational 

numbers. 

 

The result summarized in the box above is also valid for real numbers.  

Now that we know how to divide rational numbers, how do we extend this to 

divide rational expressions? 

 Dividing rational expressions follows the same procedure as dividing 

rational numbers:  we multiply the first term by the reciprocal of the 

second.  We finish by reducing the product to lowest terms. 

 

  

𝑎

𝑐
÷

𝑏

𝑑
=

𝑎

𝑐
∙

𝑑

𝑏
. 

If 𝑎, 𝑏, 𝑐, and 𝑑 are integers with 𝑏 ≠ 0, 𝑐 ≠ 0, and 𝑑 ≠ 0, then 

Scaffolding: 

A side-by-side comparison may help as 

before.  

3

5
÷

4

7
=

21

20
 

𝑥3

4𝑦
÷

𝑦2

𝑥
= ? 

For struggling students, give 

 
𝑥2𝑦

4
÷

𝑥𝑦2

8
=

2𝑥

𝑦
 

 
3𝑦2

𝑧−1
÷

12𝑦5

(𝑧−1)2
=

(𝑧−1)

4𝑦3
. 

For advanced students, give 

 
𝑥−3

𝑥2+𝑥−2
÷

𝑥2−𝑥−6

𝑥−1
=

1

(𝑥+2)2
 

 
𝑥2−2𝑥−24

𝑥2−4
÷

𝑥2+3𝑥−4

𝑥2+𝑥−2
=

𝑥−6

𝑥−2
. 
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Example 3  (3 minutes)  

As in Example 2, ask students to apply their knowledge of rational-number division to rational expressions by working on 

their own or with a partner.  Circulate to assist and assess understanding.  Once students have made attempts to divide, 

use the scaffolded questions to develop the concept as necessary.   

 

Example 3 

Find the quotient and reduce to lowest terms:  
𝒙𝟐−𝟒

𝟑𝒙
÷

𝒙−𝟐

𝟐𝒙
.   

 

 First, we change the division of 
𝑥2−4

3𝑥
 by 

𝑥−2

2𝑥
 into multiplication of 

𝑥2−4

3𝑥
 by the multiplicative inverse of 

𝑥−2

2𝑥
. 

𝑥2 − 4

3𝑥
÷

𝑥 − 2

2𝑥
=

𝑥2 − 4

3𝑥
∙

2𝑥

𝑥 − 2
 

 Then, we perform multiplication as in the previous examples and exercises.  That is, we factor the numerator 

and denominator and divide any common factors present in both the numerator and denominator. 

𝑥2 − 4

3𝑥
÷

𝑥 − 2

2𝑥
=

(𝑥 − 2)(𝑥 + 2)

3𝑥
∙

2𝑥

𝑥 − 2
 

=
2(𝑥 + 2)

3
 

 

Exercise 4  (3 minutes) 

Allow students to work in pairs or small groups to evaluate the following quotient. 

 

Exercises 4–5  

4. Find the quotient and reduce to lowest terms:  
𝒙𝟐−𝟓𝒙+𝟔

𝒙+𝟒
÷

𝒙𝟐−𝟗

𝒙𝟐+𝟓𝒙+𝟒
. 

𝒙𝟐 − 𝟓𝒙 + 𝟔

𝒙 + 𝟒
÷

𝒙𝟐 − 𝟗

𝒙𝟐 + 𝟓𝒙 + 𝟒
=

𝒙𝟐 − 𝟓𝒙 + 𝟔

𝒙 + 𝟒
∙

𝒙𝟐 + 𝟓𝒙 + 𝟒

𝒙𝟐 − 𝟗
 

=
(𝒙 − 𝟑)(𝒙 − 𝟐)

𝒙 + 𝟒
∙

(𝒙 + 𝟒)(𝒙 + 𝟏)

(𝒙 − 𝟑)(𝒙 + 𝟑)
 

=
(𝒙 − 𝟐)(𝒙 + 𝟏)

(𝒙 + 𝟑)
 

 

Discussion  (4 minutes) 

What do we do when the numerator and denominator of a fraction are themselves fractions?  We call a fraction that 

contains fractions a complex fraction.  Remind students that the fraction bar represents division, so a complex fraction 

represents division between rational expressions. 
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Allow students the opportunity to simplify the following complex fraction. 

12
49⁄

27
28⁄

 

Allow students to struggle with the problem before discussing solution methods. 

12
49⁄

27
28⁄

=
12

49
÷

27

28
 

=
12

49
∙

28

27
 

=
3 ∙ 4

7 ∙ 7
∙

4 ∙ 7

33
 

=
42

7 ∙ 32
 

=
16

63
 

Notice that in simplifying the complex fraction above, we are merely performing division of rational numbers, and we 

already know how to do that.  Since we already know how to divide rational expressions, we can also simplify rational 

expressions whose numerators and denominators are rational expressions.  

 

Exercise 5  (4 minutes) 

Allow students to work in pairs or small groups to simplify the following rational 

expression. 

 

5. Simplify the rational expression. 

(
𝒙 + 𝟐

𝒙𝟐 − 𝟐𝒙 − 𝟑
)

(
𝒙𝟐 − 𝒙 − 𝟔

𝒙𝟐 + 𝟔𝒙 + 𝟓
)

 

𝒙 + 𝟐
𝒙𝟐 − 𝟐𝒙 − 𝟑
𝒙𝟐 − 𝒙 − 𝟔

𝒙𝟐 + 𝟔𝒙 + 𝟓

=
𝒙 + 𝟐

𝒙𝟐 − 𝟐𝒙 − 𝟑
÷

𝒙𝟐 − 𝒙 − 𝟔

𝒙𝟐 + 𝟔𝒙 + 𝟓
 

=
𝒙 + 𝟐

𝒙𝟐 − 𝟐𝒙 − 𝟑
∙

𝒙𝟐 + 𝟔𝒙 + 𝟓

𝒙𝟐 − 𝒙 − 𝟔
 

=
𝒙 + 𝟐

(𝒙 − 𝟑)(𝒙 + 𝟏)
∙

(𝒙 + 𝟓)(𝒙 + 𝟏)

(𝒙 − 𝟑)(𝒙 + 𝟐)
 

=
𝒙 + 𝟓

(𝒙 − 𝟑)𝟐
 

 

  

(
2𝑥
3𝑦

)

(
6𝑥

4𝑦2)
=

2𝑥

3𝑦
÷

6𝑥

4𝑦2
 

=
2𝑥

3𝑦
∙

4𝑦2

6𝑥
 

=
4

9
𝑦 

Scaffolding: 

For struggling students, give a 

simpler example, such as 
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Closing  (3 minutes) 

Ask students to summarize the important parts of the lesson in writing, to a partner, or as a class.  Use this as an 

opportunity to informally assess understanding of the lesson.  In particular, ask students to articulate the processes for 

multiplying and dividing rational expressions and simplifying complex rational expressions either verbally or symbolically.   

 

 

 

Exit Ticket  (4 minutes)   

Lesson Summary 

In this lesson, we extended multiplication and division of rational numbers to multiplication and division of rational 

expressions.  

 To multiply two rational expressions, multiply the numerators together and multiply the denominators 

together, and then reduce to lowest terms.  

 To divide one rational expression by another, multiply the first by the multiplicative inverse of the 

second, and reduce to lowest terms. 

 To simplify a complex fraction, apply the process for dividing one rational expression by another. 
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Name                                   Date                          

Lesson 24:  Multiplying and Dividing Rational Expressions 

 
Exit Ticket 
 

Perform the indicated operations, and reduce to lowest terms. 

1. 
𝑥 − 2

𝑥2 + 𝑥 − 2
∙

𝑥2 − 3𝑥 + 2

𝑥 + 2
 

 

 

 

 

 

 

 

 

 

 

 

 

2. 
(

𝑥 − 2

𝑥2 + 𝑥 − 2
)

(
𝑥2 − 3𝑥 + 2

𝑥 + 2
)
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Exit Ticket Sample Solutions 

 

Perform the indicated operations, and reduce to lowest terms. 

1. 
𝒙−𝟐

𝒙𝟐+𝒙−𝟐
∙

𝒙𝟐−𝟑𝒙+𝟐

𝒙+𝟐
 

 

𝒙 − 𝟐

𝒙𝟐 + 𝒙 − 𝟐
∙

𝒙𝟐 − 𝟑𝒙 + 𝟐

𝒙 + 𝟐
=

𝒙 − 𝟐

(𝒙 − 𝟏)(𝒙 + 𝟐)
∙

(𝒙 − 𝟏)(𝒙 − 𝟐)

𝒙 + 𝟐
 

=
(𝒙 − 𝟐)𝟐

(𝒙 + 𝟐)𝟐
 

 

2. 

(
𝒙−𝟐

𝒙𝟐+𝒙−𝟐
)

(
𝒙𝟐−𝟑𝒙+𝟐

𝒙+𝟐
)
 

(
𝒙 − 𝟐

𝒙𝟐 + 𝒙 − 𝟐
)

(
𝒙𝟐 − 𝟑𝒙 + 𝟐

𝒙 + 𝟐
)

=
𝒙 − 𝟐

𝒙𝟐 + 𝒙 − 𝟐
÷

𝒙𝟐 − 𝟑𝒙 + 𝟐

𝒙 + 𝟐
 

=
𝒙 − 𝟐

𝒙𝟐 + 𝒙 − 𝟐
∙

𝒙 + 𝟐

𝒙𝟐 − 𝟑𝒙 + 𝟐
 

=
𝒙 − 𝟐

(𝒙 − 𝟏)(𝒙 + 𝟐)
∙

𝒙 + 𝟐

(𝒙 − 𝟐)(𝒙 − 𝟏)
 

=
𝟏

(𝒙 − 𝟏)𝟐
 

 
 
Problem Set Sample Solutions 

 

1. Perform the following operations: 

a. Multiply 
𝟏

𝟑
(𝒙 − 𝟐) by 𝟗. b. Divide 

𝟏

𝟒
(𝒙 − 𝟖) by 

𝟏

𝟏𝟐
. c. Multiply 

𝟏

𝟒
(

𝟏

𝟑
𝒙 + 𝟐) by 𝟏𝟐. 

𝟑𝒙 − 𝟔 𝟑𝒙 − 𝟐𝟒 𝒙 + 𝟔 

   

d. Divide 
𝟏

𝟑
(

𝟐

𝟓
𝒙 −

𝟏

𝟓
) by 

𝟏

𝟏𝟓
. e. Multiply 

𝟐

𝟑
(𝟐𝒙 +

𝟐

𝟑
) by 

𝟗

𝟒
. f. Multiply 𝟎. 𝟎𝟑(𝟒 − 𝒙) by 𝟏𝟎𝟎. 

𝟐𝒙 − 𝟏 𝟑𝒙 + 𝟏 𝟏𝟐 − 𝟑𝒙 

 

2. Write each rational expression as an equivalent rational expression in lowest terms. 

a. (
𝒂𝟑𝒃𝟐

𝒄𝟐𝒅𝟐 ∙
𝒄

𝒂𝒃
) ÷

𝒂

𝒄𝟐𝒅𝟑 b. 
𝒂𝟐+𝟔𝒂+𝟗

𝒂𝟐−𝟗
∙

𝟑𝒂−𝟗

𝒂+𝟑
 c. 

𝟔𝒙

𝟒𝒙−𝟏𝟔
÷

𝟒𝒙

𝒙𝟐−𝟏𝟔
 

𝒂𝒃𝒄𝒅 

 

𝟑 𝟑(𝒙 + 𝟒)

𝟖
 

 

d. 
𝟑𝒙𝟐−𝟔𝒙

𝟑𝒙+𝟏
∙

𝒙+𝟑𝒙𝟐

𝒙𝟐−𝟒𝒙+𝟒
 e. 

𝟐𝒙𝟐−𝟏𝟎𝒙+𝟏𝟐

𝒙𝟐−𝟒
∙

𝟐+𝒙

𝟑−𝒙
 f. 

𝒂−𝟐𝒃

𝒂+𝟐𝒃
÷ (𝟒𝒃𝟐 − 𝒂𝟐) 

𝟑𝒙𝟐

𝒙 − 𝟐
 

−𝟐 
−

𝟏

(𝒂 + 𝟐𝒃)𝟐
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g. 
𝒅+𝒄

𝒄𝟐+𝒅𝟐 ÷
𝒄𝟐−𝒅𝟐

𝒅𝟐−𝒅𝒄
 h. 

𝟏𝟐𝒂𝟐−𝟕𝒂𝒃+𝒃𝟐

𝟗𝒂𝟐−𝒃𝟐 ÷
𝟏𝟔𝒂𝟐−𝒃𝟐

𝟑𝒂𝒃+𝒃𝟐  i. (
𝒙−𝟑

𝒙𝟐−𝟒
)

−𝟏
∙ (

𝒙𝟐−𝒙−𝟔

𝒙−𝟐
) 

−
𝒅

𝒄𝟐 + 𝒅𝟐
 

 

𝒃

𝟒𝒂 + 𝒃
 

(𝒙 + 𝟐)𝟐 

j. (
𝒙−𝟐

𝒙𝟐+𝟏
)

−𝟑
÷ (

𝒙𝟐−𝟒𝒙+𝟒

𝒙𝟐−𝟐𝒙−𝟑
) k. 

𝟔𝒙𝟐−𝟏𝟏𝒙−𝟏𝟎

𝟔𝒙𝟐−𝟓𝒙−𝟔
∙

𝟔−𝟒𝒙

𝟐𝟓−𝟐𝟎𝒙+𝟒𝒙𝟐 l. 
𝟑𝒙𝟑−𝟑𝒂𝟐𝒙

𝒙𝟐−𝟐𝒂𝒙+𝒂𝟐 ∙
𝒂−𝒙

𝒂𝟑𝒙+𝒂𝟐𝒙𝟐 

(𝒙 − 𝟑)(𝒙 + 𝟏)(𝒙𝟐 + 𝟏)𝟑

(𝒙 − 𝟐)𝟓
 

−
𝟐

𝟐𝒙−𝟓
, or 

𝟐

𝟓−𝟐𝒙
 −

𝟑

𝒂𝟐
 

 

3. Write each rational expression as an equivalent rational expression in lowest terms. 

a. 

(
𝟒𝒂

𝟔𝒃𝟐)

(
𝟐𝟎𝒂𝟑

𝟏𝟐𝒃
)
   

 

𝟐

𝟓𝒂𝟐𝒃
 

 

b. 

(
𝒙−𝟐

𝒙𝟐−𝟏
)

(
𝒙𝟐−𝟒

𝒙−𝟔
)
 

 

𝒙 − 𝟔

(𝒙 + 𝟐)(𝒙𝟐 − 𝟏)
 

 

c. 

(
𝒙𝟐+𝟐𝒙−𝟑

𝒙𝟐+𝟑𝒙−𝟒
)

(
𝒙𝟐+𝒙−𝟔

𝒙+𝟒
)

 
𝟏

𝒙 − 𝟐
 

 

 

4. Suppose that 𝒙 =
𝒕𝟐+𝟑𝒕−𝟒

𝟑𝒕𝟐−𝟑
 and 𝒚 =

𝒕𝟐+𝟐𝒕−𝟖

𝟐𝒕𝟐−𝟐𝒕−𝟒
, for 𝒕 ≠ 𝟏, 𝒕 ≠ −𝟏, 𝒕 ≠ 𝟐, and 𝒕 ≠ −𝟒.  Show that the value of 

𝒙𝟐𝒚−𝟐 does not depend on the value of 𝒕.   

𝒙𝟐𝒚−𝟐 = (
𝒕𝟐 + 𝟑𝒕 − 𝟒

𝟑𝒕𝟐 − 𝟑
)

𝟐

(
𝒕𝟐 + 𝟐𝒕 − 𝟖

𝟐𝒕𝟐 − 𝟐𝒕 − 𝟒
)

−𝟐

 

= (
𝒕𝟐 + 𝟑𝒕 − 𝟒

𝟑𝒕𝟐 − 𝟑
)

𝟐

÷ (
𝒕𝟐 + 𝟐𝒕 − 𝟖

𝟐𝒕𝟐 − 𝟐𝒕 − 𝟒
)

𝟐

 

= (
𝒕𝟐 + 𝟑𝒕 − 𝟒

𝟑𝒕𝟐 − 𝟑
)

𝟐

(
𝟐𝒕𝟐 − 𝟐𝒕 − 𝟒

𝒕𝟐 + 𝟐𝒕 − 𝟖
)

𝟐

 

= (
(𝒕 − 𝟏)(𝒕 + 𝟒)

𝟑(𝒕 − 𝟏)(𝒕 + 𝟏)
)

𝟐

(
𝟐(𝒕 − 𝟐)(𝒕 + 𝟏)

(𝒕 − 𝟐)(𝒕 + 𝟒)
)

𝟐

 

=
𝟒(𝒕 − 𝟏)𝟐(𝒕 + 𝟒)𝟐(𝒕 − 𝟐)𝟐(𝒕 + 𝟏)𝟐

𝟗(𝒕 − 𝟏)𝟐(𝒕 + 𝟏)𝟐(𝒕 − 𝟐)𝟐(𝒕 + 𝟒)𝟐
 

=
𝟒

𝟗
 

Since 𝒙𝟐𝒚−𝟐 =
𝟒
𝟗

, the value of 𝒙𝟐𝒚−𝟐 does not depend on 𝒕.   

 

 

 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
 
 
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 24 

ALGEBRA II 

Lesson 24: Multiplying and Dividing Rational Expressions 
 
 

 

279 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

5. Determine which of the following numbers is larger without using a calculator, 
𝟏𝟓𝟏𝟔

𝟏𝟔𝟏𝟓 or 
𝟐𝟎𝟐𝟒

𝟐𝟒𝟐𝟎.  (Hint:  We can 

compare two positive quantities 𝒂 and 𝒃 by computing the quotient 
𝒂

𝒃
.  If 

𝒂

𝒃
> 𝟏, then 𝒂 > 𝒃.  Likewise, if  

𝟎 <
𝒂
𝒃

< 𝟏, then 𝒂 < 𝒃.) 

𝟏𝟓𝟏𝟔

𝟏𝟔𝟏𝟓
÷

𝟐𝟎𝟐𝟒

𝟐𝟒𝟐𝟎
=

𝟏𝟓𝟏𝟔

𝟏𝟔𝟏𝟓
∙

𝟐𝟒𝟐𝟎

𝟐𝟎𝟐𝟒
 

=
𝟑𝟏𝟔 ∙ 𝟓𝟏𝟔

(𝟐𝟒)𝟏𝟓
∙

(𝟐𝟑)𝟐𝟎 ∙ 𝟑𝟐𝟎

(𝟐𝟐)𝟐𝟒 ∙ 𝟓𝟐𝟒
 

=
𝟐𝟔𝟎 ∙ 𝟑𝟑𝟔 ∙ 𝟓𝟏𝟔

𝟐𝟏𝟎𝟖 ∙ 𝟓𝟐𝟒
 

=
𝟑𝟑𝟔

𝟐𝟒𝟖 ∙ 𝟓𝟖
 

=
𝟗𝟏𝟖

𝟐𝟒𝟎 ∙ 𝟏𝟎𝟖
 

= (
𝟗

𝟏𝟎
)

𝟖

∙ (
𝟗𝟏𝟎

𝟐𝟒𝟎
) 

= (
𝟗

𝟏𝟎
)

𝟖

∙ (
𝟗

𝟏𝟔
)

𝟏𝟎

 

Since 
𝟗

𝟏𝟔
< 𝟏, and 

𝟗

𝟏𝟎
< 𝟏, we know that (

𝟗
𝟏𝟎

)
𝟖

∙ (
𝟗

𝟏𝟔
)

𝟏𝟎

< 𝟏.  Thus, 
𝟏𝟓𝟏𝟔

𝟏𝟔𝟏𝟓 ÷
𝟐𝟎𝟐𝟒

𝟐𝟒𝟐𝟎 < 𝟏, and we know that  

𝟏𝟓𝟏𝟔

𝟏𝟔𝟏𝟓 <
𝟐𝟎𝟐𝟒

𝟐𝟒𝟐𝟎. 

 

Extension: 

6. One of two numbers can be represented by the rational expression 
𝒙−𝟐

𝒙
, where 𝒙 ≠ 𝟎 and 𝒙 ≠ 𝟐.   

a. Find a representation of the second number if the product of the two numbers is 𝟏. 

Let the second number be 𝐲.  Then (
𝒙−𝟐

𝒙
) ∙ 𝒚 = 𝟏, so we have  

𝒚 = 𝟏 ÷ (
𝒙 − 𝟐

𝒙
) 

= 𝟏 ∙ (
𝒙

𝒙 − 𝟐
) 

=
𝒙

𝒙 − 𝟐
. 

 

b. Find a representation of the second number if the product of the two numbers is 𝟎.  

Let the second number be 𝒛.  Then (
𝒙−𝟐

𝒙
) ∙ 𝒛 = 𝟎, so we have 

𝒛 = 𝟎 ÷ (
𝒙 − 𝟐

𝒙
) 

= 𝟎 ∙ (
𝒙

𝒙 − 𝟐
) 

= 𝟎. 
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Lesson 25:  Adding and Subtracting Rational Expressions  

 
Student Outcomes 

 Students perform addition and subtraction of rational expressions. 

 

Lesson Notes 

This lesson reviews addition and subtraction of fractions using the familiar number line technique that students have 

seen in earlier grades.  This leads to an algebraic explanation of how to add and subtract fractions and an opportunity to 

practice MP.7.  The lesson then moves to the process for adding and subtracting rational expressions by converting to 

equivalent rational expressions with a common denominator.  As in the past three lessons, parallels are drawn between 

arithmetic of rational numbers and arithmetic of rational expressions.  

 

Classwork 

The four basic arithmetic operations are addition, subtraction, multiplication, and division.  The previous lesson showed 

how to multiply and divide rational expressions.  This lesson tackles the remaining operations of addition and subtraction 

of rational expressions, which are skills needed to address A-APR.C.6.  As discussed in the previous lesson, rational 

expressions are worked with in the same way as rational numbers expressed as fractions.  First, the lesson reviews the 

theory behind addition and subtraction of rational numbers. 

 

Exercise 1  (8 minutes) 

First, remind students how to add fractions with the same denominator.  Allow them to 

work through the following sum individually.  The solution should be presented to the 

class either by the teacher or by a student because the process of adding fractions will be 

extended to the new process of adding rational expressions.    

 

Exercises 1–4  

1. Calculate the following sum:  
𝟑

𝟏𝟎
+

𝟔

𝟏𝟎
.   

One approach to this calculation is to factor out 
𝟏

𝟏𝟎
 from each term. 

𝟑

𝟏𝟎
+

𝟔

𝟏𝟎
= 𝟑 ∙

𝟏

𝟏𝟎
+ 𝟔 ∙

𝟏

𝟏𝟎
 

= (𝟑 + 𝟔) ∙
𝟏

𝟏𝟎
 

=
𝟗

𝟏𝟎
 

  

 

Scaffolding: 

If students need practice 

adding and subtracting 

fractions with a common 

denominator, have them 

compute the following. 

 
2

5
+

1

5
 

 
5

7
−

3

7
 

 
17

24
−

12

24
 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
 
 
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 25 

ALGEBRA II 

Lesson 25: Adding and Subtracting Rational Expressions 
 
 

 

281 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Ask students for help in stating the rule for adding and subtracting rational numbers with the same denominator. 

 

The result in the box above is also valid for real numbers 𝑎, 𝑏, and 𝑐. 

 But what if the fractions have different denominators?  Let’s examine a technique to add the fractions 
2

5
 and 

1

3
. 

 Recall that when we first learned to add fractions, we represented them on a number line.  Let’s first look at 
2

5
. 

 

 And we want to add to this the fraction 
1

3
. 

 

 If we try placing these two segments next to each other, the exact location of the endpoint is difficult to 

identify. 

 

 The units on the two original graphs do not match.  We need to identify a common unit in order to identify the 

endpoint of the combined segments.  We need to identify a number into which both denominators divide 

without a remainder and write each fraction as an equivalent fraction with that number as the denominator; 

such a number is known as a common denominator.  

 Since 15 is a common denominator of 
2

5
 and 

1

3
, we divide the interval [0, 1] into 15 parts of equal length.  Now 

when we look at the segments of length 
2

5
 and 

1

3
 placed next to each other on the number line, we can see that 

the combined segment has length 
11

15
. 

 

 How can we do this without using the number line every time?  The fraction 
2

5
 is equivalent to 

6

15
, and the 

fraction 
1

3
 is equivalent to 

5

15
.  We then have 

2

5
+

1

3
=

6

15
+

5

15
 

=
11

15
. 

𝑎

𝑏
+

𝑐

𝑏
=

𝑎 + 𝑐

𝑏
     and     

𝑎

𝑏
−

𝑐

𝑏
=

𝑎 − 𝑐

𝑏
.  

If 𝑎, 𝑏, and 𝑐 are integers with 𝑏 ≠ 0, then 
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 Thus, when adding rational numbers, we have to find a common multiple for the two denominators and write 

each rational number as an equivalent rational number with the new common denominator.  Then we can add 

the numerators together.   

Have students discuss how to rewrite the original fraction as an equivalent fraction with the chosen common 

denominator.  Discuss how the identity property of multiplication allows one to multiply the top and the bottom by the 

same number so that the product of the original denominator and the number gives the chosen common denominator. 

 Generalizing, let’s add together two rational numbers, 
𝑎

𝑏
 and 

𝑐

𝑑
.  The first step is to rewrite both fractions as 

equivalent fractions with the same denominator.  A simple common denominator that could be used is the 

product of the original two denominators: 

𝑎

𝑏
+

𝑐

𝑑
=

𝑎𝑑

𝑏𝑑
+

𝑏𝑐

𝑏𝑑
. 

 Once we have a common denominator, we can add the two expressions together, using our previous rule for 

adding two expressions with the same denominator: 

𝑎

𝑏
+

𝑐

𝑑
=

𝑎𝑑 + 𝑏𝑐

𝑏𝑑
. 

 We could use the same approach to develop a process for subtracting rational numbers: 

𝑎

𝑏
−

𝑐

𝑑
=

𝑎𝑑 − 𝑏𝑐

𝑏𝑑
. 

 Now that we know to find a common denominator before adding or subtracting, we can state the general rule 

for adding and subtracting rational numbers.  Notice that one common denominator that always works is the 

product of the two original denominators. 

As with the other rules developed in this and the previous lesson, the rule summarized in the box above is also valid for 

real numbers.   

 

Exercises 2–4  (5 minutes) 

Ask students to work in groups to write what they have learned in their notebooks or journals.  Check in to assess their 

understanding.  Then, have students work in pairs to quickly work through the following review exercises.  Allow them to 

think about how to approach Exercise 4, which involves adding three rational expressions.  There are multiple ways to 

approach this problem.  They could generalize the process for two rational expressions, rearrange terms using the 

commutative property to combine the terms with the same denominator, and then add using the above process, or they 

could group the addends using the associative property and perform addition twice.   

 

2. 
𝟑

𝟐𝟎
−

𝟒

𝟏𝟓
 

𝟑

𝟐𝟎
−

𝟒

𝟏𝟓
=

𝟗

𝟔𝟎
−

𝟏𝟔

𝟔𝟎
= −

𝟕

𝟔𝟎
 

𝑎

𝑏
+

𝑐

𝑑
=

𝑎𝑑 + 𝑏𝑐

𝑏𝑑
     and     

𝑎

𝑏
−

𝑐

𝑑
=

𝑎𝑑 − 𝑏𝑐

𝑏𝑑
.  

If 𝑎, 𝑏, 𝑐, and 𝑑 are integers with 𝑏 ≠ 0 and 𝑑 ≠ 0, then 
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3. 
𝝅

𝟒
+

√𝟐

𝟓
 

𝝅

𝟒
+

√𝟐

𝟓
=

𝟓𝝅

𝟐𝟎
+

𝟒√𝟐

𝟐𝟎
=

𝟓𝝅 + 𝟒√𝟐

𝟐𝟎
 

 

4. 
𝒂

𝒎
+

𝒃

𝟐𝒎
−

𝒄

𝒎
 

𝒂

𝒎
+

𝒃

𝟐𝒎
−

𝒄

𝒎
=

𝟐𝒂

𝟐𝒎
+

𝒃

𝟐𝒎
−

𝟐𝒄

𝟐𝒎
=

𝟐𝒂 + 𝒃 − 𝟐𝒄

𝟐𝒎
 

 

Discussion  (2 minutes) 

 Before we can add rational numbers or rational expressions, we need to convert to equivalent rational 

expressions with the same denominators.  Finding such a denominator involves finding a common multiple of 

the original denominators.  For example, 60 is a common multiple of 20 and 15.  There are other common 

multiples, such as 120, 180, and 300, but smaller numbers are easier to work with. 

 To add and subtract rational expressions, we follow the same procedure as when adding and subtracting 

rational numbers.  First, we find a denominator that is a common multiple of the other denominators, and 

then we rewrite each expression as an equivalent rational expression with this new common denominator.  

We then apply the rule for adding or subtracting with the same denominator. 

 

Example 1  (10 minutes)  

Work through these examples as a class, getting input from students at each step.   

 

Example 1 

Perform the indicated operations below and simplify. 

a. 
𝒂+𝒃

𝟒
+

𝟐𝒂−𝒃

𝟓
 

A common multiple of 𝟒 and 𝟓 is 𝟐𝟎, so we can write each expression as an equivalent rational expression 

with denominator 𝟐𝟎.  We have 
𝒂+𝒃

𝟒
=

𝟓𝒂+𝟓𝒃

𝟐𝟎
 and 

𝟐𝒂−𝒃

𝟓
=

𝟖𝒂−𝟒𝒃

𝟐𝟎
, so that  

𝒂+𝒃

𝟒
+

𝟐𝒂−𝒃

𝟓
=

𝟓𝒂+𝟓𝒃

𝟐𝟎
+

𝟖𝒂−𝟒𝒃

𝟐𝟎
=

𝟏𝟑𝒂+𝒃

𝟐𝟎
. 

 

b. 
𝟒

𝟑𝒙
−

𝟑

𝟓𝒙𝟐 

A common multiple of 𝟑𝒙 and 𝟓𝒙𝟐 is 𝟏𝟓𝒙𝟐, so we can write each expression as an equivalent rational 

expression with denominator 𝟏𝟓𝒙𝟐.  We have 
𝟒

𝟑𝒙
−

𝟑

𝟓𝒙𝟐 =
𝟐𝟎𝒙

𝟏𝟓𝒙𝟐 −
𝟗

𝟏𝟓𝒙𝟐 =
𝟐𝟎𝒙−𝟗

𝟏𝟓𝒙𝟐 . 

𝑎

𝑏
+

𝑐

𝑏
=

𝑎 + 𝑐

𝑏
     and     

𝑎

𝑏
−

𝑐

𝑏
=

𝑎 − 𝑐

𝑏
.  

If 𝑎, 𝑏, and 𝑐 are rational expressions with 𝑏 ≠ 0, then 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
 
 
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 25 

ALGEBRA II 

Lesson 25: Adding and Subtracting Rational Expressions 
 
 

 

284 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

c. 
𝟑

𝟐𝒙𝟐+𝟐𝒙
+

𝟓

𝒙𝟐−𝟑𝒙−𝟒
 

Since 𝟐𝒙𝟐 + 𝟐𝒙 = 𝟐𝒙(𝒙 + 𝟏) and 𝒙𝟐 − 𝟑𝒙 − 𝟒 = (𝒙 − 𝟒)(𝒙 + 𝟏), a common multiple of 𝟐𝒙𝟐 + 𝟐𝒙 and  

𝒙𝟐 − 𝟑𝒙 − 𝟒 is 𝟐𝒙(𝒙 + 𝟏)(𝒙 − 𝟒).  Then we have 
𝟑

𝟐𝒙𝟐+𝟐𝒙
+

𝟓

𝒙𝟐−𝟑𝒙−𝟒
=

𝟑(𝒙−𝟒)

𝟐𝒙(𝒙+𝟏)(𝒙−𝟒)
+

𝟓∙𝟐𝒙

𝟐𝒙(𝒙+𝟏)(𝒙−𝟒)
=

𝟏𝟑𝒙−𝟏𝟐

𝟐𝒙(𝒙+𝟏)(𝒙−𝟒)
. 

 

Exercises 5–8  (8 minutes) 

Have students work on these exercises in pairs or small groups.  

 

Exercises 5–8 

Perform the indicated operations for each problem below. 

5. 
𝟓

𝒙−𝟐
+

𝟑𝒙

𝟒𝒙−𝟖
 

A common multiple is 𝟒(𝒙 − 𝟐). 

𝟓

𝒙 − 𝟐
+

𝟑𝒙

𝟒𝒙 − 𝟖
=

𝟐𝟎

𝟒(𝒙 − 𝟐)
+

𝟑𝒙

𝟒(𝒙 − 𝟐)
=

𝟑𝒙 + 𝟐𝟎

𝟒(𝒙 − 𝟐)
 

 

6. 
𝟕𝒎

𝒎−𝟑
+

𝟓𝒎

𝟑−𝒎
 

Notice that (𝟑 − 𝒎) = −(𝒎 − 𝟑).  

A common multiple is (𝒎 − 𝟑). 

𝟕𝒎

𝒎 − 𝟑
+

𝟓𝒎

𝟑 − 𝒎
=

𝟕𝒎

𝒎 − 𝟑
+

−𝟓𝒎

𝒎 − 𝟑
=

𝟕𝒎

𝒎 − 𝟑
−

𝟓𝒎

𝒎 − 𝟑
=

𝟐𝒎

𝒎 − 𝟑
 

 

7. 
𝒃𝟐

𝒃𝟐−𝟐𝒃𝒄+𝒄𝟐 −
𝒃

𝒃−𝒄
 

A common multiple is (𝒃 − 𝒄)(𝒃 − 𝒄). 

𝒃𝟐

𝒃𝟐 − 𝟐𝒃𝒄 + 𝒄𝟐
−

𝒃

𝒃 − 𝒄
=

𝒃𝟐

(𝒃 − 𝒄)(𝒃 − 𝒄)
−

𝒃𝟐 − 𝒃𝒄

(𝒃 − 𝒄)(𝒃 − 𝒄)
=

𝒃𝒄

(𝒃 − 𝒄)𝟐
 

 

8. 
𝒙

𝒙𝟐−𝟏
−

𝟐𝒙

𝒙𝟐+𝒙−𝟐
 

A common multiple is (𝒙 − 𝟏)(𝒙 + 𝟏)(𝒙 + 𝟐). 

𝒙

𝒙𝟐 − 𝟏
−

𝟐𝒙

𝒙𝟐 + 𝒙 − 𝟐
=

𝒙

(𝒙 − 𝟏)(𝒙 + 𝟏)
−

𝟐𝒙

(𝒙 − 𝟏)(𝒙 + 𝟐)
=

𝒙(𝒙 + 𝟐)

(𝒙 − 𝟏)(𝒙 + 𝟏)(𝒙 + 𝟐)
−

𝟐𝒙(𝒙 + 𝟏)

(𝒙 − 𝟏)(𝒙 + 𝟏)(𝒙 + 𝟐)

=
−𝒙𝟐

(𝒙 − 𝟏)(𝒙 + 𝟏)(𝒙 + 𝟐)
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Example 2  (5 minutes)  

Complex fractions were introduced in the previous lesson with multiplication and division of rational expressions, but 

these examples require performing addition and subtraction operations prior to doing the division.  Remind students 

that when rewriting a complex fraction as division of rational expressions, they should add parentheses to the 

expressions both in the numerator and denominator.  Then they should work inside the parentheses first following the 

standard order of operations.  

 

Example 2 

Simplify the following expression. 

𝒃𝟐 + 𝒃 − 𝟏
𝟐𝒃 − 𝟏

− 𝟏

𝟒 −
𝟖

(𝒃 + 𝟏)

 

First, we can rewrite the complex fraction as a division problem, remembering to add parentheses. 

𝒃𝟐 + 𝒃 − 𝟏
𝟐𝒃 − 𝟏

− 𝟏

𝟒 −
𝟖

(𝒃 + 𝟏)

= (
𝒃𝟐 + 𝒃 − 𝟏

𝟐𝒃 − 𝟏
− 𝟏) ÷ (𝟒 −

𝟖

(𝒃 + 𝟏)
) 

Remember that to divide rational expressions, we multiply by the reciprocal of the quotient.  However, we first need to 

write each expression as a rational expression in lowest terms.  For this, we need to find common denominators. 

𝒃𝟐 + 𝒃 − 𝟏

𝟐𝒃 − 𝟏
− 𝟏 =

𝒃𝟐 + 𝒃 − 𝟏

𝟐𝒃 − 𝟏
−

𝟐𝒃 − 𝟏

𝟐𝒃 − 𝟏
 

=
𝒃𝟐 − 𝒃

𝟐𝒃 − 𝟏
 

 

𝟒 −
𝟖

(𝒃 + 𝟏)
=

𝟒(𝒃 + 𝟏)

𝒃 + 𝟏
−

𝟖

(𝒃 + 𝟏)
 

=
𝟒𝒃 − 𝟒

(𝒃 + 𝟏)
 

=
𝟒(𝒃 − 𝟏)

𝒃 + 𝟏
 

Now, we can substitute these equivalent expressions into our calculation above and continue to perform the division as 

we did in Lesson 24. 

𝒃𝟐 + 𝒃 − 𝟏
𝟐𝒃 − 𝟏

− 𝟏

𝟒 −
𝟖

(𝒃 + 𝟏)

= (
𝒃𝟐 + 𝒃 − 𝟏

𝟐𝒃 − 𝟏
− 𝟏) ÷ (𝟒 −

𝟖

(𝒃 + 𝟏)
) 

= (
𝒃𝟐 − 𝒃

𝟐𝒃 − 𝟏
) ÷ (

𝟒(𝒃 − 𝟏)

𝒃 + 𝟏
) 

= (
𝒃(𝒃 − 𝟏)

𝟐𝒃 − 𝟏
) ∙ (

(𝒃 + 𝟏)

𝟒(𝒃 − 𝟏)
) 

=
𝒃(𝒃 + 𝟏)

𝟒(𝟐𝒃 − 𝟏)
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Closing  (2 minutes) 

Ask students to summarize the important parts of the lesson in writing, to a partner, or as a class.  Use this opportunity 

to informally assess their understanding of the lesson.  In particular, ask students to verbally or symbolically articulate 

the processes for adding and subtracting rational expressions.   

 

 

 

Exit Ticket  (5 minutes)  

Lesson Summary 

In this lesson, we extended addition and subtraction of rational numbers to addition and subtraction of rational 

expressions.  The process for adding or subtracting rational expressions can be summarized as follows:   

 Find a common multiple of the denominators to use as a common denominator. 

 Find equivalent rational expressions for each expression using the common denominator. 

 Add or subtract the numerators as indicated and simplify if needed. 
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Name                                   Date                          

Lesson 25:  Adding and Subtracting Rational Expressions 

 
Exit Ticket 
 

Perform the indicated operation. 

1. 
3

𝑎+2
+

4

𝑎−5
 

 

 

 

 

 

 

 

 

 

 

 

 

2. 
4𝑟

𝑟+3
−

5

𝑟
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Exit Ticket Sample Solutions 

 

Perform the indicated operation. 

1. 
𝟑

𝒂+𝟐
+

𝟒

𝒂−𝟓
 

𝟑

𝒂 + 𝟐
+

𝟒

𝒂 − 𝟓
=

𝟑𝒂 − 𝟏𝟓

(𝒂 + 𝟐)(𝒂 − 𝟓)
+

𝟒𝒂 + 𝟖

(𝒂 + 𝟐)(𝒂 − 𝟓)
 

=
𝟕𝒂 − 𝟕

(𝒂 + 𝟐)(𝒂 − 𝟓)
 

 

2. 
𝟒𝒓

𝒓+𝟑
−

𝟓

𝒓
 

𝟒𝒓

𝒓 + 𝟑
−

𝟓

𝒓
=

𝟒𝒓𝟐

𝒓(𝒓 + 𝟑)
−

𝟓𝒓 + 𝟏𝟓

𝒓(𝒓 + 𝟑)
 

=
𝟒𝒓𝟐 − 𝟓𝒓 − 𝟏𝟓

𝒓(𝒓 + 𝟑)
 

 
 
Problem Set Sample Solutions 

 

1. Write each sum or difference as a single rational expression. 

a. 
𝟕

𝟖
−

√𝟑

𝟓
 

𝟑𝟓 − 𝟖√𝟑

𝟒𝟎
 

 

b. 
√𝟓

𝟏𝟎
+

√𝟐

𝟔
+ 𝟐 

𝟑√𝟓 + 𝟓√𝟐 + 𝟔𝟎

𝟑𝟎
 

 

c. 
𝟒

𝒙
+

𝟑

𝟐𝒙
 

𝟏𝟏

𝟐𝒙
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2. Write as a single rational expression. 

a. 
𝟏

𝒙
−

𝟏

𝒙−𝟏
 b. 

𝟑𝒙

𝟐𝒚
−

𝟓𝒙

𝟔𝒚
+

𝒙

𝟑𝒚
 c. 

𝒂−𝒃

𝒂𝟐 +
𝟏

𝒂
 

−
𝟏

𝒙(𝒙 − 𝟏)
 

 

𝒙

𝒚
 

𝟐𝒂 − 𝒃

𝒂𝟐
 

d. 
𝟏

𝒑−𝟐
−

𝟏

𝒑+𝟐
 e. 

𝟏

𝒑−𝟐
+

𝟏

𝟐−𝒑
 f. 

𝟏

𝒃+𝟏
−

𝒃

𝟏+𝒃
 

𝟒

(𝒑 − 𝟐)(𝒑 + 𝟐)
 

 

𝟎 𝟏 − 𝒃

𝒃 + 𝟏
 

g. 𝟏 −
𝟏

𝟏+𝒑
 h. 

𝒑+𝒒

𝒑−𝒒
− 𝟐 i. 

𝒓

𝒔−𝒓
+

𝒔

𝒓+𝒔
 

𝒑

𝟏 + 𝒑
 

𝟑𝒒 − 𝒑

𝒑 − 𝒒
 

𝒓𝟐 + 𝒔𝟐

(𝒔 − 𝒓)(𝒓 + 𝒔)
 

 

j. 
𝟑

𝒙−𝟒
+

𝟐

𝟒−𝒙
   k. 

𝟑𝒏

𝒏−𝟐
+

𝟑

𝟐−𝒏
   l. 

𝟖𝒙

𝟑𝒚−𝟐𝒙
+

𝟏𝟐𝒚

𝟐𝒙−𝟑𝒚
   

𝟏

𝒙 − 𝟒
 

 

𝟑𝒏 − 𝟑

𝒏 − 𝟐
 

−𝟒 

m. 
𝟏

𝟐𝒎−𝟒𝒏
−

𝟏

𝟐𝒎+𝟒𝒏
−

𝒎

𝒎𝟐−𝟒𝒏𝟐 

n. 
𝟏

(𝟐𝒂−𝒃)(𝒂−𝒄)
+

𝟏

(𝒃−𝒄)(𝒃−𝟐𝒂)
 

o. 
𝒃𝟐+𝟏

𝒃𝟐−𝟒
+

𝟏

𝒃+𝟐
+

𝟏

𝒃−𝟐
  

 

−
𝟏

𝒎 + 𝟐𝒏
 

 

𝒃 − 𝒂

(𝒂 − 𝒄)(𝒃 − 𝒄)(𝟐𝒂 − 𝒃)
 

 

𝒃𝟐 + 𝟐𝒃 + 𝟏

(𝒃 − 𝟐)(𝒃 + 𝟐)
 

 

3. Write each rational expression as an equivalent rational expression in lowest terms. 

a. 

𝟏

𝒂
 − 

𝟏

𝟐𝒂
𝟒

𝒂

 b. 

𝟓𝒙

𝟐
 + 𝟏

𝟓𝒙

𝟒
 − 

𝟏

𝟓𝒙

 c. 

𝟏 + 
𝟒𝒙 + 𝟑

𝒙𝟐 + 𝟏

𝟏 − 
𝒙 + 𝟕

𝒙𝟐 + 𝟏

 

𝟏

𝟖
 

𝟏𝟎𝒙

𝟓𝒙 − 𝟐
 

𝒙 + 𝟐

𝒙 − 𝟑
 

 

Extension:  

4. Suppose that 𝒙 ≠ 𝟎 and 𝒚 ≠ 𝟎.  We know from our work in this section that 
𝟏

𝒙
∙

𝟏

𝒚
 is equivalent to 

𝟏

𝒙𝒚
.  Is it also true 

that 
𝟏

𝒙
+

𝟏

𝒚
 is equivalent to 

𝟏

𝒙+𝒚
?  Provide evidence to support your answer.   

No, the rational expressions 
𝟏

𝒙
+

𝟏

𝒚
 and 

𝟏

𝒙+𝒚
 are not equivalent.  Consider 𝒙 = 𝟐 and 𝒚 = 𝟏.  Then 

𝟏

𝒙+𝒚
=

𝟏

𝟐+𝟏
=

𝟏

𝟑
,  

but 
𝟏

𝒙
+

𝟏

𝒚
=

𝟏

𝟐
+ 𝟏 =

𝟑

𝟐
.  Since 

𝟏

𝟑
≠

𝟑

𝟐
, the expressions 

𝟏

𝒙
+

𝟏

𝒚
 and 

𝟏

𝒙+𝒚
 are not equivalent. 
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5. Suppose that 𝒙 =
𝟐𝒕

𝟏+𝒕𝟐 and 𝒚 =
𝟏−𝒕𝟐

𝟏+𝒕𝟐.  Show that the value of 𝒙𝟐 + 𝒚𝟐 does not depend on the value of 𝒕. 

𝐱𝟐 + 𝐲𝟐 = (
𝟐𝐭

𝟏 + 𝐭𝟐
)

𝟐

+ (
𝟏 − 𝐭𝟐

𝟏 + 𝐭𝟐
)

𝟐

 

=
𝟒𝐭𝟐

(𝟏 + 𝐭𝟐)𝟐
+

(𝟏 − 𝐭𝟐)𝟐

(𝟏 + 𝐭𝟐)𝟐
 

=
𝟒𝐭𝟐 + (𝟏 − 𝟐𝐭𝟐 + 𝐭𝟒)

(𝟏 + 𝐭𝟐)𝟐
 

=
𝟏 + 𝟐𝐭𝟐 + 𝐭𝟒

𝟏 + 𝟐𝐭𝟐 + 𝐭𝟒
 

= 𝟏 

Since 𝒙𝟐 + 𝒚𝟐 = 𝟏, the value of 𝒙𝟐 + 𝒚𝟐 does not depend on the value of 𝒕. 

 

6. Show that for any real numbers 𝒂 and 𝒃, and any integers 𝒙 and 𝒚 so that 𝒙 ≠ 𝟎, 𝒚 ≠ 𝟎, 𝒙 ≠ 𝒚, and 𝒙 ≠ −𝒚,  

(
𝒚
𝒙

−
𝒙
𝒚

) (
𝒂𝒙+𝒃𝒚

𝒙+𝒚
−

𝒂𝒙−𝒃𝒚
𝒙−𝒚

) = 𝟐(𝒂 − 𝒃). 

(
𝒚

𝒙
−

𝒙

𝒚
) (

𝒂𝒙 + 𝒃𝒚

𝒙 + 𝒚
−

𝒂𝒙 − 𝒃𝒚

𝒙 − 𝒚
) = (

𝒚𝟐

𝒙𝒚
−

𝒙𝟐

𝒙𝒚
) (

(𝒂𝒙 + 𝒃𝒚)(𝒙 − 𝒚)

(𝒙 + 𝒚)(𝒙 − 𝒚)
−

(𝒂𝒙 − 𝒃𝒚)(𝒙 + 𝒚)

(𝒙 − 𝒚)(𝒙 + 𝒚)
) 

= (
𝒚𝟐 − 𝒙𝟐

𝒙𝒚
) (

𝒂𝒙𝟐 − 𝒂𝒙𝒚 + 𝒃𝒙𝒚 − 𝒃𝒚𝟐

𝒙𝟐 − 𝒚𝟐
−

(𝒂𝒙𝟐 + 𝒂𝒙𝒚 − 𝒃𝒙𝒚 − 𝒃𝒚𝟐

𝒙𝟐 − 𝒚𝟐
) 

= − (
𝒙𝟐 − 𝒚𝟐

𝒙𝒚
) (

−𝟐𝒂𝒙𝒚 + 𝟐𝒃𝒙𝒚

𝒙𝟐 − 𝒚𝟐
) 

= − (
𝟏

𝒙𝒚
) (

−𝟐𝒙𝒚(𝒂 − 𝒃)

𝟏
) 

= 𝟐(𝒂 − 𝒃) 

 

7. Suppose that 𝒏 is a positive integer.   

a. Rewrite the product in the form 
𝑷

𝑸
 for polynomials 𝑷 and 𝑸:  (𝟏 +

𝟏
𝒏

) (𝟏 +
𝟏

𝒏+𝟏
). 

(𝟏 +
𝟏

𝒏
) (𝟏 +

𝟏

𝒏 + 𝟏
) = (

𝒏 + 𝟏

𝒏
) (

𝒏 + 𝟐

𝒏 + 𝟏
) = (

𝒏 + 𝟐

𝒏
) 

 

b. Rewrite the product in the form 
𝑷

𝑸
 for polynomials 𝑷 and 𝑸:  (𝟏 +

𝟏
𝒏

) (𝟏 +
𝟏

𝒏+𝟏
) (𝟏 +

𝟏
𝒏+𝟐

). 

(𝟏 +
𝟏

𝒏
) (𝟏 +

𝟏

𝒏 + 𝟏
) (𝟏 +

𝟏

𝒏 + 𝟐
) = (

𝒏 + 𝟏

𝒏
) (

𝒏 + 𝟐

𝒏 + 𝟏
) (

𝒏 + 𝟑

𝒏 + 𝟐
) = (

𝒏 + 𝟑

𝒏
) 

 

c. Rewrite the product in the form 
𝑷

𝑸
 for polynomials 𝑷 and 𝑸:  (𝟏 +

𝟏
𝒏

) (𝟏 +
𝟏

𝒏+𝟏
) (𝟏 +

𝟏
𝒏+𝟐

) (𝟏 +
𝟏

𝒏+𝟑
). 

(𝟏 +
𝟏

𝒏
) (𝟏 +

𝟏

𝒏 + 𝟏
) (𝟏 +

𝟏

𝒏 + 𝟐
) (𝟏 +

𝟏

𝒏 + 𝟑
) = (

𝒏 + 𝟏

𝒏
) (

𝒏 + 𝟐

𝒏 + 𝟏
) (

𝒏 + 𝟑

𝒏 + 𝟐
) (

𝒏 + 𝟒

𝒏 + 𝟑
) = (

𝒏 + 𝟒

𝒏
) 

 

d. If this pattern continues, what is the product of 𝒏 of these factors? 

If we have 𝒏 of these factors, then the product will be 

(𝟏 +
𝟏

𝒏
) (𝟏 +

𝟏

𝒏 + 𝟏
) ⋯ (𝟏 +

𝟏

𝒏 + (𝒏 − 𝟏)
) =

𝒏 + 𝒏

𝒏
= 𝟐. 
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Lesson 26:  Solving Rational Equations 

 
Student Outcomes 

 Students solve rational equations, monitoring for the creation of extraneous solutions. 

 

Lesson Notes 

In the preceding lessons, students learned to add, subtract, multiply, and divide rational expressions so that in this lesson 

they can solve equations involving rational expressions (A-REI.A.2).  The skills developed in this lesson are required to 

solve equations of the form 𝑓(𝑥) = 𝑐 for a rational function 𝑓 and constant 𝑐 in Lesson 27 and later in Module 3  

(F-BF.B.4a).   

There is more than one approach to solving a rational equation, and this section explores two such methods.  The first 

method is to multiply both sides by the common denominator to clear fractions.  The second method is to find 

equivalent forms of all expressions with a common denominator, set the numerators equal to each other, and solve the 

resulting equation.  Either approach requires keeping an eye out for extraneous solutions; in other words, values that 

appear to be a solution to the equation but cause division by zero and are, thus, not valid.  Throughout the work with 

rational expressions, students analyze the structure of the expressions in order to decide on their next algebraic steps 

(MP.7).  Encourage students to check their answers by substituting their solutions back into each side of the equation 

separately. 

 

Classwork 

Exercises 1–2  (8 minutes)  

Let students solve this any way they can, and then discuss their answers.  Focus on adding 

the fractions on the left and equating numerators or multiplying both sides by a common 

multiple.  Indicate a practical technique of finding a common denominator.  These first 

two exercises highlight MP.7, as students must recognize the given expressions to be of 

the form 
𝑎

𝑏
+

𝑐

𝑏
 or 

𝑎

𝑏
+

𝑐

𝑑
; by expressing the equations in the simplified form 

𝐴

𝐵
=

𝐶

𝐵
, they 

realize that we must have 𝐴 = 𝐶. 

 

Exercises 1–2 

Solve the following equations for 𝒙, and give evidence that your solutions are correct. 

1. 
𝒙

𝟐
+

𝟏

𝟑
=

𝟓

𝟔
 

Combining the expressions on the left, we have 
𝟑𝒙

𝟔
+

𝟐

𝟔
=

𝟓

𝟔
, so 

𝟑𝒙+𝟐

𝟔
=

𝟓

𝟔
; therefore, 𝟑𝒙 + 𝟐 = 𝟓.  Then, 𝒙 = 𝟏. 

Or, using another approach:  𝟔 ∙ (
𝒙
𝟐

+
𝟏
𝟑

) = 𝟔 ∙ (
𝟓
𝟔

), so 𝟑𝒙 + 𝟐 = 𝟓; then, 𝒙 = 𝟏. 

The solution to this equation is 𝟏.  To verify, we see that when 𝒙 = 𝟏, we have 
𝒙

𝟐
+

𝟏

𝟑
=

𝟏

𝟐
+

𝟏

𝟑
=

𝟑

𝟔
+

𝟐

𝟔
=

𝟓

𝟔
, so 𝟏 is 

a valid solution.  

 

𝑥 − 1

𝑥 + 2
=

3

4
. 

Scaffolding: 

Struggling students may 
benefit from first solving the 

equation 
𝑥

5
−

2

5
=

1

5
.   

More advanced students may 
try to solve 
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2. 
𝟐𝒙

𝟗
+

𝟓

𝟗
=

𝟖

𝟗
 

Since the expressions already have a common denominator, we see that 
𝟐𝒙

𝟗
+

𝟓

𝟗
=

𝟐𝒙+𝟓

𝟗
, so we need to solve  

𝟐𝒙+𝟓

𝟗
=

𝟖

𝟗
.  It then follows that the numerators are equal, so 𝟐𝒙 + 𝟓 = 𝟖.  Solving for 𝒙 gives 𝒙 =

𝟑
𝟐

.  To verify, we 

see that when 𝒙 =
𝟑
𝟐

, we have 
𝟐𝒙

𝟗
+

𝟓

𝟗
=

𝟐(𝟑
𝟐

)

𝟗
+

𝟓

𝟗
=

𝟑

𝟗
+

𝟓

𝟗
=

𝟖

𝟗
; thus, 

𝟑

𝟐
 is a valid solution. 

 

Remind students that two rational expressions with the same denominator are equal if the numerators are equal. 

 

Discussion  (2 minutes) 

Now that students know how to add, subtract, multiply, and divide rational expressions, it is time to use some of those 

basic operations to solve equations involving rational expressions.  An equation involving rational expressions is called a 

rational equation.  Keeping the previous exercise in mind, this section looks at two different approaches to solving 

rational equations. 

 

Example  (6 minutes)  

Ask students to try to solve this problem on their own.  Have them discuss and explain their methods in groups or with 

neighbors.  The teacher should circulate and lead a discussion of both methods once students have had a chance to try 

solving on their own.  

 

Example 

Solve the following equation:  
𝒙+𝟑

𝟏𝟐
=

𝟓

𝟔
. 

Equating Numerators Method:  Obtain expressions on both sides with the same denominator and equate numerators. 

𝒙 + 𝟑

𝟏𝟐
=

𝟓

𝟔
⋅

𝟐

𝟐
 

𝒙 + 𝟑

𝟏𝟐
=

𝟏𝟎

𝟏𝟐
 

Thus, 𝒙 + 𝟑 = 𝟏𝟎, and 𝒙 = 𝟕; therefore, 𝟕 is the solution to our original equation. 

Clearing Fractions Method:  Multiply both sides by a common multiple of the denominators to clear the fractions, and 

then solve the resulting equation. 

𝟏𝟐 ⋅ (
𝒙 + 𝟑

𝟏𝟐
) = 𝟏𝟐 ⋅ (

𝟓

𝟔
) 

𝒙 + 𝟑 = 𝟏𝟎 

We can see, once again, that the solution is 𝟕. 

 

  

MP.1 
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Discussion  (3 minutes)  

Ask students to discuss both methods used in the previous example.  Which method do they prefer, and why?  Does one 

method seem to be more efficient than the other?  Have a few groups report their opinions to the class.  At no time 

should students be required to use a particular method; just be sure they understand both approaches, and allow them 

to use whichever method seems more natural. 

 

Exercise 3  (6 minutes) 

Remind students that when saying a solution to an equation, this refers to a value of the variable, usually 𝑥, which 

results in a true number sentence.  In Lesson 22, students learned that there are some values of the variable that are not 

allowed in order to avoid division by zero.  Before students start working on the following exercise, ask them to identify 

the values of 𝑥 that must be excluded.  Wait for students to respond that 𝑥 ≠ 0 and 𝑥 ≠ 2 before having them work 

with a partner on the following exercise.  

 

Exercises 3–7  

3. Solve the following equation:  
𝟑

𝒙
=

𝟖

𝒙−𝟐
. 

Method 1:  Convert both expressions to equivalent expressions with a common denominator.  The common 

denominator is 𝒙(𝒙 − 𝟐), so we use the identity property of multiplication to multiply the left side by 
𝒙−𝟐

𝒙−𝟐
 and the 

right side by 
𝒙

𝒙
.  This does not change the value of the expression on either side of the equation.  

(
𝒙 − 𝟐

𝒙 − 𝟐
) ∙ (

𝟑

𝒙
) = (

𝒙

𝒙
) ∙ (

𝟖

𝒙 − 𝟐
) 

𝟑𝒙 − 𝟔

𝒙(𝒙 − 𝟐)
=

𝟖𝒙

𝒙(𝒙 − 𝟐)
 

Since the denominators are equal, we can see that the numerators must be equal; thus, 𝟑𝒙 − 𝟔 = 𝟖𝒙.  Solving for 𝒙 

gives a solution of −
𝟔
𝟓

.  At the outset of this example, we noted that 𝒙 cannot take on the value of 𝟎 or 𝟐, but there 

is nothing preventing 𝒙 from taking on the value −
𝟔
𝟓

.  Thus, we have found a solution.  We can check our work.  

Substituting −
𝟔
𝟓

 into 
𝟑

𝒙
 gives us 

𝟑

(−𝟔
𝟓⁄ )

= −
𝟓

𝟐
, and substituting −

𝟔
𝟓

 into 
𝟖

𝒙−𝟐
 gives us 

𝟖

(−𝟔
𝟓⁄ )−𝟐

= −
𝟓

𝟐
.  Thus, 

when 𝒙 = −
𝟔
𝟓

, we have 
𝟑

𝒙
=

𝟖

𝒙−𝟐
; therefore, −

𝟔
𝟓

 is indeed a solution.   

 

Method 2:  Multiply both sides of the equation by the common denominator 𝒙(𝒙 − 𝟐), and solve the resulting 

equation. 

𝒙(𝒙 − 𝟐) (
𝟑

𝒙
) = 𝒙(𝒙 − 𝟐) (

𝟖

𝒙 − 𝟐
) 

𝟑(𝒙 − 𝟐) = 𝟖𝒙 

𝟑𝒙 − 𝟔 = 𝟖𝒙 

From this point, we follow the same steps as we did in Method 1, and we get the same solution:  −
𝟔
𝟓

. 

 

  

MP.7 
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Exercise 4  (6 minutes) 

Have students continue to work with partners to solve the following equation.  Walk around the room and observe 

student progress; if necessary, offer the following hints and reminders:   

 Reminder:  Ask students to identify excluded values of 𝑎.  Suggest that they factor the denominator 𝑎2 − 4.  

They should discover that 𝑎 ≠ 2 and 𝑎 ≠ −2 must be specified. 

 Hint 1:  Ask students to identify a common denominator of the three expressions in the equation.  They should 

respond with (𝑎 − 2)(𝑎 + 2), or equivalently, 𝑎2 − 4. 

 Hint 2:  What do we need to do with this common denominator?  They should determine that they need to 

find equivalent rational expressions for each of the terms with denominator (𝑎 − 2)(𝑎 + 2). 

 

4. Solve the following equation for 𝒂:  
𝟏

𝒂+𝟐
+

𝟏

𝒂−𝟐
=

𝟒

𝒂𝟐−𝟒
. 

First, we notice that we must have 𝒂 ≠ 𝟐 and 𝒂 ≠ −𝟐.  Then, we apply Method 1: 

(
𝒂 − 𝟐

𝒂 − 𝟐
) ∙ (

𝟏

𝒂 + 𝟐
) + (

𝒂 + 𝟐

𝒂 + 𝟐
) ∙ (

𝟏

𝒂 − 𝟐
) =

𝟒

(𝒂 − 𝟐)(𝒂 + 𝟐)
 

𝒂 − 𝟐

(𝒂 − 𝟐)(𝒂 + 𝟐)
+

𝒂 + 𝟐

(𝒂 − 𝟐)(𝒂 + 𝟐)
=

𝟒

(𝒂 − 𝟐)(𝒂 + 𝟐)
 

𝟐𝒂

(𝒂 − 𝟐)(𝒂 + 𝟐)
=

𝟒

(𝒂 − 𝟐)(𝒂 + 𝟐)
. 

Since the denominators are equal, we know that the numerators are equal; thus, we have 

𝟐𝒂 = 𝟒, which means that 𝒂 = 𝟐.  Thus, the only solution to this equation is 𝟐.  However, 𝒂 

is not allowed to be 𝟐 because if 𝒂 = 𝟐, then 
𝟏

𝒂−𝟐
 is not defined.  This means that the 

original equation, 
𝟏

𝒂+𝟐
+

𝟏

𝒂−𝟐
=

𝟒

𝒂𝟐−𝟒
, has no solution. 

 

Introduce the term extraneous solution.  An invalid solution that may arise when we 

manipulate a rational expression is called an extraneous solution.  An extraneous solution 

is a value that satisfies a transformed equation but does not satisfy the original equation.  

 

Exercises 5–7  (8 minutes) 

Give students a few minutes to discuss extraneous solutions with a partner.  When do they occur, and how do you know 

when you have one?  Extraneous solutions occur when one of the solutions found does not make a true number 

sentence when substituted into the original equation.  The only way to know there is one is to note the values of the 

variable that will cause a part of the equation to be undefined.  This lesson is concerned with division by zero; later 

lessons exclude values of the variable that would cause the square root of a negative number.  Make sure that all 

students have an understanding of extraneous solutions before proceeding.  Then, have them work in pairs on the 

following exercises.  

  

Scaffolding: 

Let students know that the 

word extraneous has meaning 

outside of the mathematics 

classroom; ask them to guess  

its definition, and then provide 

the actual definition. 

EXTRANEOUS:  Irrelevant or 

unrelated to the subject being 

dealt with. 

Students may benefit from 

choral repetition, as well as a 

visual representation of this 

word. 
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5. Solve the following equation.  Remember to check for extraneous solutions. 

𝟒

𝟑𝒙
+

𝟓

𝟒
=

𝟑

𝒙
 

First, note that we must have 𝒙 ≠ 𝟎.  

Equating numerators:  
𝟏𝟔

𝟏𝟐𝒙
+

𝟏𝟓𝒙

𝟏𝟐𝒙
=

𝟑𝟔

𝟏𝟐𝒙
  Then, we have 𝟏𝟔 + 𝟏𝟓𝒙 = 𝟑𝟔, and the solution is 𝒙 =

𝟒
𝟑

. 

Clearing fractions:  𝟏𝟐𝒙 (
𝟒

𝟑𝒙
+

𝟓
𝟒

) = 𝟏𝟐𝒙 (
𝟑
𝒙

)  Then, we have 𝟏𝟔 + 𝟏𝟓𝒙 = 𝟑𝟔, and the solution is 𝒙 =
𝟒
𝟑

. 

The solution 
𝟒

𝟑
 is valid since the only excluded value is 𝟎. 

 

6. Solve the following equation.  Remember to check for extraneous solutions. 

𝟕

𝒃 + 𝟑
+

𝟓

𝒃 − 𝟑
=

𝟏𝟎𝒃 − 𝟐

𝒃𝟐 − 𝟗
 

First, note that we must have 𝒙 ≠ 𝟑 and 𝒙 ≠ −𝟑.  

Equating numerators:   
𝟕(𝒃−𝟑)

(𝒃−𝟑)(𝒃+𝟑)
+

𝟓(𝒃+𝟑)

(𝒃−𝟑)(𝒃+𝟑)
=

𝟏𝟎𝒃−𝟐

(𝒃−𝟑)(𝒃+𝟑)
 

Matching numerators, we have 𝟕𝒃 − 𝟐𝟏 + 𝟓𝒃 + 𝟏𝟓 = 𝟏𝟎𝒃 − 𝟐, which leads to 𝟐𝒃 = 𝟒; therefore, 𝒃 = 𝟐. 

Clearing fractions: (𝒃 − 𝟑)(𝒃 + 𝟑) (
𝟕

𝒃+𝟑
+

𝟓
𝒃−𝟑

) = (𝒃 − 𝟑)(𝒃 + 𝟑) (
𝟏𝟎𝒃−𝟐

𝒃
𝟐

−𝟗
) 

We have 𝟕(𝒃 − 𝟑) + 𝟓(𝒃 + 𝟑) = 𝟏𝟎𝒃 − 𝟐, which leads to 𝟐𝒃 = 𝟒; therefore, 𝒃 = 𝟐. 

The solution 𝟐 is valid since the only excluded values are 𝟑 and −𝟑. 

 

7. Solve the following equation.  Remember to check for extraneous solutions.  

𝟏

𝒙 − 𝟔
+

𝒙

𝒙 − 𝟐
=

𝟒

𝒙𝟐 − 𝟖𝒙 + 𝟏𝟐
 

First, note that we must have 𝒙 ≠ 𝟔 and 𝒙 ≠ 𝟐. 

Equating numerators: 

𝒙 − 𝟐

(𝒙 − 𝟔)(𝒙 − 𝟐)
+

𝒙𝟐 − 𝟔𝒙

(𝒙 − 𝟔)(𝒙 − 𝟐)
=

𝟒

(𝒙 − 𝟔)(𝒙 − 𝟐)
 

𝒙𝟐 − 𝟓𝒙 − 𝟐 = 𝟒 

𝒙𝟐 − 𝟓𝒙 − 𝟔 = 𝟎 

(𝒙 − 𝟔)(𝒙 + 𝟏) = 𝟎 

The solutions are 𝟔 and −𝟏. 

Clearing fractions: 

(
𝟏

𝒙 − 𝟔
+

𝒙

𝒙 − 𝟐
) (𝒙 − 𝟔)(𝒙 − 𝟐) = (

𝟒

(𝒙 − 𝟔)(𝒙 − 𝟐)
) (𝒙 − 𝟔)(𝒙 − 𝟐) 

(𝒙 − 𝟐) + 𝒙(𝒙 − 𝟔) = 𝟒 

𝒙𝟐 − 𝟔𝒙 + 𝒙 − 𝟐 = 𝟒 

𝒙𝟐 − 𝟓𝒙 − 𝟔 = 𝟎 

(𝒙 − 𝟔)(𝒙 + 𝟏) = 𝟎 

The solutions are 𝟔 and −𝟏. 

Because 𝒙 is not allowed to be 𝟔 in order to avoid division by zero, the solution 𝟔 is extraneous; thus,  −𝟏 is the only 

solution to the given rational equation. 
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Closing  (2 minutes) 

Ask students to summarize the important parts of the lesson in writing, to a partner, or as a class.  Use this as an 

opportunity to informally assess understanding of the lesson.  In particular, ask students to explain how to identify  

extraneous solutions and why they arise when solving rational equations. 

 

 

 

Exit Ticket  (4 minutes)  

 

  

Lesson Summary 

In this lesson, we applied what we have learned in the past two lessons about addition, subtraction, multiplication, 

and division of rational expressions to solve rational equations.  An extraneous solution is a solution to a 

transformed equation that is not a solution to the original equation.  For rational functions, extraneous solutions 

come from the excluded values of the variable.  

Rational equations can be solved one of two ways: 

1. Write each side of the equation as an equivalent rational expression with the same denominator and 

equate the numerators.  Solve the resulting polynomial equation, and check for extraneous solutions.  

2. Multiply both sides of the equation by an expression that is the common denominator of all terms in the 

equation.  Solve the resulting polynomial equation, and check for extraneous solutions.  
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Name                                   Date                          

Lesson 26:  Solving Rational Equations 

 
Exit Ticket 
 

Find all solutions to the following equation.  If there are any extraneous solutions, identify them and explain why they 

are extraneous.   

7

𝑏 + 3
+

5

𝑏 − 3
=

10𝑏

𝑏2 − 9
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Exit Ticket Sample Solutions 

 

Find all solutions to the following equation.  If there are any extraneous solutions, identify them and explain why they are 

extraneous. 

𝟕

𝒃 + 𝟑
+

𝟓

𝒃 − 𝟑
=

𝟏𝟎𝒃

𝒃𝟐 − 𝟗
 

First, note that we must have 𝒙 ≠ 𝟑 and 𝒙 ≠ −𝟑.  

Using the equating numerators method:  
𝟕(𝒃−𝟑)

(𝒃−𝟑)(𝒃+𝟑)
+

𝟓(𝒃+𝟑)

(𝒃−𝟑)(𝒃+𝟑)
=

𝟏𝟎𝒃

(𝒃−𝟑)(𝒃+𝟑)
 

Matching numerators, we have 𝟕𝒃 − 𝟐𝟏 + 𝟓𝒃 + 𝟏𝟓 = 𝟏𝟎𝒃, which leads to 𝟏𝟐𝒃 − 𝟔 = 𝟏𝟎𝒃; therefore, 𝒃 = 𝟑. 

However, since the excluded values are 𝟑 and −𝟑, the solution 𝟑 is an extraneous solution, and there is no solution to  
𝟕

𝒃+𝟑
+

𝟓

𝒃−𝟑
=

𝟏𝟎𝒃

𝒃𝟐−𝟗
. 

 
 
Problem Set Sample Solutions 

 

1. Solve the following equations, and check for extraneous solutions.  

a. 
𝒙−𝟖

𝒙−𝟒
= 𝟐   b. 

𝟒𝒙−𝟖

𝒙−𝟐
= 𝟒   c. 

𝒙−𝟒

𝒙−𝟑
= 𝟏   

𝟎 

 

All real numbers except 𝟐 No solution 

d. 
𝟒𝒙−𝟖

𝒙−𝟐
= 𝟑 e. 

𝟏

𝟐𝒂
−

𝟐

𝟐𝒂−𝟑
= 𝟎 f. 

𝟑

𝟐𝒙+𝟏
=

𝟓

𝟒𝒙+𝟑
 

No solution 
−

𝟑

𝟐
 

 

−𝟐 

g. 
𝟒

𝒙−𝟓
−

𝟐

𝟓+𝒙
=

𝟐

𝒙
 h. 

𝒚+𝟐

𝟑𝒚−𝟐
+

𝒚

𝒚−𝟏
=

𝟐

𝟑
 i. 

𝟑

𝒙+𝟏
−

𝟐

𝟏−𝒙
= 𝟏 

−
𝟓

𝟑
 

 

𝟓

𝟔
, −𝟐 

𝟎, 𝟓 

j. 
𝟒

𝒙−𝟏
+

𝟑

𝒙
− 𝟑 = 𝟎 k. 

𝒙+𝟏

𝒙+𝟑
−

𝒙−𝟓

𝒙+𝟐
=

𝟏𝟕

𝟔
 l. 

𝒙+𝟕

𝟒
−

𝒙+𝟏

𝟐
=

𝟓−𝒙

𝟑𝒙−𝟏𝟒
 

𝟏

𝟑
, 𝟑 

 

𝟎, −
𝟓𝟓

𝟏𝟕
 

𝟓, 𝟔 

m. 
𝒃𝟐−𝒃−𝟔

𝒃𝟐 −
𝟐𝒃+𝟏𝟐

𝒃
=

𝒃−𝟑𝟗

𝟐𝒃
 n. 

𝟏

𝒑(𝒑−𝟒)
+ 𝟏 =

𝒑−𝟔

𝒑
 o. 

𝟏

𝒉+𝟑
=

𝒉+𝟒

𝒉−𝟐
+

𝟔

𝒉−𝟐
 

𝟑,
𝟒

𝟑
 

 

𝟐𝟑

𝟔
 

−𝟖, −𝟒 

p. 
𝒎+𝟓

𝒎𝟐+𝒎
=

𝟏

𝒎𝟐+𝒎
−

𝒎−𝟔

𝒎+𝟏
 

  

𝟒, 𝟏 
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2. Create and solve a rational equation that has 𝟎 as an extraneous solution.  

One such equation is 
𝟏

𝒙−𝟏
+

𝟏

𝒙
=

𝟏

𝒙−𝒙𝟐.  

 

3. Create and solve a rational equation that has 𝟐 as an extraneous solution.  

One such equation is 
𝟏

𝒙−𝟐
+

𝟏

𝒙+𝟐
=

𝟒

𝒙𝟐−𝟒
.   

 

Extension: 

4. Two lengths 𝒂 and 𝒃, where 𝒂 > 𝒃, are in golden ratio if the ratio of 𝒂 + 𝒃 is to 𝒂 is the 

same as 𝒂 is to 𝒃.  Symbolically, this is expressed as 
𝒂

𝒃
=

𝒂+𝒃

𝒂
.  We denote this common 

ratio by the Greek letter phi (pronounced “fee”) with symbol 𝝋, so that if 𝒂 and 𝒃 are in 

common ratio, then 𝝋 =
𝒂
𝒃

=
𝒂+𝒃

𝒂
.  By setting 𝒃 = 𝟏, we find that 𝝋 = 𝒂 and 𝝋 is the 

positive number that satisfies the equation  𝝋 =
𝝋+𝟏

𝝋
.  Solve this equation to find the 

numerical value for 𝝋. 

We can apply either method from the previous lesson to solve this equation.  

𝝋 =
𝝋 + 𝟏

𝝋
 

𝝋𝟐 = 𝝋 + 𝟏 

𝝋𝟐 − 𝝋 − 𝟏 = 𝟎 

Applying the quadratic formula, we have two solutions:  

𝝋 =
𝟏 + √𝟓

𝟐
  or  𝝋 =

𝟏 − √𝟓

𝟐
. 

Since 𝝋 is a positive number, and 
𝟏−√𝟓

𝟐
< 𝟎, we have 𝝋 =

𝟏+√𝟓
𝟐

. 

 

5. Remember that if we use 𝒙 to represent an integer, then the next integer can be represented by 𝒙 + 𝟏.   

a. Does there exist a pair of consecutive integers whose reciprocals sum to 
𝟓

𝟔
?  Explain how you know. 

Yes, 𝟐 and 𝟑 because 
𝟏

𝟐
+

𝟏

𝟑
=

𝟑

𝟔
+

𝟐

𝟔
=

𝟓

𝟔
. 
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b. Does there exist a pair of consecutive integers whose reciprocals sum to 
𝟑

𝟒
?  Explain how you know. 

If 𝒙 represents the first integer, then 𝒙 + 𝟏 represents the next integer.  Suppose 
𝟏

𝒙
+

𝟏

𝒙+𝟏
=

𝟑

𝟒
.  Then, 

𝟏

𝒙
+

𝟏

𝒙 + 𝟏
=

𝟑

𝟒
 

𝟒(𝒙 + 𝟏) + 𝟒𝒙

𝟒𝒙(𝒙 + 𝟏)
=

𝟑𝒙(𝒙 + 𝟏)

𝟒𝒙(𝒙 + 𝟏)
 

𝟖𝒙 + 𝟒 = 𝟑𝒙𝟐 + 𝟑𝒙 

𝟑𝒙𝟐 − 𝟓𝒙 − 𝟒 = 𝟎. 

The solutions to this quadratic equation are 
𝟓+√𝟕𝟑

𝟔
 and 

𝟓−√𝟕𝟑

𝟔
, so there are no integers that solve this 

equation.  Thus, there are no pairs of consecutive integers whose reciprocals sum to 
𝟑

𝟒
. 

 

c. Does there exist a pair of consecutive even integers whose reciprocals sum to 
𝟑

𝟒
?  Explain how you know. 

If 𝒙 represents the first integer, then 𝒙 + 𝟐 represents the next even integer.  Suppose 
𝟏

𝒙
+

𝟏

𝒙+𝟐
=

𝟑

𝟒
.  Then, 

𝟏

𝒙
+

𝟏

𝒙 + 𝟐
=

𝟑

𝟒
 

𝟒(𝒙 + 𝟐) + 𝟒𝒙

𝟒𝒙(𝒙 + 𝟐)
=

𝟑𝒙(𝒙 + 𝟐)

𝟒𝒙(𝒙 + 𝟐)
 

𝟖𝒙 + 𝟖 = 𝟑𝒙𝟐 + 𝟔𝒙 

𝟑𝒙𝟐 − 𝟐𝒙 − 𝟖 = 𝟎. 

The solutions to this quadratic equation are −
𝟒
𝟑

 and 𝟐; therefore, the only even integer 𝒙 that solves the 

equation is 𝟐.  Then, 𝟐 and 𝟒 are consecutive even integers whose reciprocals sum to 
𝟑

𝟒
. 

 

d. Does there exist a pair of consecutive even integers whose reciprocals sum to 
𝟓

𝟔
?  Explain how you know. 

If 𝒙 represents the first integer, then 𝒙 + 𝟐 represents the next even integer.  Suppose 
𝟏

𝒙
+

𝟏

𝒙+𝟐
=

𝟓

𝟔
.  Then, 

𝟏

𝒙
+

𝟏

𝒙 + 𝟐
=

𝟓

𝟔
 

𝟔(𝒙 + 𝟐) + 𝟔𝒙

𝟔𝒙(𝒙 + 𝟐)
=

𝟓𝒙(𝒙 + 𝟐)

𝟔𝒙(𝒙 + 𝟐)
 

𝟏𝟐𝒙 + 𝟏𝟐 = 𝟓𝒙𝟐 + 𝟏𝟎𝒙 

𝟓𝒙𝟐 − 𝟐𝒙 − 𝟏𝟐 = 𝟎. 

The solutions to this quadratic equation are 
𝟏+√𝟔𝟏

𝟓
 and 

𝟏−√𝟔𝟏

𝟓
, so there are no integers that solve this 

equation.  Thus, there are no pairs of consecutive even integers whose reciprocals sum to 
𝟓

𝟔
. 
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Lesson 27:  Word Problems Leading to Rational Equations 

 
Student Outcomes 

 Students solve word problems using models that involve rational expressions. 

 

Lesson Notes 

In the preceding lessons, students learned to add, subtract, multiply, and divide rational expressions and solve rational 

equations in order to develop the tools needed for solving application problems involving rational equations in this 

lesson (A-REI.A.2).  Students develop their problem-solving and modeling abilities by carefully reading the problem 

description and converting information into equations (MP.1), thus creating a mathematical model of the problem 

(MP.4). 

 

Classwork 

Exercise 1  (13 minutes) 

This lesson turns to some applied problems that can be modeled with rational equations, strengthening students’ 

problem-solving and modeling experience in alignment with standards MP.1 and MP.4.  These equations can be solved 

using the skills developed in previous lessons.  Have students work in small groups to answer this set of four questions.  

At the end of the work time, ask different groups to present their solutions to the class.  Suggest to students that they:  

(a) read the problem aloud, (b) paraphrase and summarize the problem in their own words, (c) find an equation that 

models the situation, and (d) say how it represents the quantities involved.  Check to make sure that students 

understand the problem before they begin trying to solve it.   

In Exercise 1, consider encouraging students to assign the variable 𝑚 to the unknown quantity, and ask if they can arrive 

at an equation that relates 𝑚 to the known quantities.   
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Exercise 1 

1. Anne and Maria play tennis almost every weekend.  So far, Anne has won 𝟏𝟐 out of 𝟐𝟎 

matches.   

a. How many matches will Anne have to win in a row to improve her winning 

percentage to 𝟕𝟓%?  

Suppose that Anne has already won 𝟏𝟐 of 𝟐𝟎 matches, and let 𝒎 represent the 

number of additional matches she must win to raise her winning percentage to 𝟕𝟓%.  

After playing and winning all of those additional 𝒎 matches, she has won 𝟏𝟐 + 𝒎 

matches out of a total of 𝟐𝟎 + 𝒎 matches played.  Her winning percentage is then 
𝟏𝟐+𝒎

𝟐𝟎+𝒎
, and we want to find the value of 𝒎 that solves the equation  

𝟏𝟐 + 𝒎

𝟐𝟎 + 𝒎
= 𝟎. 𝟕𝟓. 

Multiply both sides by 𝟐𝟎 + 𝒎. 

𝟏𝟐 + 𝒎 = 𝟎. 𝟕𝟓(𝟐𝟎 + 𝒎) 

𝟏𝟐 + 𝒎 = 𝟏𝟓 + 𝟎. 𝟕𝟓𝒎 

Solve for 𝒎: 

𝟎. 𝟐𝟓𝒎 = 𝟑 

𝒎 = 𝟏𝟐 

So, Anne would need to win 𝟏𝟐 matches in a row in order to improve her winning 

percentage to 𝟕𝟓%. 

 

b. How many matches will Anne have to win in a row to improve her winning percentage to 𝟗𝟎%? 

This situation is similar to that for part (a), except that we want a winning percentage of 𝟎. 𝟗𝟎, instead of 

𝟎. 𝟕𝟓.  Again, we let 𝒎 represent the number of matches Anne must win consecutively to bring her winning 

percentage up to 𝟗𝟎%. 

𝟏𝟐 + 𝒎

𝟐𝟎 + 𝒎
= 𝟎. 𝟗𝟎 

Solve for 𝒎: 

𝟏𝟐 + 𝒎 = 𝟎. 𝟗𝟎(𝟐𝟎 + 𝒎) 

𝟏𝟐 + 𝒎 = 𝟏𝟖 + 𝟎. 𝟗𝟎𝒎 

𝟎. 𝟏𝟎𝒎 = 𝟔 

𝒎 = 𝟔𝟎 

In order for Anne to bring her winning percentage up to 𝟗𝟎%, she would need to win the next 𝟔𝟎 consecutive 

matches.  

 

c. Can Anne reach a winning percentage of 𝟏𝟎𝟎%? 

Allow students to come to the conclusion that Anne will never reach a winning percentage of 𝟏𝟎𝟎% because 

she has already lost 𝟖 matches. 

 

  

MP.2 

Scaffolding: 

Students may benefit from 

having the problem read aloud 

and summarized.  They should 

be encouraged to restate the 

problem in their own words to 

a partner.  

If students are struggling, 

present the equation  
12+𝑚

20+𝑚
= 0.75, and ask 

students how this models the 

situation. 

Students who may be working 

above grade level could be 

challenged to write their own 

word problems that result in 

rational equations. 

MP.1 
& 

MP.4 
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d. After Anne has reached a winning percentage of 𝟗𝟎% by winning consecutive matches as in part (b), how 

many matches can she now lose in a row to have a winning percentage of 𝟓𝟎%? 

Recall from part (b) that she had won 𝟕𝟐 matches out of 𝟖𝟎 to reach a winning percentage of 𝟗𝟎%.  We will 

now assume that she loses the next 𝒌 matches in a row.  Then, she will have won 𝟕𝟐 matches out of 𝟖𝟎 + 𝒌 

matches, and we want to know the value of 𝒌 that makes this a 𝟓𝟎% win rate.  

𝟕𝟐

𝟖𝟎 + 𝒌
= 𝟎. 𝟓𝟎 

Solving the equation: 

𝟕𝟐 = 𝟎. 𝟓𝟎(𝟖𝟎 + 𝒌) 

𝟕𝟐 = 𝟒𝟎 + 𝟎. 𝟓𝟎𝒌 

𝟑𝟐 = 𝟎. 𝟓𝟎𝒌 

𝟔𝟒 = 𝒌 

Thus, after reaching a 𝟗𝟎% winning percentage in 𝟖𝟎 matches, Anne can lose 𝟔𝟒 matches in a row to drop to 

a 𝟓𝟎% winning percentage. 

 

Example  (5 minutes)  

Work this problem at the front of the room, but allow the class to provide input and steer the discussion.  Depending on  

how students did with the first exercise, the teacher may lead a discussion of this problem as a class, ask students to 

work in groups, or ask students to work independently while targeting instruction with a small group that struggled on 

the first exercise. 

 

Example 

Working together, it takes Sam, Jenna, and Francisco two hours to paint one room.  When Sam works alone, he can paint 

one room in 𝟔 hours.  When Jenna works alone, she can paint one room in 𝟒 hours.  Determine how long it would take 

Francisco to paint one room on his own.  

Consider how much can be accomplished in one hour.  Sam, Jenna, and Francisco together can paint half a room in one 

hour.  If Sam can paint one room in 𝟔 hours on his own, then in one hour he can paint 
𝟏

𝟔
 of the room.  Similarly, Jenna can 

paint 
𝟏

𝟒
 of the room in one hour.  We do not yet know how much Francisco can paint in one hour, so we will say he can 

paint 
𝟏

𝒇
 of the room.  So, in one hour, Sam has painted 

𝟏

𝟔
 of the room, Jenna has painted 

𝟏

𝟒
 of the room, and all three 

together can paint 
𝟏

𝟐
 the room, leading to the following equation for how much can be painted in one hour: 

𝟏

𝟔
+

𝟏

𝟒
+

𝟏

𝒇
=

𝟏

𝟐
. 

A common multiple of the denominators is 𝟏𝟐𝒇.  Multiplying both sides by 𝟏𝟐𝒇 gives us: 

𝟏𝟐𝒇

𝟔
+

𝟏𝟐𝒇

𝟒
+

𝟏𝟐𝒇

𝒇
=

𝟏𝟐𝒇

𝟐
 

𝟐𝒇 + 𝟑𝒇 + 𝟏𝟐 = 𝟔𝒇,  

which leads us to the value of 𝒇: 

𝒇 = 𝟏𝟐. 

So, Francisco can paint the room in 𝟏𝟐 hours on his own. 

  

MP.4 
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Exercise 2  (5 minutes)  

Remind students that distance equals rate times time (𝑑 = 𝑟 ∙ 𝑡) before having them work on this exercise in pairs or 

small groups.  Be sure to have groups share their results before continuing to the next exercise.  

 

Exercises 2–4  

2. Melissa walks 𝟑 miles to the house of a friend and returns home on a bike.  She averages 𝟒 miles per hour faster 

when cycling than when walking, and the total time for both trips is two hours.  Find her walking speed.  

Using the relationship 𝒅 = 𝒓 ∙ 𝒕, we have  𝒕 =
𝒅
𝒓

.  The time it takes for Melissa to walk to her friend’s house is 
𝟑

𝒓
, and 

the time to cycle back is 
𝟑

𝒓+𝟒
.  Thus, we can write an equation that describes the combined time for both trips: 

𝟑

𝒓
+

𝟑

𝒓 + 𝟒
= 𝟐. 

A common multiple of the denominators is 𝒓(𝒓 + 𝟒), so we multiply both sides of the equation by  𝒓(𝒓 + 𝟒). 

𝟑(𝒓 + 𝟒) + 𝟑𝒓 = 𝟐𝒓(𝒓 + 𝟒) 

𝟑𝒓 + 𝟏𝟐 + 𝟑𝒓 = 𝟐𝒓𝟐 + 𝟖𝒓 

𝟐𝒓𝟐 + 𝟐𝒓 − 𝟏𝟐 = 𝟎 

𝟐(𝒓 − 𝟐)(𝒓 + 𝟑) = 𝟎 

Thus, 𝒓 = −𝟑 or 𝒓 = 𝟐.  Since 𝒓 represents Melissa’s speed, it does not make sense for 𝒓 to be negative.  So, the only 

solution is 𝟐, which means that  Melissa’s walking speed is 𝟐 miles per hour. 

 

Exercise 3  (10 minutes) 

 

3. You have 𝟏𝟎 liters of a juice blend that is 𝟔𝟎% juice. 

a. How many liters of pure juice need to be added in order to make a blend that is 𝟕𝟓% juice?  

We start off with 𝟏𝟎 liters of a blend containing 𝟔𝟎% juice.  Then, this blend contains 𝟎. 𝟔𝟎(𝟏𝟎) = 𝟔 liters of 

juice in the 𝟏𝟎 liters of mixture.  If we add 𝑨 liters of pure juice, then the concentration of juice in the blend is 
𝟔+𝑨

𝟏𝟎+𝑨
.  We want to know which value of 𝑨 makes this blend 𝟕𝟓% juice.   

𝟔 + 𝑨

𝟏𝟎 + 𝑨
= 𝟎. 𝟕𝟓 

𝟔 + 𝑨 = 𝟎. 𝟕𝟓(𝟏𝟎 + 𝑨) 

𝟔 + 𝑨 = 𝟕. 𝟓 + 𝟎. 𝟕𝟓𝑨 

𝟎. 𝟐𝟓𝑨 = 𝟏. 𝟓 

𝑨 = 𝟔 

Thus, if we add 𝟔 liters of pure juice, we have 𝟏𝟔 liters of a blend that contains 𝟏𝟐 liters of juice, meaning that 

the concentration of juice in this blend is 𝟕𝟓%. 

 

  

MP.1 
& 
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b. How many liters of pure juice need to be added in order to make a blend that is 𝟗𝟎% juice? 

𝟔 + 𝑨

𝟏𝟎 + 𝑨
= 𝟎. 𝟗𝟎 

𝟔 + 𝑨 = 𝟎. 𝟗(𝟏𝟎 + 𝑨) 

𝟔 + 𝑨 = 𝟗 + 𝟎. 𝟗𝑨 

𝟑 = 𝟎. 𝟏𝑨 

𝑨 = 𝟑𝟎 

Thus, if we add 𝟑𝟎 liters of pure juice, we will have 𝟒𝟎 liters of a blend that contains 𝟑𝟔 liters of pure juice, 

meaning that the concentration of juice in this blend is 𝟗𝟎%. 

 

c. Write a rational equation that relates the desired percentage 𝒑 to the amount 𝑨 of pure juice that needs to 

be added to make a blend that is 𝒑% juice, where 𝟎 < 𝒑 < 𝟏𝟎𝟎.  What is a reasonable restriction on the set 

of possible values of 𝒑?  Explain your answer.  

𝟔 + 𝑨

𝟏𝟎 + 𝑨
=

𝒑

𝟏𝟎𝟎
 

We need to have 𝟔𝟎 < 𝒑 < 𝟏𝟎𝟎 for the problem to make sense.  We already have 𝟔𝟎% juice; the percentage 

cannot decrease by adding more juice, and we can never have a mixture that is more than 𝟏𝟎𝟎% juice.  

 

d. Suppose that you have added 𝟏𝟓 liters of juice to the original 𝟏𝟎 liters.  What is the percentage of juice in this 

blend? 

𝒑

𝟏𝟎𝟎
=

𝟔 + 𝟏𝟓

𝟏𝟎 + 𝟏𝟓
= 𝟎. 𝟖𝟒 

So, the new blend contains 𝟖𝟒% pure juice.  

 

e. Solve your equation in part (c) for the amount 𝑨.  Are there any excluded values of the variable 𝒑?  Does this 

make sense in the context of the problem?  

𝟔 + 𝑨

𝟏𝟎 + 𝑨
=

𝒑

𝟏𝟎𝟎
 

𝟏𝟎𝟎(𝟔 + 𝑨) = 𝒑(𝟏𝟎 + 𝑨) 

𝟔𝟎𝟎 + 𝟏𝟎𝟎𝑨 = 𝟏𝟎𝒑 + 𝒑𝑨 

𝟏𝟎𝟎𝑨 − 𝒑𝑨 = 𝟏𝟎𝒑 − 𝟔𝟎𝟎 

𝑨(𝟏𝟎𝟎 − 𝒑) = 𝟏𝟎𝒑 − 𝟔𝟎𝟎 

𝑨 =
𝟏𝟎𝒑 − 𝟔𝟎𝟎

𝟏𝟎𝟎 − 𝒑
 

We see from the equation for 𝑨 that 𝒑 ≠ 𝟏𝟎𝟎.  This makes sense because we can never make a 𝟏𝟎𝟎% juice 

solution since we started with a diluted amount of juice.  

 

Exercise 4  (5 minutes) 

Allow students to work together in pairs or small groups for this exercise.  This exercise is a bit different from the 

previous example in that the amount of acid comes from a diluted solution and not a pure solution.  Be sure that 

students set up the numerator correctly.  (If there is not enough time to do the entire problem, have students set up the 

equations in class and finish solving them for homework.) 

  

MP.4 
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4. You have a solution containing 𝟏𝟎% acid and a solution containing 𝟑𝟎% acid.   

a. How much of the 𝟑𝟎% solution must you add to 𝟏 liter of the 𝟏𝟎% solution to create a mixture that is 𝟐𝟐% 

acid?   

If we add 𝑨 liters of the 𝟑𝟎% solution, then the new mixture is 𝟏 + 𝑨 liters of solution that contains 

𝟎. 𝟏 + 𝟎. 𝟑𝑨 liters of acid.  We want the final mixture to be 𝟐𝟐% acid, so we need to solve the equation: 

𝟎. 𝟏 + 𝟎. 𝟑𝑨

𝟏 + 𝑨
= 𝟎. 𝟐𝟐. 

Solving this gives  

𝟎. 𝟏 + 𝟎. 𝟑𝑨 = 𝟎. 𝟐𝟐(𝟏 + 𝑨) 

𝟎. 𝟏 + 𝟎. 𝟑𝑨 = 𝟎. 𝟐𝟐 + 𝟎. 𝟐𝟐𝑨 

𝟎. 𝟎𝟖𝑨 = 𝟎. 𝟏𝟐 

𝑨 = 𝟏. 𝟓. 

Thus, if we add 𝟏. 𝟓 liters of 𝟑𝟎% acid solution to 𝟏 liter of 𝟏𝟎% acid solution, the result is 𝟐. 𝟓 liters of 𝟐𝟐% 

acid solution. 

 

b. Write a rational equation that relates the desired percentage 𝒑 to the amount 𝑨 of 𝟑𝟎% acid solution that 

needs to be added to 𝟏 liter of 𝟏𝟎% acid solution to make a blend that is 𝒑% acid, where 𝟎 < 𝒑 < 𝟏𝟎𝟎.  

What is a reasonable restriction on the set of possible values of 𝒑?  Explain your answer.  

𝟎. 𝟏 + 𝟎. 𝟑𝑨

𝟏 + 𝑨
=

𝒑

𝟏𝟎𝟎
 

We must have 𝟏𝟎 < 𝒑 < 𝟑𝟎 because if we blend a 𝟏𝟎% acid solution and a 𝟑𝟎% acid solution, the blend will 

contain an acid percentage between 𝟏𝟎% and 𝟑𝟎%.   

 

c. Solve your equation in part (b) for 𝑨.  Are there any excluded values of 𝒑?  Does this make sense in the 

context of the problem?  

𝑨 =
𝟏𝟎 − 𝒑

𝒑 − 𝟑𝟎
 

We need to exclude 𝟑𝟎 from the possible range of values of 𝒑, which makes sense in context because we can 

never reach a 𝟑𝟎% acid solution since we started with a solution that was 𝟏𝟎% acid. 

 

d. If you have added some 𝟑𝟎% acid solution to 𝟏 liter of 𝟏𝟎% acid solution to make a 𝟐𝟔% acid solution, how 

much of the stronger acid did you add? 

The formula in part (c) gives 𝑨 =
𝟏𝟎−𝟐𝟔
𝟐𝟔−𝟑𝟎

; therefore, 𝑨 = 𝟒.  We added 𝟒 liters of the 𝟑𝟎% acid solution to the 

𝟏 liter of 𝟏𝟎% acid solution to make a 𝟐𝟔% acid mixture.   

 

Closing  (2 minutes)   

Ask students to summarize the important parts of the lesson in writing, to a partner, or as a class.  Use this as an 

opportunity to informally assess understanding of the lesson.  

 

Exit Ticket  (5 minutes)  
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Name                                   Date                          

Lesson 27:  Word Problems Leading to Rational Equations 

 
Exit Ticket 
 

Bob can paint a fence in 5 hours, and working with Jen, the two of them painted a fence in 2 hours.  How long would it 

have taken Jen to paint the fence alone? 
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Exit Ticket Sample Solutions 

 

Bob can paint a fence in 𝟓 hours, and working with Jen, the two of them painted a fence in 𝟐 hours.  How long would it 

have taken Jen to paint the fence alone? 

Let 𝒙 represent the time it would take Jen to paint the fence alone.  Then, Bob can paint the entire fence in 𝟓 hours; 

therefore, in one hour he can paint 
𝟏

𝟓
 of the fence.  Similarly, Jen can paint 

𝟏

𝒙
 of the fence in one hour.  We know that it 

took them two hours to complete the job, and together they can paint 
𝟏

𝟐
 of the fence in one hour.  We then have to solve 

the equation: 

𝟏

𝟓
+

𝟏

𝒙
=

𝟏

𝟐
 

𝟐𝒙

𝟏𝟎𝒙
+

𝟏𝟎

𝟏𝟎𝒙
=

𝟓𝒙

𝟏𝟎𝒙
 

𝟐𝒙 + 𝟏𝟎 = 𝟓𝒙 

𝒙 =
𝟏𝟎

𝟑
. 

Thus, it would have taken Jen 𝟑 hours and 𝟐𝟎 minutes to paint the fence alone.  

 
 
Problem Set Sample Solutions 

 

1. If two inlet pipes can fill a pool in one hour and 𝟑𝟎 minutes, and one pipe can fill the pool in two hours and 𝟑𝟎 

minutes on its own, how long would the other pipe take to fill the pool on its own? 

𝟏

𝟐. 𝟓
+

𝟏

𝒙
=

𝟏

𝟏. 𝟓
 

We find that 𝒙 = 𝟑. 𝟕𝟓; therefore, it takes 𝟑 hours and 𝟒𝟓 minutes for the second pipe to fill the pool by itself. 

 

2. If one inlet pipe can fill the pool in 𝟐 hours with the outlet drain closed, and the same inlet pipe can fill the pool in 

𝟐. 𝟓 hours with the drain open, how long does it take the drain to empty the pool if there is no water entering the 

pool? 

𝟏

𝟐
−

𝟏

𝒙
=

𝟏

𝟐. 𝟓
 

We find that 𝒙 = 𝟏𝟎; therefore, it takes 𝟏𝟎 hours for the drain to empty the pool by itself. 

 

3. It takes 𝟑𝟔 minutes less time to travel 𝟏𝟐𝟎 miles by car at night than by day because the lack of traffic allows the 

average speed at night to be 𝟏𝟎 miles per hour faster than in the daytime.  Find the average speed in the daytime. 

𝟏𝟐𝟎

𝒕 − 𝟑𝟔
=

𝟏𝟐𝟎

𝒕
+

𝟏

𝟔
 

We find that 𝒕 = 𝟏𝟖𝟎.  The time it takes to travel 𝟏𝟐𝟎 miles by car at night is 𝟏𝟖𝟎 minutes, which is 𝟑 hours.  Since 
𝟏𝟐𝟎

𝟑
= 𝟒𝟎, the average speed in the daytime is 𝟒𝟎 miles per hour. 
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4. The difference in the average speed of two trains is 𝟏𝟔 miles per hour.  The slower train takes 𝟐 hours longer to 

travel 𝟏𝟕𝟎 miles than the faster train takes to travel 𝟏𝟓𝟎 miles.  Find the speed of the slower train. 

𝟏𝟓𝟎

𝒕
−

𝟏𝟕𝟎

𝒕 + 𝟐
= 𝟏𝟔 

We find that 𝒕 = 𝟑, so it takes 𝟑 hours for the faster train to travel 𝟏𝟓𝟎 miles, and it takes 𝟓 hours for the slower 

train to travel 𝟏𝟕𝟎 miles.  The average speed of the slower train is 𝟑𝟒 miles per hour. 

 

5. A school library spends $𝟖𝟎 a month on magazines.  The average price for magazines bought in January was 𝟕𝟎 

cents more than the average price in December.  Because of the price increase, the school library was forced to 

subscribe to 𝟕 fewer magazines.  How many magazines did the school library subscribe to in December? 

𝟖𝟎

𝒙 + 𝟎. 𝟕𝟎
=

𝟖𝟎

𝒙
− 𝟕 

The solution to this equation is 𝟐. 𝟓𝟎, so the average price in December is $𝟐. 𝟓𝟎.  Thus the school subscribed to 𝟑𝟐 

magazines in December. 

 

6. An investor bought a number of shares of stock for $𝟏, 𝟔𝟎𝟎.  After the price dropped by $𝟏𝟎 per share, the investor 

sold all but 𝟒 of her shares for $𝟏, 𝟏𝟐𝟎.  How many shares did she originally buy? 

𝟏𝟔𝟎𝟎

𝒙
=

𝟏𝟏𝟐𝟎

𝒙 − 𝟒
+ 𝟏𝟎 

This equation has two solutions:   𝟑𝟐 and 𝟐𝟎.  Thus, the investor bought either 𝟑𝟐 or 𝟐𝟎 shares of stock. 

 

7. Newton’s law of universal gravitation, 𝑭 =
𝑮𝒎𝟏𝒎𝟐

𝒓𝟐 , measures the force of gravity between two masses 𝒎𝟏 and 𝒎𝟐, 

where 𝒓 is the distance between the centers of the masses, and 𝑮 is the universal gravitational constant.  Solve this 

equation for 𝑮. 

𝑮 =
𝑭𝒓𝟐

𝒎𝟏𝒎𝟐

 

 

8. Suppose that =
𝒙+𝒚

𝟏−𝒙𝒚
 .   

a. Show that when 𝒙 =
𝟏
𝒂

 and 𝒚 =
𝟐𝒂−𝟏
𝒂+𝟐

, the value of 𝒕 does not depend on the value of 𝒂.   

When simplified, we find that 𝒕 = 𝟐; therefore, the value of 𝒕 does not depend on the value of 𝒂. 

 

b. For which values of 𝒂 do these relationships have no meaning? 

If 𝒂 is 𝟎, then 𝒙 has no meaning.  If 𝒂 = −𝟐, then 𝒚 has no meaning.   

 

9. Consider the rational equation 
𝟏

𝑹
=

𝟏

𝒙
+

𝟏

𝒚
. 

a. Find the value of 𝑹 when 𝒙 =
𝟐
𝟓

 and 𝒚 =
𝟑
𝟒

. 

𝟏

𝑹
=

𝟏

𝟐
𝟓⁄

+
𝟏

𝟑
𝟒⁄

 

So 𝑹 =
𝟔

𝟐𝟑
.   
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b. Solve this equation for 𝑹, and write 𝑹 as a single rational expression in lowest terms. 

There are two approaches to solve this equation for 𝑹.  

The first way is to perform the addition on the 

right: 

 The second way is to take reciprocals of both 

sides and then simplify: 

𝟏

𝑹
=

𝟏

𝒙
+

𝟏

𝒚
 

=
𝒚

𝒙𝒚
+

𝒙

𝒙𝒚
 

=
𝒙 + 𝒚

𝒙𝒚
. 

 
𝑹 =

𝟏

𝟏
𝒙⁄ + 𝟏

𝒚⁄
 

=
𝟏

𝒚
𝒙𝒚⁄ + 𝒙

𝒙𝒚⁄
 

=
𝟏

(𝒙 + 𝒚)
𝒙𝒚⁄

. 

In either case, we find that 𝑹 =
𝒙𝒚

𝒙+𝒚
.   

 

10. Consider an ecosystem of rabbits in a park that starts with 𝟏𝟎 rabbits and can sustain up to 𝟔𝟎 rabbits.  An equation 

that roughly models this scenario is 

𝑷 =
𝟔𝟎

𝟏 +
𝟓

𝒕 + 𝟏

, 

where 𝑷 represents the rabbit population in year 𝒕 of the study.   

a. What is the rabbit population in year 𝟏𝟎?  Round your answer to the nearest whole rabbit.  

If 𝒕 = 𝟏𝟎, then 𝑷 = 𝟒𝟏. 𝟐𝟓; therefore, there are 𝟒𝟏 rabbits in the park. 

 

b. Solve this equation for 𝒕.  Describe what this equation represents in the context of this problem. 

𝒕 =
𝟔𝟎 − 𝟔𝑷

𝑷 − 𝟔𝟎
 

This equation represents the relationship between the number of rabbits, 𝑷, and the year, 𝒕.  If we know how 

many rabbits we have, 𝟏𝟎 < 𝑷 < 𝟔𝟎, we will know how long it took for the rabbit population to grow that 

much.  If the population is 𝟏𝟎, then this equation says we are in year 𝟎 of the study, which fits with the given 

scenario. 

 

c. At what time does the population reach 𝟓𝟎 rabbits? 

If 𝑷 = 𝟓𝟎, then 𝒕 =
𝟔𝟎−𝟑𝟎𝟎
𝟓𝟎−𝟔𝟎

=
−𝟐𝟒𝟎
−𝟏𝟎

= 𝟐𝟒; therefore, the rabbit population is 𝟓𝟎 in year 𝟐𝟒 of the study.  
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Extension: 

11. Suppose that Huck Finn can paint a fence in 𝟓 hours.  If Tom Sawyer helps him paint the fence, they can do it in  

𝟑 hours.  How long would it take for Tom to paint the fence by himself?   

Huck paints the fence in 𝟓 hours, so his rate of fence painting is 
𝟏

𝟓
 fence per hour.  Let 𝑻 denote the percentage of the 

fence Tom can paint in an hour.  Then 

𝟏 fence = ((
𝟏

𝟓
+ 𝑻) fence per hour) ∙ (𝟑 hours). 

𝟑 =
𝟏

𝟏
𝟓

+ 𝑻
=

𝟏

𝟏
𝟓

+
𝟓𝑻
𝟓

=
𝟓

𝟏 + 𝟓𝑻
 

𝟑(𝟏 + 𝟓𝑻) = 𝟓 

𝟏𝟓𝑻 = 𝟐 

𝑻 =
𝟐

𝟏𝟓
 

So, Tom can paint 
𝟐

𝟏𝟓
 of the fence in an hour.  Thus, Tom would take 

𝟏𝟓

𝟐
= 𝟕. 𝟓 hours to paint the fence by himself. 

 

12. Huck Finn can paint a fence in 𝟓 hours.  After some practice, Tom Sawyer can now paint the fence in 𝟔 hours.   

a. How long would it take Huck and Tom to paint the fence together?   

The amount of fence that Huck can paint per hour is 
𝟏

𝟓
, and the amount that Tom can paint per hour is 

𝟏

𝟔
.  So, 

together they can paint 
𝟏

𝟓
+

𝟏

𝟔
 of the fence per hour.  Suppose the entire job of painting the fence takes 𝒉 

hours.  Then, the amount of the fence that is painted is 𝒉 (
𝟏
𝟓

+
𝟏
𝟔

).  Since the entire fence is painted, we need 

to solve the equation 𝒉 (
𝟏
𝟓

+
𝟏
𝟔

) = 𝟏.  

𝒉 (
𝟏

𝟓
+

𝟏

𝟔
) = 𝟏 

𝒉 =
𝟏

𝟏
𝟓

+
𝟏
𝟔

=
𝟑𝟎

𝟔 + 𝟓
=

𝟑𝟎

𝟏𝟏
 

So, together they can paint the fence in 
𝟑𝟎

𝟏𝟏
 hours, which is 𝟐 hours and 𝟒𝟒 minutes. 
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b. Tom demands a half-hour break while Huck continues to paint, and they finish the job together.  How long 

does it take them to paint the fence? 

Suppose the entire job of painting the fence takes 𝒉 hours.  Then, Huck paints at a rate of 
𝟏

𝟓
 of the fence per 

hour for 𝒉 hours, so he paints 
𝒉

𝟓
 of the fence.  Tom paints at a rate of 

𝟏

𝟔
 of the fence per hour for 𝒉 −

𝟏
𝟐

 hour, so 

he paints 
𝟏

𝟔
(𝒉 −

𝟏

𝟐
) of the fence.  Together, they paint the whole fence; so, we need to solve the following 

equation for 𝒉: 

𝟏

𝟓
𝒉 +

𝟏

𝟔
(𝒉 −

𝟏

𝟐
) = 𝟏 

𝟏

𝟓
𝒉 +

𝟏

𝟔
𝒉 −

𝟏

𝟏𝟐
= 𝟏 

𝟏

𝟓
𝒉 +

𝟏

𝟔
𝒉 =

𝟏𝟑

𝟏𝟐
 

𝟔𝟎 (
𝟏

𝟓
𝒉 +

𝟏

𝟔
𝒉) = 𝟔𝟎 ∙

𝟏𝟑

𝟏𝟐
 

𝟏𝟐𝒉 + 𝟏𝟎𝒉 = 𝟔𝟓 

𝒉 =
𝟔𝟓

𝟐𝟐
. 

Thus, it takes 
𝟔𝟓

𝟐𝟐
 hours, which is 𝟐 hours 𝟓𝟕 minutes, to paint the fence with Tom taking a 

𝟏

𝟐
 hour break. 

 

c. Suppose that they have to finish the fence in 𝟑
𝟏
𝟐

 hours.  What’s the longest break that Tom can take? 

Suppose the entire job of painting the fence takes 
𝟕

𝟐
 hours, and Tom stops painting for 𝒃 hours for his break.  

Then, Huck paints at a rate of 
𝟏

𝟓
 of the fence per hour for 

𝟕

𝟐
 hours, so he paints 

𝟕

𝟏𝟎
 of the fence.  Tom paints at 

a rate of 
𝟏

𝟔
 of the fence per hour for (

𝟕
𝟐

− 𝒃) hours, so he paints 
𝟏

𝟔
(

𝟕

𝟐
− 𝒃) of the fence.  Together, they paint 

the whole fence; so, we need to solve the following equation for 𝒃: 

𝟕

𝟏𝟎
+

𝟏

𝟔
(

𝟕

𝟐
− 𝒃) = 𝟏 

𝟕

𝟏𝟎
+

𝟕

𝟏𝟐
−

𝒃

𝟔
= 𝟏 

𝟔𝟎 (
𝟕

𝟏𝟎
+

𝟕

𝟏𝟐
−

𝒃

𝟔
) = 𝟔𝟎 

𝟒𝟐 + 𝟑𝟓 − 𝟏𝟎𝒃 = 𝟔𝟎 

𝟒𝟐 + 𝟑𝟓 − 𝟔𝟎 = 𝟏𝟎𝒃 

𝒃 =
𝟏𝟕

𝟏𝟎
. 

Thus, if Tom takes a break for 
𝟏𝟕

𝟏𝟎
 hours, which is 𝟏 hour and 𝟒𝟐 minutes, the fence will be painted in 𝟑

𝟏
𝟐

 

hours. 
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Lesson 28:  A Focus on Square Roots  

 
Student Outcomes 

 Students solve simple radical equations and understand the possibility of extraneous solutions.  They 

understand that care must be taken with the role of square roots so as to avoid apparent paradoxes. 

 Students explain and justify the steps taken in solving simple radical equations. 

 

Lesson Notes 

In the next two lessons, students work with radical expressions and equations.  They extend their understanding of the 

idea that not all operations are invertible, which was explored in Algebra I and continued in the previous lessons on 

solving rational equations.  Squaring both sides of an equation in some cases produces an extraneous solution.  They also 

continue to work with rational expressions and equations as seen in the previous lessons, but those expressions now 

contain radicals.  This lesson highlights standards A-REI.A.1, which calls for students to be able to explain each step 

required to solve an equation, and A-REI.A.2, which calls for students to solve a radical equation and show how 

extraneous solutions might arise.  It also addresses the standard MP.3 by building and analyzing arguments used in 

solving radical equations.  In Example 2, students consider the difference between working with an expression, whose 

value must be preserved, and working with an equation, whose sides can be changed in value as long as equality is 

preserved.  This difference addresses the standard MP.7 because students are stepping back to get an overview of 

expressions and equations as objects subject to different rules. 

 

Classwork 

Opening  (1 minute) 

Recall that working with radical expressions can be tricky, especially when negative numbers are involved.  When solving 

a radical equation, one must always check the answers found to verify that they are indeed valid solutions to the 

equation.  In some cases, extraneous solutions appear and must be eliminated.  Recall that an extraneous solution is one 

that satisfies a transformed equation but not the original one.  

 

Exercises 1–4  (7 minutes) 

Give students a few minutes to work through the first four 

exercises, and then discuss the results as a whole class.  

Circulate the room to assess students’ understanding. 

 

  

now 

Scaffolding: 

 If students are struggling, show a few simpler 

examples such as solving √𝑥 = 5 or √𝑥 = −5. 

 Another option would be to provide the following 

alternative model for students to complete. 

Fill in the blanks to fully show and explain the solution 

process. 
√𝒙 − 𝟔 = 𝟒 

        √𝒙 = 𝟏𝟎              

√𝒙
𝟐

= 𝟏𝟎𝟐 

𝒙 = 𝟏𝟎𝟎 

 

Added 𝟔 to both sides to isolate the radical. 

Square both sides.                                                        
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Exercises 1–4 

For Exercises 1–4, describe each step taken to solve the equation.  Then, check the solution to see if it is valid.  If it is not a 

valid solution, explain why.   

1. √𝒙 − 𝟔 = 𝟒 

√𝒙 = 𝟏𝟎    Add 𝟔 to both sides. 

𝒙 = 𝟏𝟎𝟎 Square both sides. 

Check:  √𝟏𝟎𝟎 − 𝟔 = 𝟏𝟎 − 𝟔 = 𝟒 

So 𝟏𝟎𝟎 is a valid solution. 

 

2. √𝒙𝟑 − 𝟔 = 𝟒 

√𝒙𝟑 = 𝟏𝟎    Add 𝟔 to both sides. 

𝒙 = 𝟏𝟎𝟎𝟎 Cube both sides.  

Check:  √𝟏𝟎𝟎𝟎
𝟑

− 𝟔 = 𝟏𝟎 − 𝟔 = 𝟒 

So 𝟏, 𝟎𝟎𝟎 is a valid solution. 

 

3. √𝒙 + 𝟔 = 𝟒 

√𝒙 = −𝟐    

𝒙 = 𝟒  

Check:  √𝟒 + 𝟔 = 𝟐 + 𝟔 = 𝟖, and 𝟖 ≠ 𝟒, so 𝟒 is not 

a valid solution. 

4. √𝒙𝟑 + 𝟔 = 𝟒 

√𝒙𝟑 = −𝟐    

𝒙 = −𝟖  

Check:  √−𝟖
𝟑

+ 𝟔 = −𝟐 + 𝟔 = 𝟒, so −𝟖 is a valid 

solution. 

 

Discussion 

Consider each of the following questions, one at a time. 

 What was the first step taken in solving the radical equations in Exercises 1 and 2? 

 The radical was isolated. 

 What was the second step taken? 

 Both sides were squared or cubed to eliminate the radical. 

 What happened in Exercise 3? 

 The same steps were used to solve the equation as were used in Exercise 1, but this time the solution 

found did not work.  There is no solution to the equation. 

 Why did that happen?   

This is one of the focal points of the lesson.  Ask students to answer in writing or discuss with a partner before sharing 

their answers with the rest of the class.  In the discussion, emphasize that 4 is an extraneous solution; it is the solution to 

𝑥 = 4 but not to the original equation. 

 For 4 to be a solution, √4 would need to equal −2.  Even though (−2)2 = 4, we define √4 = 2 so that 

𝑓(𝑥) = √𝑥 takes on only one value for 𝑥 ≥ 0 and is thus a function.  As a result, the square root of a 

positive number is only the positive value.  Therefore, 4 is an extraneous solution. 

 What other types of equations sometimes have extraneous solutions? 

 Rational equations can have extraneous solutions that create zero in the denominator. 

 Why did the solution process work in Exercise 4? 

 The cube root of a negative number is negative, so a cube root equation does not have the same issues 

with the negative numbers as a square root does. 

  

MP.3 
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Example 1  (5 minutes)  

Work through the example to solidify the steps in solving a radical equation.  Depending on how students did with the 

first four exercises, consider having them continue working with a partner.  Or, work through this example with the 

whole class at once.  Be sure students can explain and justify the steps they are taking. 

 

Example 1 

Solve the following radical equation.  Be sure to check your solutions. 

√𝟑𝒙 + 𝟓 − 𝟐 = −𝟏 

       Solution:  √𝟑𝒙 + 𝟓 = 𝟏 

𝟑𝒙 + 𝟓 = 𝟏 

𝟑𝒙 = −𝟒 

𝒙 = −
𝟒

𝟑
 

Check:  √𝟑 (−
𝟒
𝟑

) + 𝟓 − 𝟐 = √−𝟒 + 𝟓 − 𝟐 = √𝟏 − 𝟐 = −𝟏, so −
𝟒
𝟑

 is a valid solution. 

 

Discussion 

 What was the first step you took? 

 I isolated the radical. 

 Why did you do that first? 

 Isolating the radical allows it to be eliminated by squaring or cubing both sides of the equation. 

 What was the next step? 

 I squared both sides. 

 Why did you do that? 

 The purpose was to eliminate the radical from the equation. 

 Even though we are solving a new type of equation, does this feel like a familiar process? 

 Yes.  When solving an equation, we work on undoing any operation by doing the inverse.  To undo a 

square root, we use the inverse, so we square the expression. 

 How do the steps we are following relate to your previous experiences with solving other types of equations? 

 We are still following the basic process to solve an equation, which is to undo any operation on the 

same side as the variable by using the inverse operation. 

 Why is it important to check the solution? 

 Sometimes extraneous solutions appear because the square root of a positive number or zero is never 

negative. 

Summarize (in writing or with a partner) what you have learned about solving radical equations.  Be sure that you 

explain what to do when you get an extraneous solution. 
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Exercises 5–15  (15 minutes)  

Allow students time to work the problems individually and then check with a partner.  Circulate around the room.  Make 

sure students are checking for extraneous solutions. 

 

Exercises 5–15 

Solve each radical equation.  Be sure to check your solutions. 

5. √𝟐𝒙 − 𝟑 = 𝟏𝟏 6. √𝟔 − 𝒙
𝟑

= −𝟑 

𝟔𝟐 

 

𝟑𝟑 

7. √𝒙 + 𝟓 − 𝟗 = −𝟏𝟐 8. √𝟒𝒙 − 𝟕 = √𝟑𝒙 + 𝟗 

No solution 

 

𝟏𝟔 

9. −𝟏𝟐√𝒙 − 𝟔 = 𝟏𝟖 10. 𝟑√𝒙 + 𝟐
𝟑

= 𝟏𝟐 

No solution 

 

𝟔𝟐 

11. √𝒙𝟐 − 𝟓 = 𝟐 12. √𝒙𝟐 + 𝟖𝒙 = 𝟑 

𝟑, −𝟑 −𝟗,  𝟏 

 

 Which exercises produced extraneous solutions? 

 Exercises 7 and 9 

 Which exercises produced more than one solution?  Why? 

 Exercises 11 and 12 because after eliminating the radical, the equation became a quadratic equation.  

Both solutions were valid when checked.   

 Write an example of a radical equation that has an extraneous solution.  Exchange with a partner and confirm 

that the example does in fact have an extraneous solution.   

 

Compute each product, and combine like terms. 

13. (√𝒙 + 𝟐)(√𝒙 − 𝟐) 14. (√𝒙 + 𝟒)(√𝒙 + 𝟒) 15. (√𝒙 − 𝟓)(√𝒙 − 𝟓) 

𝒙 − 𝟒 𝒙 + 𝟖√𝒙 + 𝟏𝟔 𝒙 − 𝟓 

 

In the next example and exercises, we are working with equations and expressions that contain quotients and radicals.  

The purpose of these problems is to continue to build fluency working with radicals, to build on the work done in the 

previous lessons on rational expressions and equations, and to highlight MP.7, which calls for students to recognize and 

make use of structure in an expression.  

  

MP.3 
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Example 2  (5 minutes)  

Work through the two examples as a class, making sure students understand the differences between working with an 

expression and working with an equation.   

 

Example 2 

Rationalize the denominator in each expression.  That is, rewrite the expression so that there is a rational expression in 

the denominator. 

a. 
𝒙−𝟗

√𝒙−𝟗
 b. 

𝒙−𝟗

√𝒙+𝟑
 

𝒙 − 𝟗

√𝒙 − 𝟗
∙

√𝒙 − 𝟗

√𝒙 − 𝟗
 

(𝒙 − 𝟗)√𝒙 − 𝟗

𝒙 − 𝟗
 

√𝒙 − 𝟗 

𝒙 − 𝟗

√𝒙 + 𝟑
∙

√𝒙 − 𝟑

√𝒙 − 𝟑
 

(𝒙 − 𝟗)(√𝒙 − 𝟑)

𝒙 − 𝟗
 

√𝒙 − 𝟑 

 

 What do the directions mean by “rationalize the denominator?” 

 Remove the radical from the denominator so that the denominator is a rational expression. 

 How can we accomplish this goal in part (a)? 

 Multiply the numerator and denominator by √𝑥 − 9. 

 Why not just square the expression? 

 We are working with an expression, not an equation.  You cannot square the expression because you 

would be changing its value.  You can multiply the numerator and denominator by √𝑥 − 9 because that 

is equivalent to multiplying by 1.  It does not change the value of the expression. 

 Can we take the same approach in part (b)? 

 No, multiplying by √𝑥 + 3 would not remove the radical from the denominator. 

 Based on Exercise 13, what number should we multiply the numerator and the denominator by in part (b) in 

order to make the denominator rational? 

 √𝑥 − 3 

 In these examples, what was accomplished by rationalizing the denominator? 

 It allowed us to create an equivalent expression that is simpler.   

 Why would that be advantageous? 

 It would be easier to work with if we were evaluating it for a particular value of 𝑥. 

 

Exercises 16–18  (5 minutes) 

Allow students time to work on the three problems and then debrief.  Students may have taken different approaches on 

Exercise 17, such as squaring both sides first or rationalizing the denominator.  Share a few different approaches and 

compare.  

 

MP.7 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
 
 
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 28 

ALGEBRA II 

Lesson 28: A Focus on Square Roots 
 
 

 

318 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Exercises 16–18 

16. Rewrite 
𝟏

√𝒙−𝟓
 in an equivalent form with a rational expression in the denominator.  

√𝒙 + 𝟓

𝒙 − 𝟐𝟓
 

 

17. Solve the radical equation 
𝟑

√𝒙+𝟑
= 𝟏.  Be sure to check for extraneous solutions. 

𝒙 = 𝟔 

 

18. Without solving the radical equation √𝒙 + 𝟓 + 𝟗 = 𝟎, how could you tell that it has no real solution? 

The value of the radical expression √𝒙 + 𝟓 must be positive or zero.  In either case, adding 𝟗 to it cannot give zero. 

 

Closing  (2 minutes) 

Ask students to respond to these questions in writing or with a partner.  Use this as an opportunity to informally assess 

students’ understanding. 

 Explain to your neighbor how to solve a radical equation.  What steps do you take and why? 

 Isolate the radical, and then eliminate it by raising both sides to an exponent.  The radical is isolated so 

that both sides can be squared or cubed as a means of eliminating the radical. 

 How is solving a radical equation similar to solving other types of equations we have solved? 

 We are isolating the variable by undoing any operation on the same side. 

 Why is it important to check the solutions? 

 Remember that the square root of a number takes on only the positive value.  When solving a radical 

equation involving a square root, squaring both sides of the equation in the process of solving may 

make the negative “disappear” and may create an extraneous solution.   

 

Exit Ticket  (5 minutes) 

 

  

Scaffolding: 

If students are struggling with 
Exercise 17, have them 
approach the equation logically 
first rather than algebraically.  
If the output must equal 1, and 
the numerator is 3, what must 
the denominator equal? 
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Name                                   Date                          

Lesson 28:  A Focus on Square Roots 

 
Exit Ticket 
 

Consider the radical equation 3√6 − 𝑥 + 4 = −8. 

1. Solve the equation.  Next to each step, write a description of what is being done. 

 

 

 

 

 

 

 

 

 

2. Check the solution. 

 

 

 

 

 

 

 

 

 

3. Explain why the calculation in Problem 1 does not produce a solution to the equation. 
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Exit Ticket Sample Solutions 

 

Consider the radical equation 𝟑√𝟔 − 𝒙 + 𝟒 = −𝟖. 

1. Solve the equation.  Next to each step, write a description of what is being done. 

𝟑√𝟔 − 𝒙 = −𝟏𝟐 

√𝟔 − 𝒙 = −𝟒 

𝟔 − 𝒙 = 𝟏𝟔 

𝒙 = −𝟏𝟎 

Subtract 𝟒 from both sides. 

Divide both sides by 𝟑 in order to isolate the radical. 

Square both sides to eliminate the radical. 

Subtract 𝟔 from both sides and divide by −𝟏. 

 

2. Check the solution. 

𝟑√𝟔 − (−𝟏𝟎) + 𝟒 = 𝟑√𝟏𝟔 + 𝟒 = 𝟑(𝟒) + 𝟒 = 𝟏𝟔, and ≠ −𝟖 , so – 𝟏𝟎 is not a valid solution.  

 

3. Explain why the calculation in Problem 1 does not produce a solution to the equation. 

Because the square root of a positive number is positive, 𝟑√𝟔 − 𝒙 will be positive.  A positive number added to 𝟒 

cannot be −𝟖. 

 
 
Problem Set Sample Solutions 

 

1.  

a. If √𝒙 = 𝟗, then what is the value of 𝒙? 

𝒙 = 𝟖𝟏 

 

b. If 𝒙𝟐 = 𝟗, then what is the value of 𝒙? 

𝒙 = 𝟑 or 𝒙 = −𝟑 

 

c. Is there a value of 𝒙 such that √𝒙 + 𝟓 = 𝟎?  If yes, what is the value?  If no, explain why not. 

Yes, 𝒙 = −𝟓 

 

d. Is there a value of 𝒙 such that √𝒙 + 𝟓 = 𝟎?  If yes, what is the value?  If no, explain why not. 

No, √𝒙 will be a positive value or zero for any value of 𝒙, so the sum cannot equal 𝟎.  If 𝒙 = 𝟐𝟓, then  

√𝟐𝟓 + 𝟓 = 𝟏𝟎. 

 

2.  

a. Is the statement √𝒙𝟐 = 𝒙 true for all 𝒙-values?  Explain. 

No, this statement is only true for 𝒙 ≥ 𝟎.  If 𝒙 < 𝟎, it is not true.  For example, if 𝒙 = −𝟓, √(−𝟓)𝟐 = √𝟐𝟓 = 𝟓, 

then √(−𝟓)𝟐 ≠ −𝟓. 
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b. Is the statement √𝒙𝟑𝟑
= 𝒙 true for all 𝒙-values?  Explain. 

Yes, this statement is true for all 𝒙-values.  For example, if 𝒙 = 𝟐, then √𝟐𝟑𝟑
= 𝟐.  If 𝒙 = −𝟐, then  

√(−𝟐)𝟑𝟑
= −𝟐.  Since the cube root of a positive number is positive, and the cube root of a negative number is 

negative, this statement is true for any value of 𝒙. 

 

Rationalize the denominator in each expression. 

3. 
𝟒−𝒙

𝟐+√𝒙
 4. 

𝟐

√𝒙−𝟏𝟐
 5. 

𝟏

√𝒙+𝟑−√𝒙
 

𝟐 − √𝒙 𝟐√𝒙 − 𝟏𝟐

𝒙 − 𝟏𝟐
 

√𝒙 + 𝟑 + √𝒙

𝟑
 

 

Solve each equation, and check the solutions. 

6. √𝒙 + 𝟔 = 𝟑 7. 𝟐√𝒙 + 𝟑 = 𝟔 

𝒙 = 𝟑 

 

𝒙 = 𝟔 

8. √𝒙 + 𝟑 + 𝟔 = 𝟑 9. √𝒙 + 𝟑 − 𝟔 = 𝟑 

No solution 

 

𝒙 = 𝟕𝟖 

10. 𝟏𝟔 = 𝟖 + √𝒙 11. √𝟑𝒙 − 𝟓 = 𝟕 

𝒙 = 𝟔𝟒 

 

𝒙 = 𝟏𝟖 

12. √𝟐𝒙 − 𝟑 = √𝟏𝟎 − 𝒙 13. 𝟑√𝒙 + 𝟐 + √𝒙 − 𝟒 = 𝟎 

𝒙 =
𝟏𝟑

𝟑
 

 

No solution 

14. 
√𝒙+𝟗

𝟒
= 𝟑 15. 

𝟏𝟐

√𝒙+𝟗
= 𝟑 

𝒙 = 𝟏𝟑𝟓 

 

𝒙 = 𝟕 

16. √𝒙𝟐 + 𝟗 = 𝟓 17. √𝒙𝟐 − 𝟔𝒙 = 𝟒 

𝒙 = 𝟒 or 𝒙 = −𝟒 

 

𝒙 = 𝟖 or 𝒙 = −𝟐 

18. 
𝟓

√𝒙−𝟐
= 𝟓 19. 

𝟓

√𝒙−𝟐
= 𝟓 

𝒙 = 𝟑 

 

𝒙 = 𝟗 

20. √𝟓𝒙 − 𝟑
𝟑

+ 𝟖 = 𝟔 21. √𝟗 − 𝒙
𝟑

= 𝟔 

𝒙 = −𝟏 𝒙 = −𝟐𝟎𝟕 
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22. Consider the inequality √𝒙𝟐 + 𝟒𝒙 > 𝟎.  Determine whether each 𝒙-value is a solution to the inequality. 

a. 𝒙 = −𝟏𝟎 b. 𝒙 = −𝟒 c. 𝒙 = 𝟏𝟎 d. 𝒙 = 𝟒 

Yes No Yes Yes 

 

23. Show that 
𝒂−𝒃

√𝒂−√𝒃
= √𝒂 + √𝒃 for all values of 𝒂 and 𝒃 such that 𝒂 > 𝟎 and 𝒃 > 𝟎 and 𝒂 ≠ 𝒃. 

If we multiply the numerator and denominator of 
𝒂−𝒃

√𝒂−√𝒃
 by √𝒂 + √𝒃 to rationalize the denominator, then we have  

𝒂−𝒃

√𝒂−√𝒃
=

𝒂−𝒃

√𝒂−√𝒃
∙

√𝒂+√𝒃

√𝒂+√𝒃
=

(𝒂−𝒃)(√𝒂+√𝒃)

𝒂−𝒃
= √𝒂 + √𝒃. 

 

24. Without actually solving the equation, explain why the equation √𝒙 + 𝟏 + 𝟐 = 𝟎 has no solution. 

The value of √𝒙 + 𝟏 must be positive, which is then added to 𝟐.  The sum of two positive numbers is positive; 

therefore, the sum cannot equal 𝟎. 
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Lesson 29:  Solving Radical Equations 

 
Student Outcomes 

 Students develop facility in solving radical equations. 

 

Lesson Notes 

In the previous lesson, students were introduced to the notion of solving radical equations and checking for extraneous 

solutions (A-REI.A.2).  Students continue this work by looking at radical equations that contain variables on both sides.  

The main point to stress to students is that radical equations become polynomial equations through exponentiation.  So 

we really have not left the notion of polynomials that have been studied throughout this module.  This lesson also 

provides opportunities to emphasize MP.7 (look for and make use of structure).   

 

Classwork 

Discussion  (5 minutes) 

Before beginning the lesson, remind students of past experiences by providing the following scenario, which illustrates a 

case when an operation performed to both sides of an equation has changed the set of solutions. 

Carlos and Andrea were solving the equation 𝑥2 + 2𝑥 = 0.  Andrea says that there are two solutions, 0 and −2.  Carlos 

says the only solution is −2 because he divided both sides by 𝑥 and got 𝑥 + 2 = 0.  Who is correct and why? 

 Do both 0 and −2 satisfy the original equation? 

 Yes.  If we replace 𝑥 with either 0 or −2, the answer is 0. 

 What happened when Carlos divided both sides of the equation by 𝑥? 

 He changed the solutions from 0 and −2 to simply −2.  He lost one solution to the equation. 

 What does this say about the solution of equations after we have performed algebraic operations on both 

sides? 

 Performing algebraic steps may alter the set of solutions to the original equation.  

Now, Carlos and Andrea are solving the equation √𝑥 = −3.  Andrea says the solution is 9 

because she squared both sides and got 𝑥 = 9.  Carlos says there is no solution.  Who is 

correct?  Why? 

 Was Andrea correct to square both sides? 

 Yes.  To eliminate a radical from an equation, we raise both sides to an 

exponent. 

 Is she correct that the solution is 9? 

 No.  Carlos is correct.  If we let 𝑥 = 9, then we get √9 = 3, and 3 ≠ −3, 

so 9 is not a solution.  

 

 

Scaffolding 

 Use several examples to 

illustrate that if 𝑎 > 0, 

then an equation of the 

form √𝑥 = −𝑎 will not 

have a solution (e.g.,  

√𝑥 = −4, √𝑥 = −5). 

 Extension:  Write an 

equation that has an 

extraneous solution of  

𝑥 = 50. 

MP.3 
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 What is the danger in squaring both sides of an equation? 

 It sometimes produces an equation whose solution set is not equivalent to that of the original equation.  

If both sides of √𝑥 = −3 are squared, the equation 𝑥 = 9 is produced, but 9 is not a solution to the 

original equation.  The original equation has no solution.   

 Because of this danger, what is the final essential step of solving a radical equation? 

 Checking the solution or solutions to ensure that an extraneous solution was not produced by the step 

of squaring both sides. 

 How could we have predicted that the equation would have no solution? 

 The square root of a number is never equal to a negative value, so there is no 𝑥-value so that √𝑥 = −3.  

 

Example 1  (5 minutes)  

While this problem is difficult, students should attempt to solve it on their own first, by applying their understandings of 

radicals.  Students should be asked to verify the solution they come up with and describe their solution method.  Discuss 

Example 1 as a class once they have worked on it individually.   

 

Example 1 

Solve the equation 𝟔 = 𝒙 + √𝒙. 

𝟔 − 𝒙 = √𝒙 

(𝟔 − 𝒙)𝟐 = √𝒙
𝟐

 

𝟑𝟔 − 𝟏𝟐𝒙 + 𝒙𝟐 = 𝒙 

𝒙𝟐 − 𝟏𝟑𝒙 + 𝟑𝟔 = 𝟎 

(𝒙 − 𝟗)(𝒙 − 𝟒) = 𝟎 

The solutions are 𝟗 and 𝟒. 

Check 𝒙 = 𝟗: 

𝟗 + √𝟗 = 𝟗 + 𝟑 = 𝟏𝟐 

𝟔 ≠ 𝟏𝟐 

So, 𝟗 is an extraneous solution.  

Check 𝒙 = 𝟒: 

𝟒 + √𝟒 = 𝟒 + 𝟐 = 𝟔 
 

The only valid solution is 𝟒. 

 

 How does this equation differ from the ones from yesterday’s lesson?  

 There are two 𝑥’s; one inside and one outside of the radical. 

 Explain how you were able to determine the solution to the equation above. 

 Isolate the radical and square both sides.  Solve the resulting equation.  

 Did that change the way in which the equation was solved? 

 Not really; we still eliminated the radical by squaring both sides. 

 What type of equation were we left with after squaring both sides? 

 A quadratic polynomial equation 

 Why did 9 fail to work as a solution? 

 The square root of 9 takes only the positive value of 3. 

MP.1 
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Exercises 1–4  (13 minutes)  

Allow students time to work the problems independently and then pair up to compare solutions.  Use this time to 

informally assess student understanding by examining their work.  Display student responses, making sure that students 

checked for extraneous solutions. 

 

Exercises 1–4  

Solve. 

1. 𝟑𝒙 = 𝟏 + 𝟐√𝒙 

The only solution is 𝟏.   

Note that 
𝟏

𝟗
 is an extraneous solution.   

  

2. 𝟑 = 𝟒√𝒙 − 𝒙 

The two solutions are 𝟗 and 𝟏. 

 

3. √𝒙 + 𝟓 = 𝒙 − 𝟏 

The only solution is 𝟒. 

Note that −𝟏 is an extraneous solution. 

4. √𝟑𝒙 + 𝟕 + 𝟐√𝒙 − 𝟖 = 𝟎 

There are no solutions. 

 

 

 When solving Exercise 1, what solutions did you find?  What happened when you checked these solutions? 

 The solutions found were 
1

9
 and 1.  Only 1 satisfies the original equation, so 

1

9
 is an extraneous solution. 

 Did Exercise 2 have any extraneous solutions? 

 No.  Both solutions satisfied the original equation. 

 Looking at Exercise 4, could we have predicted that there would be no solution? 

 Yes.  The only way the two square roots could add to zero would be if both of them produced a zero, 

meaning that 3𝑥 + 7 = 0 and 𝑥 − 8 = 0.  Since 𝑥 cannot be both −
7
3

 and 8, both radicals cannot be 

simultaneously zero.  Thus, at least one of the square roots will be positive, and they cannot sum to 

zero.  

 

Example 2  (5 minutes)  

What do we do when there is no way to isolate the radical?  What is going to be the 

easiest way to square both sides?  Give students time to work on Example 2 

independently.  Point out that even though we had to square both sides twice, we were 

still able to rewrite the equation as a polynomial.   

 

Example 2 

Solve the equation √𝒙 + √𝒙 + 𝟑 = 𝟑. 

√𝒙 + 𝟑 = 𝟑 − √𝒙 

(√𝒙 + 𝟑)
𝟐

= (𝟑 − √𝒙)𝟐 

𝒙 + 𝟑 = 𝟗 − 𝟔√𝒙 + 𝒙 

𝟏 = √𝒙 

𝟏 = 𝒙 
 

Check:  

√𝟏 + √𝟏 + 𝟑 = 𝟏 + 𝟐 = 𝟑  

So the solution is 𝟏. 

Scaffolding: 

What if we had squared both 

sides of the equation as it was 

presented?  Have early 

finishers work out the solution 

this way and share with the 

class.   

MP.7 

MP.7 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
  
  
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 29 

ALGEBRA II 

Lesson 29: Solving Radical Equations 
 
 

 

326 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Exercises 5–6  (7 minutes)  

Allow students time to work the problems independently and then pair up to compare solutions.  Circulate to assess 

understanding.  Consider targeted instruction with a small group of students while others work independently.  Display 

student responses, making sure that students check for extraneous solutions. 

 

Exercises 5–6 

Solve the following equations. 

5. √𝒙 − 𝟑 + √𝒙 + 𝟓 = 𝟒 

𝟒 

6. 𝟑 + √𝒙 = √𝒙 + 𝟖𝟏 

𝟏𝟒𝟒 

 

Closing  (5 minutes) 

Ask students to respond to these prompts in writing or with a partner.  Use these responses to informally assess their 

understanding of the lesson. 

 How did these equations differ from the equations seen in the previous lesson? 

 Most of them contained variables on both sides of the equation or a variable outside of the radical. 

 How were they similar to the equations from the previous lesson? 

 They were solved using the same process of squaring both sides.  Even though they were more 

complicated, the equations could still be rewritten as a polynomial equation and solved using the same 

process seen throughout this module. 

 Give an example where 𝑎𝑛 = 𝑏𝑛 but 𝑎 ≠ 𝑏. 

 We know that (−3)2 = 32 but −3 ≠ 3.  

 

 

 

Exit Ticket  (5 minutes)  

 

  

Lesson Summary  

If 𝒂 = 𝒃 and 𝒏 is an integer, then 𝒂𝒏 = 𝒃𝒏.  However, the converse is not necessarily true.  The statement 𝒂𝒏 = 𝒃𝒏 

does not imply that 𝒂 = 𝒃.  Therefore, it is necessary to check for extraneous solutions when both sides of an 

equation are raised to an exponent.   
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Name                                   Date                          

Lesson 29:  Solving Radical Equations 

 
Exit Ticket 
 

1. Solve √2𝑥 + 15 = 𝑥 + 6.  Verify the solution(s). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Explain why it is necessary to check the solutions to a radical equation.    
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Exit Ticket Sample Solutions 

 

1. Solve √𝟐𝒙 + 𝟏𝟓 = 𝒙 + 𝟔.  Verify the solution(s). 

𝟐𝒙 + 𝟏𝟓 = 𝒙𝟐 + 𝟏𝟐𝒙 + 𝟑𝟔 

𝟎 = 𝒙𝟐 + 𝟏𝟎𝒙 + 𝟐𝟏 

𝟎 = (𝒙 + 𝟑)(𝒙 + 𝟕) 

The solutions are −𝟑 and −𝟕. 

Check 𝒙 = −𝟑: 

√𝟐(−𝟑) + 𝟏𝟓 = √𝟗 = 𝟑 

−𝟑 + 𝟔 = 𝟑 

So, −𝟑 is a valid solution. 

Check 𝒙 = −𝟕: 

√𝟐(−𝟕) + 𝟏𝟓 = √𝟏 = 𝟏 

−𝟕 + 𝟔 = −𝟏 

Since −𝟏 ≠ 𝟏, we see that −𝟏 is an extraneous solution. 

Therefore, the only solution to the original equation is −𝟑. 

 

2. Explain why it is necessary to check the solutions to a radical equation.    

Raising both sides of an equation to a power can produce an equation whose solution set is not equivalent to that of 

the original equation.  In the problem above, 𝒙 = −𝟕 does not satisfy the equation.  

 
 
Problem Set Sample Solutions 

 

Solve.  

1. √𝟐𝒙 − 𝟓 − √𝒙 + 𝟔 = 𝟎 

𝟏𝟏 

 

2. √𝟐𝒙 − 𝟓 + √𝒙 + 𝟔 = 𝟎 

No solution 

3. √𝒙 − 𝟓 − √𝒙 + 𝟔 = 𝟐 

No solution 

 

4. √𝟐𝒙 − 𝟓 − √𝒙 + 𝟔 = 𝟐 

𝟒𝟑 

5. √𝒙 + 𝟒 = 𝟑 − √𝒙 

𝟐𝟓

𝟑𝟔
 

 

6. √𝒙 + 𝟒 = 𝟑 + √𝒙 

No solution 

7. √𝒙 + 𝟑 = √𝟓𝒙 + 𝟔 − 𝟑 

𝟔 

 

8. √𝟐𝒙 + 𝟏 = 𝒙 − 𝟏 

𝟒 

9. √𝒙 + 𝟏𝟐 + √𝒙 = 𝟔 

𝟒 

10. 𝟐√𝒙 = 𝟏 − √𝟒𝒙 − 𝟏 

𝟏

𝟒
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11. 𝟐𝒙 = √𝟒𝒙 − 𝟏 

𝟏

𝟐
 

 

12. √𝟒𝒙 − 𝟏 = 𝟐 − 𝟐𝒙 

𝟏

𝟐
 

13. 𝒙 + 𝟐 = 𝟒√𝒙 − 𝟐 

𝟔 

 

14. √𝟐𝒙 − 𝟖 + √𝟑𝒙 − 𝟏𝟐 = 𝟎 

𝟒 

15. 𝒙 = 𝟐√𝒙 − 𝟒 + 𝟒 

𝟒, 𝟖 

 

16. 𝒙 − 𝟐 = √𝟗𝒙 − 𝟑𝟔 

𝟓, 𝟖 

17. Consider the right triangle 𝑨𝑩𝑪 shown to the right, with 𝑨𝑩 = 𝟖 and 𝑩𝑪 = 𝒙. 

a. Write an expression for the length of the hypotenuse in terms of 𝒙. 

𝑨𝑪 = √𝟔𝟒 + 𝒙𝟐 

 

b. Find the value of 𝒙 for which 𝑨𝑪 − 𝑨𝑩 = 𝟗. 

The solutions to the mathematical equation √𝟔𝟒 + 𝒙𝟐 − 𝟖 = 𝟗 are  −𝟏𝟓 

and 𝟏𝟓.  Since lengths must be positive, −𝟏𝟓 is an extraneous solution, and 𝒙 = 𝟏𝟓. 

 

18. Consider the triangle 𝑨𝑩𝑪 shown to the right where 𝑨𝑫 = 𝑫𝑪, and 𝑩𝑫̅̅̅̅̅ 

is the altitude of the triangle. 

a. If the length of 𝑩𝑫̅̅̅̅̅ is 𝒙 𝐜𝐦, and the length of 𝑨𝑪̅̅ ̅̅  is 𝟏𝟖 𝐜𝐦, write 

an expression for the lengths of 𝑨𝑩̅̅ ̅̅  and 𝑩𝑪̅̅ ̅̅  in terms of 𝒙. 

𝑨𝑩 = 𝑩𝑪 = √𝟖𝟏 + 𝒙𝟐 𝐜𝐦 

 

b. Write an expression for the perimeter of △ 𝑨𝑩𝑪 in terms of 𝒙. 

(𝟐√𝟖𝟏 + 𝒙𝟐 + 𝟏𝟖) 𝐜𝐦 

 

c. Find the value of 𝒙 for which the perimeter of △ 𝑨𝑩𝑪 is equal to 𝟑𝟖 𝐜𝐦. 

√𝟏𝟗 𝐜𝐦 
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Lesson 30:  Linear Systems in Three Variables 

 
Student Outcomes 

 Students solve linear systems in three variables algebraically.  

 

Lesson Notes 

Students solved systems of linear equations in two variables using substitution and elimination in Grade 8 and then 

encountered the topic again in Algebra I when solving systems of linear equalities and inequalities.  This lesson begins 

with a quick review of the method of elimination to solve a linear system in two variables along with an application 

problem.  We then solve a system of equations in three variables using algebraic techniques. 

 

Classwork 

Opening  (2 minutes) 

This lesson transitions from solving 2-by-2 systems of linear equations as in Algebra I to solving systems of equations 

involving linear and nonlinear equations in two variables in the next two lessons.  These nonlinear systems are solved 

algebraically using substitution or by graphing each equation and finding points of intersection, if any.  This lesson helps 

remind students how to solve linear systems of equations and introduces them to 3-by-3 systems of linear equations 

(analyzed later using matrices in Precalculus and Advanced Topics).   

 

Exercises 1–3  (8 minutes)  

 

Exercises 1–3  

Determine the value of 𝒙 and 𝒚 in the following systems of equations. 

1. 𝟐𝒙 + 𝟑𝒚 = 𝟕  
𝟐𝒙 + 𝒚 = 𝟑   

𝒙 =
𝟏

𝟐
, 𝒚 = 𝟐 

 

2. 𝟓𝒙– 𝟐𝒚 = 𝟒 
−𝟐𝒙 + 𝒚 = 𝟐  

𝒙 = 𝟖, 𝒚 = 𝟏𝟖 

 

After this review of using elimination to solve a system, guide students through the setup of the following problem, and 

then let them solve using the techniques reviewed in Exercises 1 and 2. 
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3. A scientist wants to create 𝟏𝟐𝟎 𝐦𝐥 of a solution that is 𝟑𝟎% acidic.  To create this solution, she has access to a 𝟐𝟎% 

solution and a 𝟒𝟓% solution.  How many milliliters of each solution should she combine to create the 𝟑𝟎% solution? 

 

Solve this problem using a system of two equations in two variables. 

 

Solution:  

Milliliters of 𝟐𝟎% solution:  𝒙 𝐦𝐥 

Milliliters of 𝟒𝟓% solution:  𝒚 𝐦𝐥 

Write one equation to represent the total amounts of each solution needed: 

𝒙 + 𝒚 = 𝟏𝟐𝟎. 

Since 𝟑𝟎% of 𝟏𝟐𝟎 𝐦𝐥 is 𝟑𝟔, we can write one equation to model the acidic portion: 

𝟎. 𝟐𝟎𝒙 + 𝟎. 𝟒𝟓𝒚 = 𝟑𝟔. 

Writing these two equations as a system: 

𝒙 + 𝒚 = 𝟏𝟐𝟎 

𝟎. 𝟐𝟎𝒙 + 𝟎. 𝟒𝟓𝒚 = 𝟑𝟔 

To solve, multiply both sides of the top equation by either 𝟎. 𝟐𝟎 to eliminate 𝒙 or 𝟎. 𝟒𝟓 to eliminate 𝒚.  The following 

steps will eliminate 𝒙: 

𝟎. 𝟐𝟎(𝒙 + 𝒚) = 𝟎. 𝟐𝟎(𝟏𝟐𝟎) 

𝟎. 𝟐𝟎𝒙 + 𝟎. 𝟒𝟓𝒚 = 𝟒𝟎 

which gives 

𝟎. 𝟐𝟎𝒙 + 𝟎. 𝟐𝟎𝒚 = 𝟐𝟒 

𝟎. 𝟐𝟎𝒙 + 𝟎. 𝟒𝟓𝒚 = 𝟑𝟔. 

Replacing the top equation with the difference between the bottom equation and top equation results in a new 

system with the same solutions: 

𝟎. 𝟐𝟓𝒚 = 𝟏𝟐 

𝟎. 𝟐𝟎𝒙 + 𝟎. 𝟒𝟓𝒚 = 𝟑𝟔. 

The top equation can quickly be solved for 𝒚, 

𝒚 = 𝟒𝟖, 

and substituting 𝒚 = 𝟒𝟖 back into the original first equation allows us to find 𝒙: 

𝒙 + 𝟒𝟖 = 𝟏𝟐𝟎 

𝒙 = 𝟕𝟐. 

Thus, we need 𝟒𝟖 𝐦𝐥 of the 𝟒𝟓% solution and 𝟕𝟐 𝐦𝐥 of the 𝟐𝟎% solution.  
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Scaffolding:  

Ask students if they can 

eliminate two of the variables 

from either equation.  (They 

cannot.)  Have a discussion 

around what that means 

graphically.  (The graph of the 

solution set is a line, not a 

point, so there is no single 

solution to the system.)  

Discussion  (5 minutes)  

 In the previous exercises we solved systems of two linear equations in two 

variables using the method of elimination.  However, what if we have three 

variables?  For example, what are the solutions to the following system of 

equations? 

2𝑥 + 3𝑦 − 𝑧 = 5 

4𝑥 − 𝑦 − 𝑧 = −1 

Allow students time to work together and struggle with this system and realize that they 

cannot find a unique solution.  Include the following third equation, and ask students if 

they can solve it now. 

𝑥 + 4𝑦 + 𝑧 = 12 

Give students an opportunity to consider solutions or other ideas on how to begin the process of solving this system.  

After considering their suggestions and providing feedback, guide them through the process in the example below. 

 

Example  (9 minutes)  

 

Example 

Determine the values for 𝒙, 𝒚, and 𝒛 in the following system: 

𝟐𝒙 + 𝟑𝒚 − 𝒛 = 𝟓      (1) 

𝟒𝒙 − 𝒚 − 𝒛 = −𝟏   (2) 

𝒙 + 𝟒𝒚 + 𝒛 = 𝟏𝟐    (3) 

 

Suggest numbering the equations as shown above to help organize the process. 

 Eliminate 𝑧 from equations (1) and (2) by subtraction.  Replace equation (1) with the result.  

     2𝑥 + 3𝑦 − 𝑧 = 5 

−(4𝑥 − 𝑦 − 𝑧) = −(−1) 

−2𝑥 + 4𝑦 = 6 

 Our goal is to find two equations in two unknowns.  Thus, we will also eliminate 𝑧 from equations (2) and (3) by 

adding as follows.  Replace equation (3) with the result. 

4𝑥 − 𝑦 − 𝑧 = −1 

𝑥 + 4𝑦 + 𝑧 = 12 

5𝑥 + 3𝑦 = 11 

 Our new system of three equations in three variables has two equations with only two variables in them:  

−2𝑥 + 4𝑦 = 6 

4𝑥 − 𝑦 − 𝑧 = −1 

5𝑥 + 3𝑦 = 11. 

MP.1 
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 These two equations now give us a system of two equations in two variables, which we reviewed how to solve 

in Exercises 1–2. 

−2𝑥 + 4𝑦 = 6 

5𝑥 + 3𝑦 = 11 

At this point, let students solve this individually or with partners, or guide them through the process if necessary. 

 To get matching coefficients, we need to multiply both equations by a constant: 

5(−2𝑥 + 4𝑦) = 5(6) 

2(5𝑥 + 3𝑦) = 2(11) 

→ −10𝑥 + 20𝑦 = 30 

10𝑥 + 6𝑦 = 22. → 

 Replacing the top equation with the sum of the top and bottom equations together gives the following:  

26𝑦 = 52 

10𝑥 + 6𝑦 = 22. 

 The new top equation can be solved for 𝑦: 

𝑦 = 2. 

 Replace 𝑦 = 2 in one of the equations to find 𝑥: 

5𝑥 + 3(2) = 11 

5𝑥 + 6 = 11 

5𝑥 = 5 

𝑥 = 1. 

 Replace 𝑥 = 1 and 𝑦 = 2 in any of the original equations to find 𝑧: 

2(1) + 3(2) − 𝑧 = 5 

2 + 6 − 𝑧 = 5 

8 − 𝑧 = 5 

𝑧 = 3. 

 The solution, 𝑥 = 1, 𝑦 = 2, and 𝑧 = 3, can be written compactly as an ordered triple of numbers (1, 2, 3).   

Consider pointing out to students that the point (1, 2, 3) can be thought of as a point in a three-dimensional coordinate 

plane, and that it is, like a two-by-two system of equations, the intersection point in three-space of the three planes 

given by the graphs of each equation.  These concepts are not the point of this lesson, so addressing them is optional. 

Point out that a linear system involving three variables requires three equations in order for the solution to possibly be a 

single point.  

The following problems provide examples of situations that require solving systems of equations in three variables. 
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Exercise 4  (8 minutes)  

 

Exercises 4–5 

Given the system below, determine the values of 𝒓, s, and 𝒖 that satisfy all three equations. 

𝒓 + 𝟐𝒔 − 𝒖 = 𝟖 

𝒔 + 𝒖 = 𝟒 

𝒓 − 𝒔 − 𝒖 = 𝟐 

Adding the second and third equations together produces the equation 𝒓 = 𝟔.  Substituting this into the first equation and 

adding it to the second gives 𝟔 + 𝟑𝒔 = 𝟏𝟐, so that 𝒔 = 𝟐.  Replacing 𝒔 with 𝟐 in the second equation gives 𝒖 = 𝟐.  The 

solution to this system of equations is (𝟔, 𝟐, 𝟐). 

 

Exercise 5  (6 minutes)  

 

Find the equation of the form 𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 whose graph passes through the points (𝟏, 𝟔), (𝟑, 𝟐𝟎), and (−𝟐, 𝟏𝟓). 

We find 𝒂 = 𝟐, 𝒃 = −𝟏, 𝒄 = 𝟓; therefore, the quadratic equation is 𝒚 = 𝟐𝒙𝟐 − 𝒙 + 𝟓. 

 

Students may need help getting started on Exercise 5.  A graph of the points may help. 

 

 Since we know three ordered pairs, we can create three equations. 

6 = 𝑎 + 𝑏 + 𝑐 

20 = 9𝑎 + 3𝑏 + 𝑐 

15 = 4𝑎 − 2𝑏 + 𝑐 

Ask students to explain where the three equations came from.  Then have them use the technique from Example 1 to 

solve this system. 

Have students use a graphing utility to plot 𝑦 = 2𝑥2 − 𝑥 + 5 along with the original three points to confirm their 

answer. 

 

MP.7 
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Closing  (2 minutes) 

 We’ve seen that in order to find a single solution to a system of equations in two variables, we need to have 

two equations, and in order to find a single solution to a system of equations in three variables, we need to 

have three equations.  How many equations do you expect we will need to find a single solution to a system of 

equations in four variables?  What about five variables? 

 It seems that we will need four equations in four variables to find a single solution, and that we will 

need five equations in five variables to find a single solution.  

 

Exit Ticket  (5 minutes)  
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Name                                   Date                          

Lesson 30:  Linear Systems in Three Variables 

 
Exit Ticket 
 

For the following system, determine the values of 𝑝, 𝑞, and 𝑟 that satisfy all three equations: 

2𝑝 + 𝑞 − 𝑟 = 8 

𝑞 + 𝑟 = 4 

𝑝 − 𝑞 = 2. 
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Exit Ticket Sample Solutions 

 

For the following system, determine the values of 𝒑, 𝒒, and 𝒓 that satisfy all three equations: 

𝟐𝒑 + 𝒒 − 𝒓 = 𝟖 

𝒒 + 𝒓 = 𝟒 

𝒑 − 𝒒 = 𝟐. 

𝒑 = 𝟒, 𝒒 = 𝟐, 𝒓 = 𝟐, or equivalently (𝟒, 𝟐, 𝟐) 

 
 
Problem Set Sample Solutions 

 

Solve the following systems of equations. 

1. 𝒙 + 𝒚 = 𝟑 

𝒚 + 𝒛 = 𝟔 

𝒙 + 𝒛 = 𝟓 

𝒙 = 𝟏, 𝒚 = 𝟐, 𝒛 = 𝟒 or (𝟏, 𝟐, 𝟒) 

 2. 𝒓 = 𝟐(𝒔 − 𝒕) 

𝟐𝒕 = 𝟑(𝒔 − 𝒓) 

𝒓 + 𝒕 = 𝟐𝒔 − 𝟑 

𝒓 = 𝟐, 𝒔 = 𝟒, 𝒕 = 𝟑, or (𝟐, 𝟒, 𝟑) 

   

3. 𝟐𝒂 + 𝟒𝒃 + 𝒄 = 𝟓 

𝒂 − 𝟒𝒃 = −𝟔 

𝟐𝒃 + 𝒄 = 𝟕 

𝒂 = −𝟐, 𝒃 = 𝟏, 𝒄 = 𝟓 or (−𝟐, 𝟏, 𝟓) 

 4. 𝟐𝒙 + 𝒚 − 𝒛 = −𝟓 

𝟒𝒙 − 𝟐𝒚 + 𝒛 = 𝟏𝟎 

𝟐𝒙 + 𝟑𝒚 + 𝟐𝒛 = 𝟑 

𝒙 =
𝟏
𝟐

, 𝒚 = −𝟐, 𝒛 = 𝟒 or (
𝟏
𝟐

, −𝟐, 𝟒) 

   

5. 𝒓 + 𝟑𝒔 + 𝒕 = 𝟑 

𝟐𝒓 − 𝟑𝒔 + 𝟐𝒕 = 𝟑 

−𝒓 + 𝟑𝒔 − 𝟑𝒕 = 𝟏 

𝒓 = 𝟑, 𝒔 =
𝟏
𝟑

, 𝒕 = −𝟏 or (𝟑,
𝟏
𝟑

, −𝟏) 

 
6. 𝒙 − 𝒚 = 𝟏 

𝟐𝒚 + 𝒛 = −𝟒 

𝒙 − 𝟐𝒛 = −𝟔 

𝒙 = −𝟐, 𝒚 = −𝟑, 𝒛 = 𝟐 or (−𝟐, −𝟑, 𝟐) 

   

7. 𝒙 = 𝟑(𝒚 − 𝒛) 

𝒚 = 𝟓(𝒛 − 𝒙) 

𝒙 + 𝒚 = 𝒛 + 𝟒 

𝒙 = 𝟑, 𝒚 = 𝟓, 𝒛 = 𝟒 or (𝟑, 𝟓, 𝟒) 

 8. 𝒑 + 𝒒 + 𝟑𝒓 = 𝟒 

𝟐𝒒 + 𝟑𝒓 = 𝟕 

𝒑 − 𝒒 − 𝒓 = −𝟐 

𝒑 = 𝟐, 𝒒 = 𝟓, 𝒓 = −𝟏 or (𝟐, 𝟓, −𝟏) 

   

9. 
𝟏

𝒙
+

𝟏

𝒚
+

𝟏

𝒛
= 𝟓 

𝟏

𝒙
+

𝟏

𝒚
= 𝟐 

𝟏

𝒙
−

𝟏

𝒛
= −𝟐 

𝒙 = 𝟏, 𝒚 = 𝟏, 𝒛 =
𝟏
𝟑

 or (𝟏, 𝟏,
𝟏
𝟑

) 

 
10. 

𝟏

𝒂
+

𝟏

𝒃
+

𝟏

𝒄
= 𝟔 

𝟏

𝒃
+

𝟏

𝒄
= 𝟓 

𝟏

𝒂
−

𝟏

𝒃
= −𝟏 

𝒂 = 𝟏, 𝒃 =
𝟏
𝟐

, 𝒄 =
𝟏
𝟑

 or (𝟏,
𝟏
𝟐

,
𝟏
𝟑

) 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
  
  
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 30 

ALGEBRA II 

Lesson 30: Linear Systems in Three Variables 
 
 

 

338 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

11. Find the equation of the form 𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 whose graph passes through the points (𝟏, −𝟏), (𝟑, 𝟐𝟑), and 

(−𝟏, 𝟕). 

𝒚 = 𝟒𝒙𝟐 − 𝟒𝒙 − 𝟏 

 

12. Show that for any number 𝒕, the values 𝒙 = 𝒕 + 𝟐, 𝒚 = 𝟏 − 𝒕, and 𝒛 = 𝒕 + 𝟏 are solutions to the system of equations 

below. 

𝒙 + 𝒚 = 𝟑 

𝒚 + 𝒛 = 𝟐 

(In this  situation, we say that 𝒕 parameterizes the solution set of the system.) 

𝒙 + 𝒚 = (𝒕 + 𝟐) + (𝟏 − 𝒕) = 𝟑 

𝒚 + 𝒛 = (𝟏 − 𝒕) + (𝒕 + 𝟏) = 𝟐 

 

13. Some rational expressions can be written as the sum of two or more rational expressions whose denominators are 

the factors of its denominator (called a partial fraction decomposition).  Find the partial fraction decomposition for 
𝟏

𝒏(𝒏+𝟏)
 by finding the value of 𝑨 that makes the equation below true for all 𝒏 except 𝟎 and −𝟏. 

𝟏

𝒏(𝒏 + 𝟏)
=

𝑨

𝒏
−

𝟏

𝒏 + 𝟏
 

Adding 
𝟏

𝒏+𝟏
 to both sides of the equations, we have 

𝑨

𝒏
=

𝟏

𝒏(𝒏 + 𝟏)
+

𝟏

(𝒏 + 𝟏)
 

=
𝟏

𝒏(𝒏 + 𝟏)
+

𝒏

𝒏(𝒏 + 𝟏)
 

=
(𝒏 + 𝟏)

𝒏(𝒏 + 𝟏)
 

=
𝟏

𝒏
 

so 𝑨 = 𝟏 and thus 
𝟏

𝒏(𝒏+𝟏)
=

𝟏

𝒏
−

𝟏

𝒏+𝟏
. 

 

14. A chemist needs to make 𝟒𝟎 𝐦𝐥 of a 𝟏𝟓% acid solution.  He has a 𝟓% acid solution and a 𝟑𝟎% acid solution on 

hand.  If he uses the 𝟓% and 𝟑𝟎% solutions to create the 𝟏𝟓% solution, how many ml of each does he need? 

He needs 𝟐𝟒 𝐦𝐥 of the 𝟓% solution and 𝟏𝟔 𝐦𝐥 of the 𝟑𝟎% solution. 

 

15. An airplane makes a 𝟒𝟎𝟎-mile trip against a head wind in 𝟒 hours.  The return trip takes 𝟐. 𝟓 hours, the wind now 

being a tail wind.  If the plane maintains a constant speed with respect to still air, and the speed of the wind is also 

constant and does not vary, find the still-air speed of the plane and the speed of the wind. 

The speed of the plane in still wind is 𝟏𝟑𝟎 𝐦𝐩𝐡, and the speed of the wind is 𝟑𝟎 𝐦𝐩𝐡. 

 

16. A restaurant owner estimates that she needs the same number of pennies as nickels and the same number of dimes 

as pennies and nickels together.  How should she divide $𝟐𝟔 between pennies, nickels, and dimes?  

She will need 𝟐𝟎𝟎 dimes ($𝟐𝟎 worth), 𝟏𝟎𝟎 nickels ($𝟓 worth), and 𝟏𝟎𝟎 pennies ($𝟏 worth) for a total of $𝟐𝟔. 
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Lesson 31:  Systems of Equations 

 
Student Outcomes 

 Students solve systems of linear equations in two variables and systems of a linear and a quadratic equation in 

two variables.  

 Students understand that the points at which the two graphs of the equations intersect correspond to the 

solutions of the system.  

 

Lesson Notes 

Students review the solution of systems of linear equations, move on to systems of equations that represent a line and a 

circle and systems that represent a line and a parabola, and make conjectures as to how many points of intersection 

there can be in a given system of equations.  They sketch graphs of a circle and a line to visualize the solution to a system 

of equations, solve the system algebraically, and note the correspondence between the solution and the intersection.  

Then they do the same for graphs of a parabola and a line. 

The principal standards addressed in this lesson are A-REI.C.6 (solve systems of linear equations exactly and 

approximately, e.g., with graphs, focusing on pairs of linear equations in two variables) and A-REI.C.7 (solve a simple 

system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically).  The 

standards MP.5 (use appropriate tools strategically) and MP.8 (look for and express regularity in repeated reasoning) are 

also addressed.  

 

Materials 

Graph paper, straightedge, compass, and a tool for displaying graphs (e.g., projector, interactive white board, white 

board, chalk board, or squared poster paper) 

 

Classwork 

Exploratory Challenge 1  (8 minutes)  

In this exercise, students review ideas about systems of linear equations from Module 4 in Grade 8 (A-REI.C.6).  Consider 

distributing graph paper for students to use throughout this lesson.  Begin by posing the following problem for students 

to work on individually: 

 

Exploratory Challenge 1 

a. Sketch the lines given by 𝒙 + 𝒚 = 𝟔 and −𝟑𝒙 + 𝒚 = 𝟐 on the same set of axes to 

solve the system graphically.  Then solve the system of equations algebraically to 

verify your graphical solution.   

 

  

 

Scaffolding: 

Circulate to identify students 
who might be asked to display 
their sketches and solutions. 
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Once students have made a sketch, ask one of them to use the display tool and draw the two graphs for the rest of the 

class to see.  While the student is doing that, ask the other students how many points are shared (one) and what the 

coordinates of that point are. 

 

The point (𝟏, 𝟓) should be easily identifiable from the sketch.  See 

the graph to the right. 

Solving each equation for 𝒚 gives the system  

𝒚 = −𝒙 + 𝟔 
𝒚 = 𝟑𝒙 + 𝟐. 

This leads to the single-variable equation 

−𝒙 + 𝟔 = 𝟑𝒙 + 𝟐 

𝟒𝒙 = 𝟒 

𝒙 = 𝟏 

𝒚 = −𝟏 + 𝟔 

𝒚 = 𝟓. 

Thus, the solution is the point (𝟏, 𝟓). 

 

Point out that in this case, there is one solution.  Now change the problem as follows.  Then discuss the question as a 

class, and ask one or two students to show their sketches using the display tool. 

 

b. Suppose the second line is replaced by the line with equation  

𝒙 + 𝒚 = 𝟐.  Plot the two lines on the same set of axes, and solve the 

pair of equations algebraically to verify your graphical solution.   

The lines are parallel, and there is no point in common.  See the graph 

to the right. 

If we try to solve the system algebraically, we have  

𝒚 = −𝒙 + 𝟔 

𝒚 = −𝒙 + 𝟐, 

which leads to the single-variable equation 

−𝒙 + 𝟔 = −𝒙 + 𝟐 

𝟒 = 𝟎. 

Since 𝟒 = 𝟎 is not a true number sentence, the system has no solution. 

 

Point out that in this case, there is no solution.  Now change the problem again as follows, and again discuss the 

question as a class.  Then ask one or two students to show their sketches using the display tool. 
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c. Suppose the second line is replaced by the line with equation 𝟐𝒙 = 𝟏𝟐 − 𝟐𝒚.  Plot the lines on the same set 

of axes, and solve the pair of equations algebraically to verify your graphical solution.   

The lines coincide, and they have all points in common.  See the graph to the 

right. 

Algebraically, we have the system 

𝒚 = −𝒙 + 𝟔 

𝒚 = −𝒙 + 𝟔, 

which leads to the equation  

−𝒙 + 𝟔 = −𝒙 + 𝟔 
𝟎 = 𝟎. 

Thus all points (𝒙, −𝒙 + 𝟔) are solutions to the system.  

 

Point out that in this third case, there are infinitely many solutions.  Discuss the following problem as a class. 

 

d. We have seen that a pair of lines can intersect in 𝟏, 𝟎, or an infinite number of points.  Are there any other 

possibilities? 

No.  Students should convince themselves and each other that these three options exhaust the possibilities for 

the intersection of two lines. 

 

Exploratory Challenge 2  (12 minutes) 

In this exercise, students move on to a system of a linear and a quadratic equation  

(A-REI.C.6).  Begin by asking students to work in pairs to sketch graphs and develop 

conjectures about the following item: 

 

Exploratory Challenge 2 

a. Suppose that instead of equations for a pair of lines, you were given an equation for a 

circle and an equation for a line.  What possibilities are there for the two figures to 

intersect?  Sketch a graph for each possibility.  

 

Once students have made their sketches, ask one pair to use the display tool and draw the 

graphs for the rest of the class to see. 

 

They can intersect in 𝟎, 𝟏, or 𝟐 points as shown below. 

 

 

 

 

  

Scaffolding: 

 Circulate to assist pairs of 
students who might be 
having trouble coming up 
with all three possibilities. 

 For students who are 
ready, ask them to write 
equations for the graphs 
they have sketched. 
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Next, students should continue to work in pairs to sketch graphs and develop conjectures about the following item  

(A-REI.C.6): 

 

b. Graph the parabola with equation 𝒚 = 𝒙𝟐.  What possibilities are there for a line to 

intersect the parabola?  Sketch each possibility. 

 

Once students have made their sketches, ask one pair to use the display tool and draw the 

graphs for the rest of the class to see. 

 

The parabola and line can intersect in 𝟎, 𝟏, or 𝟐 points as shown below.  Note that, in contrast to the circle, 

where all the lines intersecting the circle in one point are tangent to it, lines intersecting the parabola in one 

point are either tangent to it or are parallel to the parabola’s axis of symmetry—in this case, the 𝒚-axis. 

 

 

Next, ask students to work on the following problem individually (A-REI.C.7): 

 

c. Sketch the circle given by 𝒙𝟐 + 𝒚𝟐 = 𝟏 and the line given by 𝒚 = 𝟐𝒙 + 𝟐 on the same set of axes.  One 

solution to the pair of equations is easily identifiable from the sketch.  What is it? 

 

The point (−𝟏, 𝟎) should be easily identifiable from the sketch, but the other point is not. 

Scaffolding: 

Circulate again to assist pairs of 

students who might be having 

trouble coming up with all 

three possibilities. 
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Once students have made a sketch, ask one of them to use the display tool to draw the two graphs for the rest of the 

class to see.  While the student is doing that, ask the other students how many points are shared (two) and what the 

coordinates of those points are. 

Students should see that they can substitute the value for 𝑦 in the second equation into the first equation.  In other 

words, they need to solve the following quadratic equation (A-REI.B.4). 

 

d. Substitute 𝒚 = 𝟐𝒙 + 𝟐 into the equation 𝒙𝟐 + 𝒚𝟐 = 𝟏, and solve the resulting equation for 𝒙.  

Factoring or using the quadratic formula, students should find that the solutions to 𝒙𝟐 + (𝟐𝒙 + 𝟐)𝟐 = 𝟏 are 

−𝟏 and −
𝟑
𝟓

. 

 

e. What does your answer to part (d) tell you about the intersections of the circle and the line from part (c)? 

There are two intersections of the line and the circle.  When 𝒙 = −𝟏, then 𝒚 = 𝟎, as the sketch shows, so 

(−𝟏, 𝟎) is a solution.  When 𝒙 = −
𝟑
𝟓

, then 𝒚 = 𝟐 (−
𝟑
𝟓

) + 𝟐 =
𝟒
𝟓

 , so (−
𝟑
𝟓

,
𝟒
𝟓

) is another solution. 

 

Note that the problem above does not explicitly tell students to look for intersection points.  Thus, the exercise assesses 

not only whether they can solve the system but also whether they understand that the intersection points of the graphs 

correspond to solutions of the system. 

Students should understand that to solve the system of equations, they look for points that lie on the line and the circle.  

The points that lie on the circle are precisely those that satisfy 𝑥2 + 𝑦2 = 1, and the points that lie on the line are those 

that satisfy 𝑦 = 2𝑥 + 2.  So points on both are in the intersection. 

 

Exercise 1  (8 minutes) 

Pose the following three-part problem for students to work on individually, and then discuss as a class. 

 

Exercises 

1. Draw a graph of the circle with equation 𝒙𝟐 + 𝒚𝟐 = 𝟗.  

a. What are the solutions to the system of circle and line when the circle is given by 𝒙𝟐 + 𝒚𝟐 = 𝟗, and the line is 

given by 𝒚 = 𝟐? 

 

Substituting 𝒚 = 𝟐 in the equation of the circle yields 𝒙𝟐 + 𝟒 = 𝟗, so 𝒙𝟐 = 𝟓, and 𝒙 = √𝟓 or 𝒙 = −√𝟓.  The 

solutions are (−√𝟓, 𝟐) and (√𝟓, 𝟐). 
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b. What happens when the line is given by 𝒚 = 𝟑?  

 

Substituting 𝒚 = 𝟑 in the equation of the circle yields 𝒙𝟐 + 𝟗 = 𝟗, so 𝒙𝟐 = 𝟎.  The line is tangent to the circle, 

and the solution is (𝟎, 𝟑). 

 

c. What happens when the line is given by 𝒚 = 𝟒? 

 

Substituting 𝒚 = 𝟒 in the equation of the circle yields 𝒙𝟐 + 𝟏𝟔 = 𝟗, so 𝒙𝟐 = −𝟕.  Since there are no real 

numbers that satisfy 𝒙𝟐 = −𝟕, there is no solution to this equation.  This indicates that the line and circle do 

not intersect.   

 

Exercises 2–6  (8 minutes)  

Students need graph paper for this portion of the lesson.  Complete Exercise 2 in groups so 

students can check answers with each other.  Then they can do Exercises 3–6 individually 

or in groups as they choose.  Assist with the exercises if students have trouble 

understanding what it means to “verify your results both algebraically and graphically.” 

 

2. By solving the equations as a system, find the points common to the line with equation  

𝒙 − 𝒚 = 𝟔 and the circle with equation 𝒙𝟐 + 𝒚𝟐 = 𝟐𝟔.  Graph the line and the circle to show 

those points.  

(𝟓, −𝟏) and (𝟏, −𝟓).  See picture to the right. 

 

  

Scaffolding (for advanced 
learners): 

Create two different systems of 

one linear equation and one 

quadratic equation that have 

one solution at (0, 2). 
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3. Graph the line given by 𝟓𝒙 + 𝟔𝒚 = 𝟏𝟐 and the circle given by 𝒙𝟐 + 𝒚𝟐 = 𝟏.  Find all solutions to the system of 

equations. 

There is no real solution; the line and circle do not 

intersect.  See picture to the right.  

 

 

4. Graph the line given by 𝟑𝒙 + 𝟒𝒚 = 𝟐𝟓 and the circle given by 𝒙𝟐 + 𝒚𝟐 = 𝟐𝟓.  Find all solutions to the system of 

equations.  Verify your result both algebraically and graphically. 

The line is tangent to the circle at (𝟑, 𝟒), which is the 

only solution.  See picture to the right. 

 

 

5. Graph the line given by 𝟐𝒙 + 𝒚 = 𝟏 and the circle given by 𝒙𝟐 + 𝒚𝟐 = 𝟏𝟎.  Find all solutions to the system of 

equations.  Verify your result both algebraically and graphically. 

The line and circle intersect at (−𝟏, 𝟑) and 

(
𝟗
𝟓

, −
𝟏𝟑
𝟓

), which are the two solutions.  See picture 

to the right. 

 

 

6. Graph the line given by 𝒙 + 𝒚 = −𝟐 and the quadratic curve given by 𝒚 = 𝒙𝟐 − 𝟒.  Find all solutions to the system of 

equations.  Verify your result both algebraically and graphically. 

The line and the parabola intersect at (𝟏, −𝟑) and 

(−𝟐, 𝟎), which are the two solutions.  See picture to 

the right. 
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Closing  (4 minutes) 

Ask students to respond to these questions with a partner or in writing.  Share their 

responses as a class. 

 How does graphing a line and a quadratic curve help you solve a system 

consisting of a linear and a quadratic equation? 

 What are the possibilities for the intersection of a line and a quadratic curve, 

and how are they related to the number of solutions of a system of linear and 

quadratic equations?  

Present and discuss the Lesson Summary. 

Be sure to note that in the case of the circle, the reverse process of solving the equation for the circle first—for either 𝑥 

or 𝑦—and then substituting in the linear equation would have yielded an equation with a complicated radical expression 

and might have led students to miss part of the solution by considering only the positive square root. 

 

 

 

Exit Ticket  (5 minutes) 

  

MP.1 

Scaffolding: 

Perhaps create a chart with the 

summary that can serve as a 

reminder to students. 

Lesson Summary 

Here are some steps to consider when solving systems of equations that represent a line and a quadratic curve. 

1. Solve the linear equation for 𝒚 in terms of 𝒙.  This is equivalent to rewriting the equation in 

slope-intercept form.  Note that working with the quadratic equation first would likely be 

more difficult and might cause the loss of a solution. 

2. Replace 𝒚 in the quadratic equation with the expression involving 𝒙 from the slope-intercept form of the 

linear equation.  That will yield an equation in one variable. 

3. Solve the quadratic equation for 𝒙. 

4. Substitute 𝒙 into the linear equation to find the corresponding value of 𝒚. 

5. Sketch a graph of the system to check your solution. 
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Name                                   Date                          

Lesson 31:  Systems of Equations 

 
Exit Ticket 
 

Make and explain a prediction about the nature of the solution to the following system of equations, and then solve the 

system.  

𝑥2 + 𝑦2 = 25 

4𝑥 + 3𝑦 = 0 

Illustrate with a graph.  Verify your solution, and compare it with your initial prediction. 
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Exit Ticket Sample Solutions 

 

Make and explain a prediction about the nature of the solution to the following system of equations, and then solve the 

system. 

𝒙𝟐 + 𝒚𝟐 = 𝟐𝟓 

𝟒𝒙 + 𝟑𝒚 = 𝟎 

Illustrate with a graph.  Verify your solution, and compare it with your initial prediction. 

Prediction:  By inspecting the equations, students should conclude that the 

circle is centered at the origin, and that the line goes through the origin.  

So, the solution should consist of two points. 

Solution:  Solve the linear equation for one of the variables:  𝒚 = −
𝟒𝒙
𝟑

. 

Substitute that variable in the quadratic equation: 𝒙𝟐 + (−
𝟒𝒙
𝟑

)
𝟐

= 𝟐𝟓. 

Remove parentheses and combine like terms:  𝟐𝟓𝒙𝟐 − 𝟐𝟓 ∙ 𝟗 = 𝟎,  

so 𝒙𝟐 − 𝟗 = 𝟎. 

Solve the quadratic equation in 𝒙:  (𝒙 + 𝟑)(𝒙 − 𝟑) = 𝟎, which gives the 

roots 𝟑 and −𝟑. 

Substitute into the linear equation:   If 𝒙 = 𝟑, then 𝒚 = −𝟒; if 𝒙 = −𝟑, 

then 𝒚 = 𝟒.  

As the graph shows, the solution is the two points of intersection of the circle and the line:  (𝟑, −𝟒) and (−𝟑, 𝟒).  

An alternative solution would be to solve the linear equation for 𝒙 instead of 𝒚, getting the quadratic equation 
(𝒚 + 𝟒)(𝒚 − 𝟒) = 𝟎, which gives the roots 𝟒 and −𝟒 and the same points of intersection. 

As noted before, solving the quadratic equation for 𝒙 or 𝒚 first is not a good procedure.  It can lead to a complicated 

radical expression and loss of part of the solution. 

 
 
Problem Set Sample Solutions 

Problem 4 yields a system with no real solution, and the graph shows that the circle and line have no point of 

intersection in the coordinate plane.  In Problems 5 and 6, the curve is a parabola.  In Problem 5, the line intersects the 

parabola in two points, whereas in Problem 6, the line is tangent to the parabola, and there is only one point of 

intersection.  Note that there would also have been only one point of intersection if the line had been the line of 

symmetry of the parabola. 

 

1. Where do the lines given by 𝒚 = 𝒙 + 𝒃 and 𝒚 = 𝟐𝒙 + 𝟏 intersect? 

Since we do not know the value of 𝒃, we cannot solve this problem by graphing, and we will have to approach it 

algebraically.  Eliminating 𝒚 gives the equation 

𝒙 + 𝒃 = 𝟐𝒙 + 𝟏 

𝒙 = 𝒃 − 𝟏. 

Since 𝒙 = 𝒃 − 𝟏, we have 𝒚 = 𝒙 + 𝒃 = (𝒃 − 𝟏) + 𝒃 = 𝟐𝒃 − 𝟏.  Thus, the lines intersect at the point (𝒃 − 𝟏, 𝟐𝒃 − 𝟏). 
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2. Find all solutions to the following system of equations.  

(𝒙 − 𝟐)𝟐 + (𝒚 + 𝟑)𝟐 = 𝟒 

𝒙 − 𝒚 = 𝟑 

Illustrate with a graph. 

Solve the linear equation for one of the variables:  𝒙 = 𝒚 + 𝟑. 

Substitute that variable in the quadratic equation:  

(𝒚 + 𝟑 − 𝟐)𝟐 + (𝒚 + 𝟑)𝟐 = 𝟒. 

Rewrite the equation in standard form:  𝟐𝒚𝟐 + 𝟖𝒚 + 𝟔 = 𝟎. 

Solve the quadratic equation:  𝟐(𝒚 + 𝟑)(𝒚 + 𝟏) = 𝟎, so  

𝒚 = −𝟑 or 𝒚 = −𝟏.  

If 𝒚 = −𝟑, then 𝒙 = 𝟎.  If 𝒚 = −𝟏, then 𝒙 = 𝟐. 

As the graph shows, the solution is the two points (𝟎, −𝟑) and 
(𝟐, −𝟏). 

 

 

 

3. Find all solutions to the following system of equations.  

𝒙 + 𝟐𝒚 = 𝟎 

𝒙𝟐 − 𝟐𝒙 + 𝒚𝟐 − 𝟐𝒚 − 𝟑 = 𝟎 

Illustrate with a graph. 

Solve the linear equation for one of the variables:  𝒙 = −𝟐𝒚. 

Substitute that variable in the quadratic equation:   

(−𝟐𝒚)𝟐 − 𝟐(−𝟐𝒚) + 𝒚𝟐 − 𝟐𝒚 − 𝟑 = 𝟎. 

Rewrite the equation in standard form:  𝟓𝒚𝟐 + 𝟐𝒚 − 𝟑 = 𝟎. 

Solve the quadratic equation:  (𝟓𝒚 − 𝟑)(𝒚 + 𝟏) = 𝟎, so 𝒚 =
𝟑
𝟓

 or 

𝒚 = −𝟏.  

If 𝒚 =
𝟑
𝟓

, then 𝒙 = −
𝟔
𝟓

.  If 𝒚 = −𝟏, then 𝒙 = 𝟐. 

As the graph shows, the solutions are the two points:  (−
𝟔
𝟓

,
𝟑
𝟓

) 

and (𝟐, −𝟏).  

 

4. Find all solutions to the following system of equations.  

𝒙 + 𝒚 = 𝟒 

(𝒙 + 𝟑)𝟐 + (𝒚 − 𝟐)𝟐 = 𝟏𝟎 

Illustrate with a graph. 

Solve the linear equation for one of the variables:  𝒙 = 𝟒 − 𝒚. 

Substitute that variable in the quadratic equation:   
(𝟒 − 𝒚 + 𝟑)𝟐 + (𝒚 − 𝟐)𝟐 = 𝟏𝟎. 

Rewrite the equation in standard form:   𝟐𝒚𝟐 − 𝟏𝟖𝒚 + 𝟒𝟑 = 𝟎. 

Solve the equation using the quadratic formula: 

𝒚 =
𝟏𝟖 + √𝟑𝟐𝟒 − 𝟑𝟒𝟒

𝟒
  or  𝒚 =

𝟏𝟖 − √𝟑𝟐𝟒 − 𝟑𝟒𝟒

𝟒
. 

So we have 𝒚 =
𝟏
𝟐

(𝟗 + √−𝟓) or 𝒚 =
𝟏
𝟐

(𝟗 − √−𝟓).   

Therefore, there is no real solution to the system. 

As the graph shows, the line and circle do not intersect. 
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5. Find all solutions to the following system of equations.  

𝒚 = −𝟐𝒙 + 𝟑 

𝒚 = 𝒙𝟐 − 𝟔𝒙 + 𝟑 

Illustrate with a graph.  

The linear equation is already solved for one of the variables:  𝒚 = −𝟐𝒙 + 𝟑. 

Substitute that variable in the quadratic equation:  −𝟐𝒙 + 𝟑 = 𝒙𝟐 − 𝟔𝒙 + 𝟑. 

Rewrite the equation in standard form:  𝒙𝟐 − 𝟒𝒙 = 𝟎. 

Solve the quadratic equation:  𝒙(𝒙 − 𝟒) = 𝟎. 

So, 𝒙 = 𝟎 or 𝒙 = 𝟒.  

If 𝒙 = 𝟎, then 𝒚 = 𝟑.  If 𝒙 = 𝟒, then 𝒚 = −𝟓. 

As the graph shows, the solutions are the two points (𝟎, 𝟑) and (𝟒, −𝟓). 

 

6. Find all solutions to the following system of equations. 

−𝒚𝟐 + 𝟔𝒚 + 𝒙 − 𝟗 = 𝟎 

𝟔𝒚 = 𝒙 + 𝟐𝟕 

Illustrate with a graph. 

 

Solve the second equation for 𝒙:  𝒙 = 𝟔𝒚 − 𝟐𝟕. 

Substitute in the first equation:  −𝒚𝟐 + 𝟔𝒚 + 𝟔𝒚 − 𝟐𝟕 − 𝟗 = 𝟎. 

Combine like terms:  −𝒚𝟐 + 𝟏𝟐𝒚 − 𝟑𝟔 = 𝟎. 

Rewrite the equation in standard form and factor:  −(𝒚 − 𝟔)𝟐 = 𝟎. 

Therefore, 𝒚 = 𝟔.  Then 𝒙 = 𝟔𝒚 − 𝟐𝟕, so 𝒙 = 𝟗. 

There is only one solution (𝟗, 𝟔), and as the graph shows, the line is tangent to the parabola.  

An alternative solution would be to solve the linear equation for 𝒚 instead of 𝒙, getting the quadratic equation 
(𝒙 − 𝟗)(𝒙 − 𝟗) = 𝟎, which gives the repeated root 𝒙 = 𝟗 and the same point of tangency (𝟗, 𝟔). 

Another alternative solution would be to solve the quadratic equation for 𝒙, so that 𝒙 = 𝒚𝟐 − 𝟔𝒚 + 𝟗.  Substituting 

in the linear equation would yield 𝟔𝒚 = 𝒚𝟐 − 𝟔𝒚 + 𝟗 + 𝟐𝟕.  Converting that to standard form would give  

𝒚𝟐 − 𝟏𝟐𝒚 + 𝟑𝟔 = 𝟎, which gives the repeated root 𝒚 = 𝟔, as in the first solution.  Note that in this case, unlike when 

the graph of the quadratic equation is a circle, the quadratic equation can be solved for 𝒙 in terms of 𝒚 without 

getting a radical expression. 
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7. Find all values of 𝒌 so that the following system has two solutions.  

𝒙𝟐 + 𝒚𝟐 = 𝟐𝟓 

𝒚 = 𝒌 

Illustrate with a graph. 

 

The center of the circle is the origin, and the line is parallel to the 𝒙-axis.  Therefore, as the graph shows, there are 

two solutions only when −𝟓 < 𝒌 < 𝟓.  

 

8. Find all values of 𝒌 so that the following system has exactly one solution.  

𝒚 = 𝟓 − (𝒙 − 𝟑)𝟐 

𝒚 = 𝒌 

Illustrate with a graph. 

 

The parabola opens down, and its axis of symmetry is the vertical line 𝒙 = 𝟑.  The line 𝒚 = 𝒌 is a horizontal line and 

will intersect the parabola in either two, one, or no points.  It intersects the parabola in one point only if it passes 

through the vertex of the parabola, which is 𝒌 = 𝟓. 

  

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
  
  
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 31 

ALGEBRA II 

Lesson 31: Systems of Equations 
 
 

 

352 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

9. Find all values of 𝒌 so that the following system has no solutions. 

𝒙𝟐 + (𝒚 − 𝒌)𝟐 = 𝟑𝟔 

𝒚 = 𝟓𝒙 + 𝒌 

Illustrate with a graph. 

The circle has radius 𝟔 and center (𝟎, 𝒌).  The line has slope 𝟓 and crosses the 𝒚-axis at (𝟎, 𝒌).  Since for any value of 

𝒌 the line passes through the center of the circle, the line intersects the circle twice.  (In the figure on the left below, 

𝒌 = 𝟐, and in the one on the right below, 𝒌 = −𝟑.)  There is no value of 𝒌 for which there is no solution. 

 

 

𝒌 = 𝟐 

 

 

𝒌 = −𝟑 
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Lesson 32:  Graphing Systems of Equations  

 
Student Outcomes 

 Students develop facility with graphical interpretations of systems of equations and the meaning of their 

solutions on those graphs.  For example, they can use the distance formula to find the distance between the 

centers of two circles and thereby determine whether the circles intersect in 0, 1, or 2 points. 

 By completing the squares, students can convert the equation of a circle in general form to the center-radius 

form and, thus, find the radius and center.  They can also convert the center-radius form to the general form 

by removing parentheses and combining like terms. 

 Students understand how to solve and graph a system consisting of two quadratic equations in two variables. 

 

Lesson Notes 

This lesson is an extension that goes beyond what is required in the standards.  In particular, the standard A-REI.C.7 

(solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and 

graphically) does not extend to a system of two quadratic equations, which is a natural culmination of the types of 

systems formed by linear and quadratic equations.  The lesson also addresses standard MP.8 (look for and express 

regularity in repeated reasoning). 

The lesson begins with a brief review of the distance formula, and its connection both to the Pythagorean theorem and 

to the center-radius equation of a circle.  The distance formula is used extensively in the next few lessons, so be sure to 

review it with students.  Students also briefly review how to solve and graph a system of a linear equation and an 

equation of a circle.  They then move to the main focus of the lesson, which is graphing and solving systems of pairs of 

quadratic equations whose graphs include parabolas as well as circles 

 

Materials 

This lesson requires use of graphing calculators or computer software, such as the Wolfram Alpha engine, the GeoGebra 

package, or the Geometer’s Sketchpad software for graphing geometric figures, plus a tool for displaying graphs, such as 

a projector, smart board, white board, chalk board, or squared poster paper. 

 

Classwork 

Opening  (1 minute) 

Begin with questions that should remind students of the distance formula and how it is connected to the Pythagorean 

theorem. 

 Suppose you have a point 𝐴 with coordinates (1, 3).  Find the distance 𝐴𝐵 if 𝐵 has coordinates: 

1. (4, 2) 

Answer:  𝐴𝐵 = √10 

2. (−3, 1) 

Answer:  𝐴𝐵 = 2√5 

3. (𝑥, 𝑦) 

Answer:  𝐴𝐵 = √(𝑥 − 1)2 + (𝑦 − 3)2 
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If students cannot recall the distance formula (in the coordinate plane), they may need to be reminded of it. 

 

If 𝐴 and 𝐵 are points with coordinates (𝑥1, 𝑦1) and (𝑥2, 𝑦2), then the distance 

between them is the length 𝐴𝐵.  Draw horizontal and vertical lines through 𝐴 

and 𝐵 to intersect in point 𝐶 and form right triangle ∆𝐴𝐵𝐶.  The length of the 

horizontal side is the difference in the 𝑥-coordinates |𝑥2 − 𝑥1|, and the 

length of the vertical side is the difference in the 𝑦-coordinates |𝑦2 − 𝑦1|.  

The Pythagorean theorem gives the length of the hypotenuse as  

(𝐴𝐵)2 = (𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2.  Taking the square root gives the distance 

formula.   

 

Opening Exercise  (3 minutes)  

Make sure the students all have access to, and familiarity with, some technology (calculator or computer software) for 

graphing lines and circles in the coordinate plane.  Have them work individually on the following exercise. 

 

Opening Exercise 

Given the line 𝒚 = 𝟐𝒙, is there a point on the line at a distance 𝟑 from (𝟏, 𝟑)?  Explain how you 

know. 

Yes, there are two such points.  They are the intersection of the line 𝒚 = 𝟐𝒙 and the circle 

(𝒙 − 𝟏)𝟐 + (𝒚 − 𝟑)𝟐 = 𝟗.  (The intersection points are roughly (𝟎. 𝟎𝟕, 𝟎. 𝟏𝟓) and (𝟐. 𝟕𝟑, 𝟓. 𝟒𝟓).) 

 

Draw a graph showing where the point is. 

There are actually two such points.  See the graph below.  

 

 

Students should compare the graph they have drawn with that of a neighbor. 

Scaffolding: 

Circulate to identify and help 

students who might have 

trouble managing the graphing 

tool. 

THE DISTANCE FORMULA:  Given two points (𝑥1, 𝑦1) and (𝑥2, 𝑦2), the distance 𝑑 between these 

points is given by the formula 

𝒅 = √(𝒙𝟐 − 𝒙𝟏)𝟐 + (𝒚𝟐 − 𝒚𝟏)𝟐. 
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Exercise 1  (5 minutes)  

This exercise reviews the solution of a simple system consisting of a linear equation and the equation of a circle from the 

perspective of the defining property of a circle (A-REI.C.7). 

 

Exercise 1 

Solve the system (𝒙 − 𝟏)𝟐 + (𝒚 − 𝟐)𝟐 = 𝟐𝟐 and 𝒚 = 𝟐𝒙 + 𝟐. 

Substituting 𝟐𝒙 + 𝟐 for 𝒚 in the quadratic equation allows us to find the 𝒙-coordinates. 

(𝒙 − 𝟏)𝟐 + ((𝟐𝒙 + 𝟐) − 𝟐)
𝟐

= 𝟒 

(𝒙𝟐 − 𝟐𝒙 + 𝟏) + 𝟒𝒙𝟐 = 𝟒 

𝟓𝒙𝟐 − 𝟐𝒙 − 𝟑 = 𝟎 

(𝒙 − 𝟏)(𝟓𝒙 + 𝟑) = 𝟎 

So, 𝒙 = 𝟏 or 𝒙 = −
𝟑
𝟓

, and the intersection points are (−
𝟑
𝟓

,
𝟒
𝟓
) and (𝟏, 𝟒). 

 

What are the coordinates of the center of the circle? 

(𝟏, 𝟐)  

 

What can you say about the distance from the intersection points to the center of the circle?  

Because they are points on the circle and the radius of the circle is 𝟐, the intersection points are 𝟐 units away from the 

center.  This can be verified by the distance formula.  

 

Using your graphing tool, graph the line and the circle.  

See the graph below.  

 

 

Example 1  (5 minutes)  

It is important to keep in mind that not all quadratic equations in two variables represent circles.   
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Example 1 

Rewrite 𝒙𝟐 + 𝒚𝟐 − 𝟒𝒙 + 𝟐𝒚 = −𝟏 by completing the square in both 𝒙 and 𝒚.  Describe the circle represented by this 

equation.   

Rearranging terms gives 𝒙𝟐 − 𝟒𝒙 + 𝒚𝟐 + 𝟐𝒚 = −𝟏. 

Then, completing the square in both 𝒙 and 𝒚, we have 

(𝒙𝟐 − 𝟒𝒙 + 𝟒) + (𝒚𝟐 + 𝟐𝒚 + 𝟏) = −𝟏 + 𝟒 + 𝟏 

(𝒙 − 𝟐)𝟐 + (𝒚 + 𝟏)𝟐 = 𝟒. 

This is the equation of a circle with center (𝟐, −𝟏) and radius 𝟐.  

 

Using your graphing tool, graph the circle. 

See the graph to the right. 

 

In contrast, consider the following equation:  𝒙𝟐 + 𝒚𝟐 − 𝟐𝒙 − 𝟖𝒚 = −𝟏𝟗. 

Rearranging terms gives 𝒙𝟐 − 𝟐𝒙 + 𝒚𝟐 − 𝟖𝒚 = −𝟏𝟗. 

Then, completing the square in both 𝒙 and 𝒚, we have   

(𝒙𝟐 − 𝟐𝒙 + 𝟏) + (𝒚𝟐 − 𝟖𝒚 + 𝟏𝟔) = −𝟏𝟗 + 𝟏 + 𝟏𝟔 

(𝒙 − 𝟏)𝟐 + (𝒚 − 𝟒)𝟐 = −𝟐, 

which is not a circle because then the radius would be √−𝟐. 

 

What happens when you use your graphing tool with this equation? 

The tool cannot draw the graph.  There are no points in the plane that satisfy this equation, so the graph is empty. 

 

Exercise 2  (5 minutes) 

Allow students time to think these questions over, draw some pictures, and discuss with a partner before discussing as a 

class.  

 

Exercise 2 

Consider a circle with radius 𝟓 and another circle with radius 𝟑.  Let 𝒅 represent the distance between the two centers.  

We want to know how many intersections there are of these two circles for different values of 𝒅.  Draw figures for each 

case. 

a. What happens if 𝒅 = 𝟖? 

If the distance is 𝟖, then the circles touch at only one point.  We say that the circles are externally tangent. 

 

b. What happens if 𝒅 = 𝟏𝟎? 

If the distance is 𝟏𝟎, the circles do not intersect, and neither circle is inside the other. 

 

c. What happens if 𝒅 = 𝟏? 

If the distance is 𝟏, the circles do not intersect, but one circle lies inside the other.  
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d. What happens if 𝒅 = 𝟐? 

If the distance is 𝟐, the circles touch at only one point, with one circle inside the other.  We say that the circles 

are internally tangent.  

 

e. For which values of 𝒅 do the circles intersect in exactly one point?  Generalize this result to circles of any 

radius. 

If 𝒅 = 𝟖 or 𝒅 = 𝟐, the circles are tangent.  In general, if 𝒅 is either the sum or the difference of the radii, then 

the circles are tangent.  

 

f. For which values of 𝒅 do the circles intersect in two points?  Generalize this result to circles of any radius.  

If 𝟐 < 𝒅 < 𝟖, the circles intersect in two points.  In general, if 𝒅 is between the sum and the difference of the 

radii, then the circles intersect in two points. 

 

g. For which values of 𝒅 do the circles not intersect?  Generalize this result to circles of any radius.  

The circles do not intersect if 𝒅 < 𝟐 or 𝒅 > 𝟖.  In general, if 𝒅 is smaller than the difference of the radii or 

larger than the sum of the radii, then the circles do not intersect.  

 

Example 2  (5 minutes)  

 

Example 2 

Find the distance between the centers of the two circles with equations below, and use that distance to determine in how 

many points these circles intersect. 

𝒙𝟐 + 𝒚𝟐 = 𝟓 

(𝒙 − 𝟐)𝟐 + (𝒚 − 𝟏)𝟐 = 𝟑 

The first circle has center (𝟎, 𝟎), and the second circle has 

center (𝟐, 𝟏).  Using the distance formula, the distance 

between the centers of these circles is  

𝒅 = √(𝟐 − 𝟎)𝟐 + (𝟏 − 𝟎)𝟐 = √𝟓. 

Since the distance between the centers is between the sum 

and the difference of the two radii, that is,  

√𝟓 − √𝟑 < √𝟓 < √𝟓 + √𝟑, we know that the circles must 

intersect in two distinct points.  
 

 

 Find the coordinates of the intersection points of the circles. 

 Multiplying out the terms in the second equation gives 

 𝑥2 − 4𝑥 + 4 + 𝑦2 − 2𝑦 + 1 = 3. 

 We subtract the first equation:  𝑥2 + 𝑦2 = 5.  

 The reason for subtracting is that we are removing repeated information in the two equations. 

 We get −4𝑥 − 2𝑦 = −7, which is the equation of the line through the two intersection points of the 

circles.   
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 To find the intersection points, we find the intersection of the line  

−4𝑥 − 2𝑦 = −7 and the circle 𝑥2 + 𝑦2 = 5.  

 As with the other systems of quadratic curves and lines, we solve the linear 

equation for 𝑦 and substitute it into the quadratic equation to find two 

solutions for 𝑥:  𝑥 =
7
5

−
√51
10

, and 𝑥 =
7
5

+
√51
10

. 

 The corresponding 𝑦-values are 

𝑦 =
7
10

+
√51
5

, and 𝑦 =
7
10

−
√51
5

. 

 The graph of the circles and the line through the intersection points is shown 

to the right. 

 

Exercise 3  (4 minutes)  

This exercise concerns a system of equations that represents circles that do not intersect. 

 

Exercise 3 

Use the distance formula to show algebraically and graphically that the following two circles do not intersect. 

(𝒙 − 𝟏)𝟐 + (𝒚 + 𝟐)𝟐 = 𝟏 

(𝒙 + 𝟓)𝟐 + (𝒚 − 𝟒)𝟐 = 𝟒 

The centers of the two circles are (𝟏, −𝟐) and (−𝟓, 𝟒), and the radii are 𝟏 and 𝟐.  The distance between the two centers is 

√𝟔𝟐 + 𝟔𝟐 = 𝟔√𝟐, which is greater than 𝟏 + 𝟐 = 𝟑.  The graph below also shows that the circles do not intersect. 

 

 

Example 3  (10 minutes)  

Work through this example with the whole class, showing students how to find the tangent to a circle at a point and one 

way to determine how many points of intersection there are for a line and a circle. 
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Example 3 

Point 𝑨(𝟑, 𝟐) is on a circle whose center is 𝑪(−𝟐,𝟑).  What is the radius of 

the circle? 

The distance from 𝑨 to 𝑪 is given by √(𝟑 + 𝟐)𝟐 + (𝟐 − 𝟑)𝟐 = √𝟐𝟔, which 

is the length of the radius. 

 

What is the equation of the circle?  Graph it. 

Given the center and the radius, we can write the equation of the circle as 

(𝒙 + 𝟐)𝟐 + (𝒚 − 𝟑)𝟐 = 𝟐𝟔.  

The graph is shown at the right. 

 

Use the fact that the tangent at 𝑨(𝟑, 𝟐) is perpendicular to the radius at that point to find the equation of the tangent 

line.  Then graph it. 

The slope of the tangent line is the opposite reciprocal of the slope of 𝑨𝑪 ⃡    .  The slope of 𝑨𝑪 ⃡     is 
𝟑−𝟐

−𝟐−𝟑
= −

𝟏

𝟓
, so the slope of 

the tangent line is 𝟓.  Using the point-slope form of the equation of a line with slope 𝟓 and passing through point (𝟑, 𝟐) 

gives  

𝒚 − 𝟐 = 𝟓(𝒙 − 𝟑) 

𝒚 = 𝟓𝒙 − 𝟏𝟑. 

The equation of the tangent line is, therefore, 𝒚 = 𝟓𝒙 − 𝟏𝟑.  

 

Find the coordinates of point 𝑩, the second intersection of the 𝑨𝑪 ⃡     and the circle. 

The system (𝒙 + 𝟐)𝟐 + (𝒚 − 𝟑)𝟐 = 𝟐𝟔 and 𝟓𝒚 = −𝒙 + 𝟏𝟑 can be solved by substituting 𝒙 = 𝟏𝟑 − 𝟓𝒚 into the equation of 

the circle, which yields (𝟏𝟑 − 𝟓𝒚 + 𝟐)𝟐 + (𝒚 − 𝟑)𝟐 = 𝟐𝟔.  This gives 𝟐𝟔(𝒚 − 𝟐)(𝒚 − 𝟒) = 𝟎.  Thus, the 𝒚-coordinate is 

either 𝟐 or 𝟒.  If 𝒚 = 𝟐, then 𝒙 = 𝟏𝟑 − 𝟓 ∙ 𝟐 = 𝟑, and if 𝒚 = 𝟒, then 𝒙 = 𝟏𝟑 − 𝟓 ∙ 𝟒 = −𝟕.  Since 𝑨 has coordinates (𝟑, 𝟐), 

it follows that 𝑩 has coordinates (−𝟕, 𝟒). 

 

What is the equation of the tangent to the circle at (−𝟕, 𝟒)?  Graph it as 

a check. 

Using the point-slope form of a line with slope 𝟓 and point (−𝟕, 𝟒): 

𝒚 − 𝟒 = 𝟓(𝒙 + 𝟕) 

𝒚 = 𝟓𝒙 + 𝟑𝟗. 

The equation of the tangent line is, therefore, 𝒚 = 𝟓𝒙 + 𝟑𝟗. 

The graph is shown to the right.  

 

The lines 𝒚 = 𝟓𝒙 + 𝒃 are parallel to the tangent lines to the circle at points 𝑨 and 𝑩.  How is the 𝒚-intercept 𝒃 for these 

lines related to the number of times each line intersects the circle? 

When 𝒃 = −𝟏𝟑 or 𝒃 = 𝟑𝟗, the line is tangent to the circle, intersecting in one point. 

When −𝟏𝟑 < 𝒃 < 𝟑𝟗, the line intersects the circle in two points. 

When 𝒃 < −𝟏𝟑 or 𝒃 > 𝟑𝟗, the line and circle do not intersect. 
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Closing  (2 minutes) 

Ask students to summarize how to convert back and forth between the center-radius equation of a circle and the general 

quadratic equation of a circle.  

Ask students to speculate about what might occur with respect to intersections if one or two of the quadratic equations 

in the system are not circles. 

 

Exit Ticket  (5 minutes)  
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Name                                   Date                          

Lesson 32:  Graphing Systems of Equations 

 
Exit Ticket 
 

1. Find the intersection of the two circles  

𝑥2 + 𝑦2 − 2𝑥 + 4𝑦 − 11 = 0 

and 

𝑥2 + 𝑦2 + 4𝑥 + 2𝑦 − 9 = 0. 

 

 

 

 

 

 

 

 

2. The equations of the two circles in Question 1 can also be written as follows: 

(𝑥 − 1)2 + (𝑦 + 2)2 = 16 

and 

(𝑥 + 2)2 + (𝑦 + 1)2 = 14. 

Graph the circles and the line joining their points of intersection. 

 

 

 

 

 

 

 

 

3. Find the distance between the centers of the circles in Questions 1 and 2. 
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Exit Ticket Sample Solutions 

 

1. Find the intersection of the two circles  

𝒙𝟐 + 𝒚𝟐 − 𝟐𝒙 + 𝟒𝒚 − 𝟏𝟏 = 𝟎 

and 

𝒙𝟐 + 𝒚𝟐 + 𝟒𝒙 + 𝟐𝒚 − 𝟗 = 𝟎. 

Subtract the second equation from the first:  −𝟔𝒙 + 𝟐𝒚 − 𝟐 = 𝟎.  

Solve the equation for 𝒚:  𝒚 = 𝟑𝒙 + 𝟏. 

Substitute in the first equation:  𝒙𝟐 + (𝟑𝒙 + 𝟏)𝟐 − 𝟐𝒙 + 𝟒(𝟑𝒙 + 𝟏) − 𝟏𝟏 = 𝟎. 

Remove parentheses, and combine like terms:  𝟓𝒙𝟐 + 𝟖𝒙 − 𝟑 = 𝟎. 

Substitute in the quadratic equation to find two values:  𝒙 =
−𝟒
𝟓

−
√𝟑𝟏
𝟓

, and 𝒙 =
−𝟒
𝟓

+
√𝟑𝟏
𝟓

. 

The corresponding 𝒚-values are the following:  𝒚 =
−𝟕
𝟓

−
𝟑√𝟑𝟏

𝟓
, and 𝒚 =

−𝟕
𝟓

+
𝟑√𝟑𝟏

𝟓
. 

 

2. The equations of the two circles in Question 1 can also be written as 

follows: 

(𝒙 − 𝟏)𝟐 + (𝒚 + 𝟐)𝟐 = 𝟏𝟔 

and 

(𝒙 + 𝟐)𝟐 + (𝒚 + 𝟏)𝟐 = 𝟏𝟒. 

Graph the circles and the line joining their points of intersection.  

See the graph to the right. 

 

 

3. Find the distance between the centers of the circles in Questions 1 and 2.  

The center of the first circle is (𝟏, −𝟐), and the center of the second circle is (−𝟐, −𝟏).  We then have 

𝒅 = √(−𝟐 − 𝟏)𝟐 + (−𝟏 + 𝟐)𝟐 = √𝟗 + 𝟏 = √𝟏𝟎. 

 
 
Problem Set Sample Solutions 

In this Problem Set, after solving some problems dealing with the distance formula, students continue converting 

between forms of the equation of a circle and then move on to solving and graphing systems of quadratic equations, 

some of which represent circles and some of which do not.  

 

1. Use the distance formula to find the distance between the points (−𝟏, −𝟏𝟑) and (𝟑, −𝟗).  

Using the formula with (−𝟏, −𝟏𝟑) and (𝟑, −𝟗), 

𝒅 = √(𝟑 − (−𝟏))
𝟐

+ ((−𝟗) − (−𝟏𝟑))
𝟐
 

𝒅 = √𝟒𝟐 + 𝟒𝟐 = √𝟏𝟔 + 𝟏𝟔 = √𝟏𝟔 ∙ √𝟐 = 𝟒√𝟐. 

Therefore, the distance is 𝟒√𝟐. 
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2. Use the distance formula to find the length of the longer side of the rectangle whose vertices are (𝟏, 𝟏), (𝟑, 𝟏), 
(𝟑, 𝟕), and (𝟏, 𝟕).  

Using the formula with (𝟏, 𝟏) and (𝟏, 𝟕), 

𝒅 = √(𝟏 − 𝟏)𝟐 + (𝟕 − 𝟏)𝟐 

𝒅 = √(𝟎)𝟐 + (𝟔)𝟐 = √𝟑𝟔 = 𝟔. 

Therefore, the length of the longer side is 𝟔. 

 

3. Use the distance formula to find the length of the diagonal of the square whose vertices are (𝟎, 𝟎), (𝟎, 𝟓), (𝟓, 𝟓), 

and (𝟓, 𝟎).  

Using the formula with (𝟎, 𝟎) and (𝟓, 𝟓), 

𝒅 = √(𝟓 − 𝟎)𝟐 + (𝟓 − 𝟎)𝟐 

𝒅 = √(𝟓 − 𝟎)𝟐 + (𝟓 − 𝟎)𝟐 = √𝟐𝟓 + 𝟐𝟓 = 𝟓√𝟐. 

Therefore, the length of the diagonal is 𝟓√𝟐. 

 

Write an equation for the circles in Exercises 4–6 in the form (𝒙 − 𝒉)𝟐 + (𝒚 − 𝒌)𝟐 = 𝒓𝟐, where the center is (𝒉, 𝒌) and the 

radius is 𝒓 units.  Then write the equation in the standard form 𝒙𝟐 + 𝒂𝒙 + 𝒚𝟐 + 𝒃𝒚 + 𝒄 = 𝟎, and construct the graph of 

the equation. 

4. A circle with center (𝟒, −𝟏) and radius 𝟔 units. 

(𝒙 − 𝟒)𝟐 + (𝒚 + 𝟏)𝟐 = 𝟑𝟔; standard form:  𝒙𝟐 − 𝟖𝒙 + 𝒚𝟐 + 𝟐𝒚 − 𝟏𝟗 = 𝟎  

The graph is shown to the right. 

 

 

 

 

5. A circle with center (−𝟑, 𝟓) tangent to the 𝒙-axis. 

(𝒙 + 𝟑)𝟐 + (𝒚 − 𝟓)𝟐 = 𝟐𝟓; standard form: 𝒙𝟐 + 𝟔𝒙 + 𝒚𝟐 − 𝟏𝟎𝒚 + 𝟗 = 𝟎  

The graph is shown to the right. 

 

 

 

 

 

 

6. A circle in the third quadrant, radius 𝟏 unit, tangent to both axes. 

(𝒙 + 𝟏)𝟐 + (𝒚 + 𝟏)𝟐 = 𝟏; standard form:  𝒙𝟐 + 𝟐𝒙 + 𝒚𝟐 + 𝟐𝒚 + 𝟏 = 𝟎  

The graph is shown to the right. 
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7. By finding the radius of each circle and the distance between their centers, show that the circles 𝒙𝟐 + 𝒚𝟐 = 𝟒 and 

𝒙𝟐 − 𝟒𝒙 + 𝒚𝟐 − 𝟒𝒚 + 𝟒 = 𝟎 intersect.  Illustrate graphically. 

The second circle is (𝒙 − 𝟐)𝟐 + (𝒚 − 𝟐)𝟐 = 𝟒.  Each radius is 𝟐, and the 

centers are at (𝟎, 𝟎) and (𝟐, 𝟐).  The distance between the centers is 𝟐√𝟐, 

which is less than 𝟒, the sum of the radii. 

The graph of the two circles is to the right. 

 

 

 

8. Find the points of intersection of the circles 𝒙𝟐 + 𝒚𝟐 − 𝟏𝟓 = 𝟎 and 

𝒙𝟐 − 𝟒𝒙 + 𝒚𝟐 + 𝟐𝒚 − 𝟓 = 𝟎.  Check by graphing the equations. 

Write the equations as  

𝒙𝟐 + 𝒚𝟐 = 𝟏𝟓 

𝒙𝟐 + 𝒚𝟐 − 𝟒𝒙 + 𝟐𝒚 = 𝟓. 

Subtracting the second equation from the first 

𝟒𝒙 − 𝟐𝒚 = 𝟏𝟎, 

which is equivalent to 

𝟐𝒙 − 𝒚 = 𝟓. 

Solving the system 𝒙𝟐 + 𝒚𝟐 = 𝟏𝟓 and 𝒚 = 𝟐𝒙 − 𝟓  yields  

(𝟐 + √𝟐, −𝟏 + 𝟐√𝟐) and (𝟐 − √𝟐, −𝟏 − 𝟐√𝟐).  The graph is to the right. 

 

9. Solve the system 𝒚 = 𝒙𝟐 − 𝟐 and 𝒙𝟐 + 𝒚𝟐 = 𝟒.  Illustrate graphically. 

Substitute 𝒙𝟐 = 𝒚 + 𝟐 into the second equation: 

𝒚 + 𝟐 + 𝒚𝟐 = 𝟒 

𝒚𝟐 + 𝒚 − 𝟐 = 𝟎 

(𝒚 − 𝟏)(𝒚 + 𝟐) = 𝟎 

so 𝒚 = −𝟐 or 𝒚 = 𝟏. 

If 𝒚 = −𝟐, then 𝒙𝟐 = 𝒚 + 𝟐 = 𝟎, and thus 𝒙 = 𝟎. 

If 𝒚 = 𝟏, then 𝒙𝟐 = 𝒚 + 𝟐 = 𝟑, so 𝒙 = √𝟑 or 𝒙 = −√𝟑. 

Thus, there are three solutions (𝟎, −𝟐), (√𝟑, 𝟏), and (−√𝟑, 𝟏).  The graph is to the right. 

 

10. Solve the system 𝒚 = 𝟐𝒙 − 𝟏𝟑 and 𝒚 = 𝒙𝟐 − 𝟔𝒙 + 𝟑.  Illustrate 

graphically. 

Substitute 𝟐𝒙 − 𝟏𝟑 for 𝒚 in the second equation:  𝟐𝒙 − 𝟏𝟑 = 𝒙𝟐 − 𝟔𝒙 + 𝟑.  

Rewrite the equation in standard form:  𝒙𝟐 − 𝟖𝒙 + 𝟏𝟔 = 𝟎. 

Solve for 𝒙:  (𝒙 − 𝟒)(𝒙 − 𝟒) = 𝟎. 

The root is repeated, so there is only one solution 𝒙 = 𝟒. 

The corresponding 𝒚-value is 𝒚 = −𝟓, and there is only one solution, 

(𝟒, −𝟓). 

As shown to the right, the line is tangent to the parabola. 
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Lesson 33:  The Definition of a Parabola 

 
Student Outcomes 

 Students model the locus of points at equal distance between a point (focus) and a line (directrix).  They 

construct a parabola and understand this geometric definition of the curve.  They use algebraic techniques to 

derive the analytic equation of the parabola. 

 

Lesson Notes 

A Newtonian reflector telescope uses a parabolic mirror to reflect light to the 

focus of the parabola, bringing the image of a distant object closer to the eye.  

This lesson uses the Newtonian telescope to motivate the discussion of 

parabolas.  The precise definitions of a parabola and the axis of symmetry of 

a parabola are given here.  Figure 1 to the right depicts this definition of a 

parabola.  In this diagram, 𝐹𝑃1 = 𝑃1𝑄1, 𝐹𝑃2 = 𝑃2𝑄2, 𝐹𝑃3 = 𝑃3𝑄3 illustrate 

that for any point 𝑃 on the parabola, the distance between 𝑃 and 𝐹 is equal 

to the distance between 𝑃 and the line 𝐿 along a segment perpendicular to 𝐿. 

PARABOLA: (G-GPE.A.2)  A parabola with directrix 𝐿 and focus 𝐹 is the set of all 

points in the plane that are equidistant from the point 𝐹 and line 𝐿. 

AXIS OF SYMMETRY OF A PARABOLA: (G-GPE.A.2)  The axis of symmetry of a parabola given by a focus point and a directrix is 

the perpendicular line to the directrix that passes through the focus. 

VERTEX OF A PARABOLA: (G-GPE.A.2)  The vertex of a parabola is the point where the axis of symmetry intersects the 

parabola. 

This lesson focuses on deriving the analytic equation for a parabola given the focus and directrix (G.GPE.A.2) and 

showing that it is a quadratic equation.  In doing so, students are able to tie together many powerful ideas from 

geometry and algebra, including transformations, coordinate geometry, polynomial equations, functions, and the 

Pythagorean theorem. 

Parabolas all have the reflective property illustrated in Figure 2.  Rays entering the 

parabola parallel to the axis of symmetry will reflect off the parabola and pass 

through the focus point 𝐹.  A Newtonian telescope uses this property of parabolas. 

Parabolas have been studied by mathematicians since at least the 4
th

 century B.C.  

James Gregory's Optical Promata, printed in 1663, contains the first known plans 

for a reflecting telescope using parabolic mirrors, though the idea itself was 

discussed earlier by many astronomers and mathematicians, including Galileo 

Galilei, as early as 1616.  Isaac Newton, for whom the telescope is now named, 

needed such a telescope to prove his theory that white light is made up of a 

spectrum of colors.  This theory explained why earlier telescopes that worked by 

refraction distorted the colors of objects in the sky.  However, the technology did 

not exist at the time to accurately construct a parabolic mirror because of 

 

Figure 1 

Figure 2 
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difficulties accurately engineering the curve of the parabola.  In 1668, he built a reflecting telescope using a spherical 

mirror instead of a parabolic mirror, which distorted images but made the construction of the telescope possible.  Even 

with the image distortion caused by the spherical mirror, Newton was able to see the moons of Jupiter without color 

distortion.  Around 1721, John Hadley constructed the first reflecting telescope that used a parabolic mirror.  

A Newtonian telescope reflects light back into the tube and requires a second mirror to direct the reflected image to the 

eyepiece.  In a modern Newtonian telescope, the primary mirror is a paraboloid—the surface obtained by rotating a 

parabola around its axis of symmetry—and a second flat mirror positioned near the focus reflects the image directly to 

the eyepiece mounted along the side of the tube.  A quick image search of the Internet will show simple diagrams of 

these types of telescopes.  This type of telescope remains a popular design today, and many amateur astronomers build 

their own Newtonian telescopes.  The diagram shown in the student pages is adapted from this image, which can be 

accessed at http://en.wikipedia.org/wiki/File:Newton01.png#filelinks. 

 

 

Classwork 

Opening  (3 minutes) 

The Opening Exercise below gets students thinking about reflections on different-shaped lines and curves.  According to 

physics, the measure of the angle of reflection of a ray of light is equal to the measure of the angle of incidence when it 

is bounced off a flat surface.  For light reflecting on a curved surface, angles can be measured using the ray of light and 

the line tangent to the curve where the light ray touches the curve.  As described below in the scaffolding box, it is 

important for students to understand that the shape of the mirror will result in different reflected images.  After giving 

students a few minutes to work on this, ask for their ideas. 

 How does each mirror reflect the light? 

 Mirror 1 bounces light straight back at you. 

 Mirror 2 bounces light at a 90° angle across to the other side of the mirror, then it bounces at another 

90° angle away from the mirror. 

 Mirror 3 would bounce the light at different angles at different points because the surface is curved. 
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Some background information that can help the teacher process the Opening Exercise with students is summarized 

below. 

 Semicircular mirrors do not send all rays of light to a single focus point; this fact can be seen by carefully 

drawing the path of three rays of light and noticing that they each intersect the other rays in different points 

after they reflect. 

 From physics, the angle of reflection is congruent to the angle of incidence with a line tangent to the curve.  On 

a curved mirror, the slope of the tangent line changes, so the rays of light reflect at different angles.  

 Remember when working with students to focus on the big ideas:  These mirrors will not reflect light back to a 

single point.  Simple student diagrams are acceptable. 

After debriefing the opening with the class, introduce the idea of a telescope that uses 

mirrors to reflect light.  We want a curved surface that focuses the incoming light to a 

single point in order to see reflected images from outer space.  The question below sets 

the stage for this lesson.  The rest of the lesson defines a parabola as a curve that meets 

the requirements of the telescope design. 

 Is there a curved shape that accomplishes this goal? 

 

Opening Exercise  (2 minutes) 

 

Opening Exercise 

Suppose you are viewing the cross-section of a mirror.  Where would the incoming light be reflected in each type of 

design?  Sketch your ideas below. 

 

 

 

 

 

 

 

 

In Mirror 1, the light would reflect back onto the light rays.  In Mirror 2, the light would reflect from one side of the mirror 

horizontally to the other side, and then reflect back upwards vertically.  Incoming and outgoing rays would be parallel.  In 

Mirror 3, the light would reflect back at different angles because the mirror is curved.  

 

Scaffolding: 

Do not get sidetracked if 

students struggle to accurately 

draw the reflected light.  Work 

through these as a class if 

necessary.  Emphasize that the 

light is reflected differently as 

the mirror’s curvature changes. 

Mirror 1 

Incoming Light 

Mirror 3 

Incoming Light 

Mirror 2 

Incoming Light 

MP.1 
& 

MP.4 
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To transition from the Opening Exercise to the next discussion, tell students that telescopes work by reflecting light.  To 

create an image without distortion using a telescope, the reflected light needs to focus on one point.  Mirror 3 comes 

the closest to having this property but does not reflect the rays of light back to a single point.  Model this by showing a 

sample of a student solution or by providing a teacher created sketch. 

 

Discussion  (15 minutes):  Telescope Design  

Lead a whole class discussion that ties together the definition of a parabola and its reflective property with Newton’s 

telescope design requirements.  A Newtonian telescope needs a mirror that focuses all the light on a single point to 

prevent a distorted image.  A parabola by definition meets this requirement.  During this discussion, share the definition 

of a parabola and how the focus and directrix give the graph its shape.  If the distance between the focus and the 

directrix changes, the parabola’s curvature changes.  If a parabola is rotated 180° around the axis of symmetry, a curved 

surface called a paraboloid is produced; this is the shape of a parabolic mirror.  A Newtonian telescope requires a fairly 

flat mirror in order to see images of objects that are astronomically far away, so the mirror in a Newtonian telescope is a 

parabola with a relatively large distance between its focus and directrix. 

 

Discussion:  Telescope Design 

When Newton designed his reflector telescope, he understood two important ideas.  Figure 1 shows a diagram of this 

type of telescope. 

 The curved mirror needs to focus all the light to a single point that we will call the focus.  An angled flat mirror 

is placed near this point and reflects the light to the eyepiece of the telescope. 

 The reflected light needs to arrive at the focus at the same time.  Otherwise, the image is distorted. 

Figure 1 

 

  

Szőcs Tamás 
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In the diagram below, the dotted and solid lines show the incoming light.  Model how to add these additional lines to the 

diagram.  Make sure students annotate this on their student pages. 

 

Next, discuss the definition of parabola that appears in the student pages and the reflective property of parabolic curves.  

Take time to explain what the term equidistant means and how distance is defined between a given point and a given 

line as the shortest distance, which is always the length of the segment that lies on a line perpendicular to the given line 

whose endpoints are the given point and the intersection point of the given line and the perpendicular line.  Ask 

students to recall the definition of a circle from Lessons 30–31 and use this to explore the definition of a parabola.  

Before reading through the definition, give students a ruler and ask them to measure the segments 𝐹𝑃1
̅̅ ̅̅ ̅, 𝑄1𝑃1

̅̅ ̅̅ ̅̅ , 𝐹𝑃2
̅̅ ̅̅ ̅, 𝑄2𝑃2

̅̅ ̅̅ ̅̅ , 

etc., in Figure 2.  Then have them locate a few more points on the curve and measure the distance from the curve to 

point 𝐹 and from the curve to the horizontal line 𝐿. 

 

Definition:  A parabola with directrix 𝑳 and focus point 𝑭 is the set 

of all points in the plane that are equidistant from the point 𝑭 and 

line 𝑳. 

Figure 2 to the right illustrates this definition of a parabola.  In this 

diagram, 𝑭𝑷𝟏 = 𝑷𝟏𝑸𝟏, 𝑭𝑷𝟐 = 𝑷𝟐𝑸𝟐, 𝑭𝑷𝟑 = 𝑷𝟑𝑸𝟑 showing that 

for any point 𝑷 on the parabola, the distance between 𝑷 and 𝑭 is 

equal to the distance between 𝑷 and the line 𝑳. 

 

 

 

All parabolas have the reflective property illustrated in Figure 3.   

Rays parallel to the axis reflect off the parabola and through the 

focus point, 𝑭.   

Thus, a mirror shaped like a rotated parabola would satisfy 

Newton’s requirements for his telescope design.  

  

Szőcs Tamás 
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Figure 2 
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Figure 4 

Figure 5 

Then, move on to Figures 4 and 5.  Here we transition back to 

thinking about the telescope and show how a mirror in the 

shape of a parabola (as opposed to say a semi-circle or other 

curve) reflects light to the focus point.  Talk about fun house 

mirrors (modeled by some smartphone apps) that distort 

images as an example of how other curved surfaces reflect light 

differently.   

 If we want the light to be reflected to the focus at 

exactly the same time, then what must be true about 

the distances between the focus and any point on the 

mirror and the distances between the directrix and 

any point on the mirror? 

 Those distances must be equal. 

 

 

 

 

 

 

 

Figure 4 below shows several different line segments representing the reflected light with one endpoint on the curved 

mirror that is a parabola and the other endpoint at the focus.  Anywhere the light hits this type of parabolic surface, it 

always reflects to the focus, 𝑭, at exactly the same time. 

Figure 5 shows the same image with a directrix.  Imagine for a minute that the mirror was not there.  Then, the light 

would arrive at the directrix all at the same time.  Since the distance from each point on the parabolic mirror to the 

directrix is the same as the distance from the point on the mirror to the focus, and the speed of light is constant, it takes 

the light the same amount of time to travel to the focus as it would have taken it to travel to the directrix.  In the 

diagram, this means that 𝑨𝑭 = 𝑨𝑭𝑨, 𝑩𝑭 = 𝑩𝑭𝑩, and so on.  Thus, the light rays arrive at the focus at the same time, and 

the image is not distorted. 

 

  

Scaffolding: 

To help students master the new vocabulary 

associated with parabolas, make a poster using the 

diagram shown below and label the parts.  Adjust as 

needed for students, but make sure to include the 

focus point and directrix in the poster along with 

marked congruent segments illustrating the 

definition. 

 

(𝑥,𝑦) 
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𝑭(𝟎,𝟐) 

𝑨(𝒙,𝒚) 

𝑭′(𝒙,𝟎) 

To further illustrate the definition of a parabola, ask students to mark on Figure 5 how the lengths 𝐴𝐹, 𝐵𝐹, 𝐶𝐹, 𝐷𝐹, and 

𝐸𝐹 are equal to the lengths 𝐴𝐹𝐴, 𝐵𝐹𝐵, 𝐶𝐹𝐶, 𝐷𝐹𝐷, and 𝐸𝐹𝐸, respectively.   

 How does this definition fit the requirements for a Newtonian telescope? 

 The definition states exactly what we need to make the incoming light hit the focus at the exact same 

time since the distance between any point on the curve to the directrix is equal to the distance between 

any point on the curve and the focus. 

 A parabola looks like the graph of what type of function? 

 It looks like the graph of a quadratic function. 

Transition to Example 1 by announcing that the prediction that an equation for a parabola would be a quadratic 

equation will be confirmed using a specific example. 

 

Example  (13 minutes):  Finding an Analytic Equation for a Parabola  

This example derives an equation for a parabola given the focus and directrix.  

Work through this example, and give students time to record the steps..  Refer 

students back to the way the distance formula was used in the definition of a 

circle, and explain that it can be used here as well to find an analytic equation for 

this type of curve.  

 

Example:  Finding an Analytic Equation for a Parabola 

Given a focus and a directrix, create an equation for a parabola. 

 

Focus:  𝑭(𝟎, 𝟐) 

Directrix:  𝒙-axis 

Parabola:   

𝑷 = {(𝒙, 𝒚)| (𝒙, 𝒚) is equidistant from F and the 𝒙-axis.} 

 

Let 𝑨 be any point (𝒙, 𝒚) on the parabola 𝑷.  Let 𝑭′ be a 

point on the directrix with the same 𝒙-coordinate as point 𝑨. 

 

What is the length 𝑨𝑭′? 

𝑨𝑭′ = 𝒚 

 

Use the distance formula to create an expression that 

represents the length 𝑨𝑭. 

𝑨𝑭 = √(𝒙 − 𝟎)𝟐 + (𝒚 − 𝟐)𝟐 

 

  

Scaffolding: 

 Provide some additional practice 
with using distance formula to find 
the length of a line segment for 
struggling learners. 

 Post the distance formula on the 
classroom wall.   

 Draw a diagram with the points 
𝐹(0,2), 𝐹′(4,0), and 𝐴(4,5) 
labeled.  Have them find the 
lengths 𝐹𝐴 and 𝐹′𝐴. 
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Create an equation that relates the two lengths, and solve it for 𝒚. 

Therefore,    𝑷 = {(𝒙, 𝒚)| √(𝒙 − 𝟎)𝟐 + (𝒚 − 𝟐)𝟐 = 𝒚}. 

The two segments have equal lengths.                       𝑨𝑭′ = 𝑨𝑭 

The length of each segment   𝒚 = √(𝒙 − 𝟎)𝟐 + (𝒚 − 𝟐)𝟐 

Square both sides of the equation. 𝒚𝟐 = 𝒙𝟐 + (𝒚 − 𝟐)𝟐  

Expand the binomial. 𝒚𝟐 = 𝒙𝟐 + 𝒚𝟐 − 𝟒𝒚 + 𝟒  

Solve for 𝒚. 𝟒𝒚 = 𝒙𝟐 + 𝟒  

   𝒚 =
𝟏
𝟒

𝒙𝟐 + 𝟏     

Replacing this equation in the definition of 𝑷 = {(𝒙, 𝒚)|  (𝒙, 𝒚) is equidistant from F and the 𝒙-axis} gives the statement  

𝑷 = {(𝒙, 𝒚)| 𝒚 =
𝟏
𝟒

𝒙𝟐 + 𝟏}.  

Thus, the parabola 𝑷 is the graph of the equation 𝒚 =
𝟏
𝟒

𝒙𝟐 + 𝟏. 

 

Verify that this equation appears to match the graph shown. 

Consider the point where the 𝒚-axis intersects the parabola; let this point have coordinates (𝟎, 𝒃).  From the graph, we 

see that 𝟎 < 𝒃 < 𝟐.  The distance from the focus (𝟎, 𝟐) to (𝟎, 𝒃) is 𝟐 − 𝒃 units, and the distance from the directrix to 

(𝟎, 𝒃) is 𝒃 units.  Since (𝟎, 𝒃) is on the parabola, we have 𝟐 − 𝒃 = 𝒃, so that 𝒃 = 𝟏.  From this perspective, we see that the 

point (𝟎, 𝟏) must be on the parabola.  Does this point satisfy the equation we found?  Let 𝒙 = 𝟎.  Then our equation gives 

𝒚 =
𝟏
𝟒

𝒙𝟐 + 𝟏 =
𝟏
𝟒

(𝟎)𝟐 + 𝟏, so (𝟎, 𝟏) satisfies the equation.  This is the only point that we have determined to be on the 

parabola at this point, but it provides evidence that the equation matches the graph.    

 

Use the questions below to work through Example 1.  Have students mark the congruent segments on their diagram and 

record the derivation of the equation as it is worked out in front of the class.  Remind students that when the distance 

formula is worked with,  the Pythagorean theorem is being applied in the coordinate plane.  This refers back to their 

work in both Grade 8 and high school Geometry. 

 According to the definition of a parabola, which two line segments in the diagram must have equal measure?  

Mark them congruent on your diagram. 

 The length 𝐴𝐹 must be equal to 𝐴𝐹′. 

 How long is 𝐴𝐹̅̅ ̅̅ ′?  How do you know? 

 It is 𝑦 units long.  The 𝑦-coordinate of point 𝐴 is 𝑦. 

 Recall the distance formula, and use it to create an 

expression equal to the length of 𝐴𝐹̅̅ ̅̅ . 

 The distance formula is  

𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2, where (𝑥1, 𝑦1) and 

(𝑥2, 𝑦2) are two points in the Cartesian plane. 

 How can you tell if this equation represents a quadratic 

function? 

 The degree of 𝑥 will be 2, and the degree of 𝑦 will 

be 1, and each 𝑥 will correspond to exactly one 𝑦. 

A marked up diagram is shown to the right. 
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Exercises  (4 minutes) 

 

Exercises 

1. Demonstrate your understanding of the definition of a parabola by 

drawing several pairs of congruent segments given the parabola, its 

focus, and directrix.  Measure the segments that you drew to confirm 

the accuracy of your sketches in either centimeters or inches. 

 

 

2. Derive the analytic equation of a parabola given the focus of (𝟎, 𝟒) and the directrix 𝒚 = 𝟐.  Use the diagram to help 

you work this problem. 

a. Label a point (𝒙, 𝒚) anywhere on the parabola. 

 

b. Write an expression for the distance from the point (𝒙, 𝒚) to 

the directrix. 

𝒚 − 𝟐 

 

c. Write an expression for the distance from the point (𝒙, 𝒚) to 

the focus. 

√(𝒙 − 𝟎)𝟐 + (𝒚 − 𝟒)𝟐 

 

d. Apply the definition of a parabola to create an equation in terms of 𝒙 and 𝒚.  Solve this equation for 𝒚. 

𝒚 − 𝟐 = √(𝒙 − 𝟎)𝟐 + (𝒚 − 𝟒)𝟐 

Solved for 𝒚, we find an equivalent equation is 𝒚 =
𝟏
𝟒

𝒙𝟐 + 𝟑. 

 

e. What is the translation that takes the graph of this parabola to the graph of the equation derived in Example 

1? 

A translation down two units will take this graph of this parabola to the one derived in Example 1. 

 

Closing  (3 minutes) 

In this lesson,  limit the discussion to parabolas with a horizontal directrix.  Later lessons show that all parabolas are 

similar and that the equations are quadratic regardless of the orientation of the parabola in the plane.  Have students 

answer these questions individually in writing.  Then discuss their responses as a whole class. 

 What is a parabola? 

 A parabola is a geometric figure that represents the set of all points equidistant from a point called the 

focus and a line called the directrix. 

 Why are parabolic mirrors used in telescope designs? 

 Parabolic mirrors are used in telescope designs because they focus reflected light to a single point. 

 What type of analytic equation can be used to model parabolas? 

 A parabola whose directrix is a horizontal line can be represented by a quadratic equation in 𝑥, given by 

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. 
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Exit Ticket  (5 minutes)  

 

  

Lesson Summary 

PARABOLA:  A parabola with directrix line 𝑳 and focus point 𝑭 is the set of all points in the plane that are equidistant 

from the point 𝑭 and line 𝑳. 

AXIS OF SYMMETRY:  The axis of symmetry of a parabola given by a focus point and a directrix is the perpendicular line 

to the directrix that passes through the focus. 

VERTEX OF A PARABOLA:  The vertex of a parabola is the point where the axis of symmetry intersects the parabola.  

In the Cartesian plane, the distance formula can help in deriving an analytic equation for a parabola.  

 

 

 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
  
  
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 33 

ALGEBRA II 

Lesson 33: The Definition of a Parabola 
 
 

 

375 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Name                                   Date                          

Lesson 33:  The Definition of a Parabola 

 
Exit Ticket 
 

1. Derive an analytic equation for a parabola whose focus is (0,4) and directrix is the 𝑥-axis.  Explain how you got your 

answer. 

 

 

 

 

 

 

 

 

 

 

 

2. Sketch the parabola from Question 1.  Label the focus and directrix. 
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Exit Ticket Sample Solutions 

 

1. Derive an analytic equation for a parabola whose focus is (𝟎, 𝟒) and directrix is the 𝒙-axis.  Explain how you got your 

answer. 

Let (𝒙, 𝒚) be a point on the parabola.  Then, the distance between this point and the focus is given by 

√(𝒙 − 𝟎)𝟐 + (𝒚 − 𝟒)𝟐.  The distance between the point (𝒙, 𝒚) and the directrix is 𝒚.  Then, 

 

𝒚 = √(𝒙 − 𝟎)𝟐 + (𝒚 − 𝟒)𝟐 

𝒚𝟐 = 𝒙𝟐 + 𝒚𝟐 − 𝟖𝒚 + 𝟏𝟔 

𝟖𝒚 = 𝒙𝟐 + 𝟏𝟔 

𝒚 =
𝟏

𝟖
𝒙𝟐 + 𝟐 

 

2. Sketch the parabola from Question 1.  Label the focus and directrix. 

 

 

  

directrix 

focus 
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Problem Set Sample Solutions 

These questions are designed to reinforce the ideas presented in this lesson.  The first few questions focus on applying 

the definition of a parabola to sketch parabolas.  Then the questions scaffold to creating an analytic equation for a 

parabola given its focus and directrix.  Finally, questions near the end of the Problem Set help students to recall 

transformations of graphs of functions to prepare them for work in future lessons on proving when parabolas are 

congruent and that all parabolas are similar. 

 

1. Demonstrate your understanding of the definition of a parabola by drawing several pairs of congruent segments 

given each parabola, its focus, and directrix.  Measure the segments that you drew in either inches or centimeters to 

confirm the accuracy of your sketches. 

Measurements will depend on the location of the segments and the size of the printed document.  Segments that 

should be congruent should be close to the same length. 

a.  b.  

c.  d.  

 

2. Find the distance from the point (𝟒, 𝟐) to the point (𝟎, 𝟏). 

The distance is √𝟏𝟕 units. 

 

3. Find the distance from the point (𝟒, 𝟐) to the line 𝒚 = −𝟐. 

The distance is 𝟒 units. 

 

4. Find the distance from the point (−𝟏, 𝟑) to the point (𝟑, −𝟒). 

The distance is √𝟔𝟓 units.  
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5. Find the distance from the point (−𝟏, 𝟑) to the line 𝒚 = 𝟓. 

The distance is 𝟐 units. 

 

6. Find the distance from the point (𝒙, 𝟒) to the line 𝒚 = −𝟏. 

The distance is 𝟓 units. 

 

7. Find the distance from the point (𝒙, −𝟑) to the line 𝒚 = 𝟐. 

The distance is 𝟓 units. 

 

8. Find the values of 𝒙 for which the point (𝒙, 𝟒) is equidistant from (𝟎, 𝟏), and the line 𝒚 = −𝟏. 

If √(𝒙 − 𝟎)𝟐 + (𝟒 − 𝟏)𝟐 = 𝟓, then 𝒙 = 𝟒 or 𝒙 = −𝟒. 

 

9. Find the values of 𝒙 for which the point (𝒙, −𝟑) is equidistant from (𝟏, −𝟐), and the line 𝒚 = 𝟐. 

If √(𝒙 − 𝟏)𝟐 + (−𝟑 − (−𝟐))
𝟐

= 𝟓, then 𝒙 = 𝟏 + 𝟐√𝟔 or 𝒙 = 𝟏 − 𝟐√𝟔. 

 

10. Consider the equation 𝒚 = 𝒙𝟐. 

a. Find the coordinates of the three points on the graph of 𝒚 = 𝒙𝟐 whose 𝒙-values are 𝟏, 𝟐, and 𝟑. 

The coordinates are (𝟏, 𝟏), (𝟐, 𝟒), and (𝟑, 𝟗). 

 

b. Show that each of the three points in part (a) is equidistant from the point (𝟎,
𝟏
𝟒

), and the line 𝒚 = −
𝟏
𝟒

. 

For (𝟏, 𝟏), show that  

√(𝟏 − 𝟎)𝟐 + (𝟏 −
𝟏

𝟒
)

𝟐

= √𝟏 +
𝟗

𝟏𝟔
= √

𝟐𝟓

𝟏𝟔
=

𝟓

𝟒
 

𝟏 − (−
𝟏

𝟒
) =

𝟓

𝟒
. 

√(𝟐 − 𝟎)𝟐 + (𝟒 −
𝟏

𝟒
)

𝟐

= √𝟒 +
𝟐𝟐𝟓

𝟏𝟔
= √

𝟐𝟖𝟗

𝟏𝟔
=

𝟏𝟕

𝟒
 

𝟒 − (−
𝟏

𝟒
) =

𝟏𝟕

𝟒
. 

√(𝟑 − 𝟎)𝟐 + (𝟗 −
𝟏

𝟒
)

𝟐

= √𝟗 + (
𝟑𝟓

𝟒
)

𝟐

= √
𝟏𝟑𝟔𝟗

𝟏𝟔
=

𝟑𝟕

𝟒
 

𝟗 − (−
𝟏

𝟒
) =

𝟑𝟕

𝟒
. 

 

 

 

 

and 

 

 

For (𝟐, 𝟒), show that 

 

 

 

 

and 

 

 

For (𝟑, 𝟗), show that 

 

 

 

 

and 
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c. Show that if the point with coordinates (𝒙, 𝒚) is equidistant from the point (𝟎,
𝟏
𝟒

), and the line 𝒚 = −
𝟏
𝟒

, then 

𝒚 = 𝒙𝟐. 

The distance from (𝒙, 𝒚) to (𝟎,
𝟏
𝟒

) is √(𝒙 − 𝟎)𝟐 + (𝒚 −
𝟏

𝟒
)

𝟐

, and the distance from (𝒙, 𝒚) to the line 𝒚 = −
𝟏
𝟒

 is 

𝒚 − (−
𝟏
𝟒

) = 𝒚 +
𝟏
𝟒

.  Setting these distances equal gives 

√(𝒙 − 𝟎)𝟐 + (𝒚 −
𝟏

𝟒
)

𝟐

= 𝒚 +
𝟏

𝟒
 

√𝒙𝟐 + 𝒚𝟐 −
𝟏

𝟐
𝒚 +

𝟏

𝟏𝟔
= 𝒚 +

𝟏

𝟒
 

𝒙𝟐 + 𝒚𝟐 −
𝟏

𝟐
𝒚 +

𝟏

𝟏𝟔
= (𝒚 +

𝟏

𝟒
)

𝟐

 

𝒙𝟐 −
𝟏

𝟐
𝒚 +

𝟏

𝟏𝟔
=

𝟏

𝟐
𝒚 +

𝟏

𝟏𝟔
 

𝒙𝟐 = 𝒚. 

Thus, if a point (𝒙, 𝒚) is the same distance from the point (𝟎,
𝟏
𝟒

), and the line 𝒚 = −
𝟏
𝟒

, then (𝒙, 𝒚) lies on the 

parabola 𝒚 = 𝒙𝟐. 

 

11. Consider the equation 𝒚 =
𝟏
𝟐

𝒙𝟐 − 𝟐𝒙. 

a. Find the coordinates of the three points on the graph of 𝒚 =
𝟏
𝟐

𝒙𝟐 − 𝟐𝒙 whose 𝒙-values are −𝟐, 𝟎, and 𝟒. 

The coordinates are (−𝟐, 𝟔), (𝟎, 𝟎), (𝟒, 𝟎). 

 

b. Show that each of the three points in part (a) is equidistant from the point (𝟐, −
𝟑
𝟐

) and the line 𝒚 = −
𝟓
𝟐

. 

For (−𝟐, 𝟔), show that  

√(−𝟐 − 𝟐)𝟐 + (𝟔 − (−
𝟑

𝟐
))

𝟐

= √𝟏𝟔 +
𝟐𝟐𝟓

𝟒
= √

𝟐𝟖𝟗

𝟒
=

𝟏𝟕

𝟐
 

𝟔 − (−
𝟓

𝟐
) =

𝟏𝟕

𝟐
. 

√(𝟎 − 𝟐)𝟐 + (𝟎 − (−
𝟑

𝟐
))

𝟐

= √𝟒 +
𝟗

𝟒
= √

𝟐𝟓

𝟒
=

𝟓

𝟐
 

𝟎 − (−
𝟓

𝟐
) =

𝟓

𝟐
. 

√(𝟒 − 𝟐)𝟐 + (𝟎 − (−
𝟑

𝟐
))

𝟐

= √𝟒 +
𝟗

𝟒
= √

𝟐𝟓

𝟒
=

𝟓

𝟐
 

𝟎 − (−
𝟓

𝟐
) =

𝟓

𝟐
. 

 

 

 

 

and 

 

 

For (𝟎, 𝟎), show that 

 

 

 

 

and 

 

 

For (𝟒, 𝟎), show that 

 

 

 

 

and 
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c. Show that if the point with coordinates (𝒙, 𝒚) is equidistant from the point (𝟐, −
𝟑
𝟐

), and the line 𝒚 = −
𝟓
𝟐
, 

then 𝒚 =
𝟏
𝟐

𝒙𝟐 − 𝟐𝒙. 

The distance from (𝒙, 𝒚) to (𝟐, −
𝟑
𝟐

) is √(𝒙 − 𝟐)𝟐 + (𝒚 +
𝟑
𝟐

)
𝟐

, and the distance from (𝒙, 𝒚) to the line  

𝒚 = −
𝟓
𝟐

 is 𝒚 − (−
𝟓
𝟐

) = 𝒚 +
𝟓
𝟐

.  Setting these distances equal gives 

√(𝒙 − 𝟐)𝟐 + (𝒚 +
𝟑

𝟐
)

𝟐

= 𝒚 +
𝟓

𝟐
 

√𝒙𝟐 − 𝟒𝒙 + 𝒚𝟐 + 𝟑𝒚 +
𝟐𝟓

𝟒
= 𝒚 +

𝟓

𝟐
 

𝒙𝟐 − 𝟒𝒙 + 𝒚𝟐 + 𝟑𝒚 +
𝟐𝟓

𝟒
= 𝒚𝟐 + 𝟓𝒚 +

𝟐𝟓

𝟒
 

𝒙𝟐 − 𝟒𝒙 = 𝟐𝒚 

𝟏

𝟐
(𝒙𝟐 − 𝟐𝒙) = 𝒚. 

Thus, if a point (𝒙, 𝒚) is the same distance from the point (𝟐, −
𝟑
𝟐

), and the line 𝒚 = −
𝟓
𝟐

, then (𝒙, 𝒚) lies on the 

parabola 𝒚 =
𝟏
𝟐

(𝒙𝟐 − 𝟐𝒙). 

 

12. Derive the analytic equation of a parabola with focus (𝟏, 𝟑) and directrix 𝒚 = 𝟏.  Use the diagram to help you work 

this problem. 

a. Label a point (𝒙, 𝒚) anywhere on the parabola. 

 

b. Write an expression for the distance from the point (𝒙, 𝒚) to the 

directrix. 

𝒚 − 𝟏 

 

c. Write an expression for the distance from the point (𝒙, 𝒚) to the 

focus (𝟏, 𝟑). 

√(𝒙 − 𝟏)𝟐 + (𝒚 − 𝟑)𝟐 

 

d. Apply the definition of a parabola to create an equation in terms of 𝒙 and 𝒚.  Solve this equation for 𝒚. 

𝒚 − 𝟏 = √(𝒙 − 𝟏)𝟐 + (𝒚 − 𝟑)𝟐 

(𝒚 − 𝟏)𝟐 = (𝒙 − 𝟏)𝟐 + (𝒚 − 𝟑)𝟐 

𝒚𝟐 − 𝟐𝒚 + 𝟏 = (𝒙 − 𝟏)𝟐 + 𝒚𝟐 − 𝟔𝒚 + 𝟗 

𝟒𝒚 = (𝒙 − 𝟏)𝟐 + 𝟖 

𝒚 =
𝟏

𝟒
(𝒙 − 𝟏)𝟐 + 𝟐 

𝒚 =
𝟏

𝟒
𝒙𝟐 −

𝟏

𝟐
𝒙 +

𝟗

𝟒
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e. Describe a sequence of transformations that would take this parabola to the parabola with equation  

𝒚 =
𝟏
𝟒

𝒙𝟐 + 𝟏 derived in Example 1. 

A translation 𝟏 unit to the left and 𝟏 unit downward will take this parabola to the one derived in Example 1. 

 

13. Consider a parabola with focus (𝟎, −𝟐) and directrix on the 𝒙-axis. 

a. Derive the analytic equation for this parabola. 

𝒚 = −
𝟏

𝟒
𝒙𝟐 − 𝟏 

 

b. Describe a sequence of transformations that would take the parabola with equation 𝒚 =
𝟏
𝟒

𝒙𝟐 + 𝟏 derived in 

Example 1 to the graph of the parabola in part (a). 

Reflect the graph in Example 1 across the 𝒙-axis to obtain this parabola. 

 

14. Derive the analytic equation of a parabola with focus (𝟎, 𝟏𝟎) and directrix on the 𝒙-axis. 

𝒚 =
𝟏

𝟐𝟎
𝒙𝟐 + 𝟓 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
 
 
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 34 

ALGEBRA II 

Lesson 34: Are All Parabolas Congruent? 
 
 

 

382 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Lesson 34:  Are All Parabolas Congruent? 

 
Student Outcomes 

 Students learn the vertex form of the equation of a parabola and how it arises from the definition of a 

parabola. 

 Students perform geometric operations, such as rotations, reflections, and translations, on arbitrary parabolas 

to discover standard representations for their congruence classes.  In doing so, they learn that all parabolas 

with the same distance 𝑝 between the focus and the directrix are congruent to the graph of 𝑦 =
1
2𝑝

𝑥2. 

 

Lesson Notes 

This lesson builds upon the previous lesson and applies transformations to show that all parabolas with the same 

distance between their focus and directrix are congruent.  Recall that two figures in the plane are congruent if there 

exists a finite sequence of rigid motions that maps one onto the other, so it makes sense to discuss congruency of 

parabolas.  The lesson closes with a theorem and proof detailing the answer to the question posed in the lesson title.  By 

using transformations in this lesson to determine the conditions under which two parabolas are congruent, this lesson 

builds coherence with the work students did in Geometry.  This lesson specifically asks students to consider how we can 

use transformations to prove two figures are congruent.  Additionally, the lesson reinforces the connections between 

geometric transformations and transformations of the graphs of functions.  

There are many opportunities to provide scaffolding in this lesson for students who are not ready to move quickly to 

abstract representation.  Use technology, patty paper or transparencies, and simple hand-drawn graphs as appropriate 

to support student learning throughout this lesson.  Use the anchor poster created in Lesson 33, and keep key 

vocabulary words and formulas (e.g., the distance formula) displayed for student reference.  Consider breaking this 

lesson up into two days; on the first day, explore the definition of congruent parabolas, sketch parabolas given their 

focus and directrix, and explore the consequences of changing the distance between the focus and directrix, 𝑝.  On the 

second day, derive the analytic equation for a parabola with a given focus and directrix and vertex at the origin, and 

prove the theorem on parabola congruence.  

 

Classwork 

Opening Exercise  (7 minutes)  

Allow students to discuss their approaches to this exercise with a partner or in small groups.  Keep encouraging students 

to consider the definition of a parabola as they try to sketch the parabolas.  Encourage students who draw a haphazard 

curve to consider how they could make sure their graph is the set of points equidistant from the focus and directrix.  

Throughout this lesson, provide students with access to graphing calculators or other computer graphing software that 

they can use to test and confirm conjectures.  Model this further, and provide additional scaffolding by using an online 

applet located at the website http://www.intmath.com/plane-analytic-geometry/parabola-interactive.php.  Within the 

applet, students can move either the focus or the directrix to change the value of 𝑝.  They can also slide a point along the 

parabola noting the equal distances between that point and the focus and that point and the directrix.  Depending on 

the level of students, the teacher can begin these exercises by moving directly to the applet or by having them start the 

exercises and use the applet later in this section. 
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Opening Exercise 

Are all parabolas congruent?  Use the following questions to support your answer. 

a. Draw the parabola for each focus and directrix given below. 

The solution is shown below. 

 

 

 

 

 

 

 

 

 

b. What do we mean by congruent parabolas? 

Two parabolas would be congruent if we could find a sequence of rigid motions that takes one parabola onto 

the other.  We could translate the vertex of the first one onto the vertex of the second one, then rotate the 

image of the first one so that the directrices are parallel and both parabolas open in the same direction.  If the 

transformed first parabola coincides with the original second parabola, then the two original parabolas are 

congruent.  

 

c. Are the two parabolas from part (a) congruent?  Explain how you know. 

These two parabolas are not congruent.  They have the same vertex but different 𝒚-values for each 𝒙 in the 

domain, except for the point (𝟎, 𝟎).  If we translate the first one somewhere else, then the vertices will not 

align.  If we reflect or rotate, then both parabolas will not open upward.  There is no rigid transformation or 

set of transformations that takes the graph of one parabola onto the other.  

 

d. Are all parabolas congruent? 

No, we just found two that are not congruent. 

 

e. Under what conditions might two parabolas be congruent?  Explain your reasoning. 

Once we align the vertices and get the directrices parallel and parabolas opening in the same direction 

through rotation or reflection, the parabolas will have the same shape if the focus and directrix are aligned.  

Thus, two parabolas will be congruent if they have the same distance between the focus and directrix.  

 

Debrief this exercise using the following questions, which can also be used as scaffolds if students are struggling to begin 

this problem.  During the debrief, record student thinking on chart paper to be used for reference at the end of this 

lesson as a means to confirm or refute their conjectures.   

At some point in this discussion, students should recognize that it would be nice if there was a name for the distance 

between the focus and directrix of the parabola.  When appropriate, let them know that this distance is denoted by 𝑝 in 

this lesson and lessons that follow.  If they do not mention it here, it is brought into the discussion in Exercise 5. 

Scaffolding: 

 If students struggle with 

vocabulary, refer them 

back to the anchor poster. 

 As an extension, ask 

students to derive the 

equation for the parabola 

as was shown in Example 1 

of the previous lesson. 

MP.3 
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 How can you use the definition of a parabola to quickly locate at least three points on the graph of the 

parabola with a focus (0,1) and directrix 𝑦 = −1? 

 Along the 𝑦-axis, the distance between the focus and the directrix is 2, so one point, the vertex, will be 

halfway between them at (0,0).  Since the distance between the focus and the directrix is 𝑝 = 2 units, if 

we go 2 units to the left and right of the focus, we will be able to locate two more points on the 

parabola at (2,1) and (−2,1).   

 How can you use the definition of a parabola to quickly locate at least three points on the graph of the 

parabola with a focus (0,2) and directrix 𝑦 = −2? 

 The distance between the focus and the directrix is 𝑝 = 4 units, so the vertex is halfway between the 

focus and directrix at (0,0).  Moving right and left 4 units from the focus gives points (4,2) and (−4,2). 

 Generalize this process of finding three points on a parabola with a given focus and directrix. 

 Find the vertex halfway between the focus and directrix, and let 𝑝 be the distance between the focus 

and directrix.  Then, sketch a line through the focus parallel to the directrix.  Locate the two points 𝑝 

units along that line in either direction from the focus.  The vertex and these two points are all on the 

parabola.  

 How does this process help us determine if two parabolas are congruent? 

 Two parabolas will be congruent if the two points found through this process are the same distance 

away from the focus.  That is, two parabolas will be congruent if they have the same value of 𝑝 or the 

same distance between the focus and directrix. 

 

Exercises 1–5  (5 minutes)  

Students practice drawing parabolas given a focus and a directrix.  These parabolas are NOT all oriented with a 

horizontal directrix.  Let students struggle with how to construct a sketch of the parabola.  Remind them of their work in 

the Opening Exercise.  The teacher may choose to do one problem together to model the process.  Draw a line 

perpendicular to the directrix through the focus.  Locate the midpoint of the segment connecting the focus and directrix.  

Then, create a square on either side of this line with a side length equal to the distance between the focus and the 

directrix.  One vertex of each square that is not on the directrix or axis of symmetry is another point on the parabola.  If 

dynamic geometry software is available, students could also model this construction using technology. 

 

Exercises 1–5  

1. Draw the parabola with the given focus and directrix. 
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2. Draw the parabola with the given focus and directrix. 

 

 

 

 

 

 

 

 

 

 

 

3. Draw the parabola with the given focus and directrix. 

 

 

 

 

 

 

 

 

Give students time to work through these exercises alone or in small groups.  Then, have a few students present their 

approaches on the board.  Be sure to emphasize that by applying the definition, a fairly accurate sketch of a parabola can 

be produced. 

 What two geometric objects determine the set of points that forms a parabola? 

 A point called the focus and a line called the directrix 

Direct students to compare and contrast Exercises 1–3 and discuss the implications within their small groups. 

 

4. What can you conclude about the relationship between the parabolas in Exercises 1–3?  

The parabolas are all the same size and shape because the distance between the focus and the directrix stayed the 

same.  These parabolas should be congruent. 

 

Direct students’ attention to the diagram in Exercise 5.  Have students respond individually and then discuss in small 

groups. 

  

Scaffolding: 

Use sentence frames for this 

exercise to support English 

language learners. 

For example, in Exercise 5, use  

“As the value of 𝑝 grows, the 

parabola ______________.” 

Later in the lesson, use 

“All parabolas with the same 

distance between the ____ and 

____ of the parabola are 

congruent.”  

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
 
 
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 34 

ALGEBRA II 

Lesson 34: Are All Parabolas Congruent? 
 
 

 

386 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

5. Let 𝒑 be the number of units between the focus and the directrix, as shown.  As the value of 𝒑 increases, what 

happens to the shape of the resulting parabola? 

 

 

 

 

 

 

 

 

 

As the value of 𝒑 increases, the graph is dilated and shrinks vertically compared to graphs with a smaller value of 𝒑.  

It appears to get flatter. 

 

Example 1  (12 minutes):  Derive an Equation for a Parabola  

In this example, lead students through the process of creating an equation that represents 

a parabola with a horizontal directrix, a vertex at the origin, and the distance between the 

focus and directrix 𝑝 > 0.  This process is similar to the work done in yesterday’s lesson, 

except students are working with a general case instead of a specified value for 𝑝.  

Scaffolding may be necessary for students who are not ready to move to the abstract level.  

For those students, continued modeling with selected 𝑝 values and use of the applet 

mentioned earlier will help bridge the gap between concrete and abstract.  Also, recall that 

several of the exercises in the previous lesson worked through this process with specifc 

points.  Remind students for whom this work is tedious that by deriving a general formula, 

the work going forward can be simplified, which is the heart of MP.7 and MP.8.  

 

Example 1:  Derive an Equation for a Parabola 

Consider a parabola 𝑷 with distance 𝒑 > 𝟎 

between the focus with coordinates (𝟎,
𝟏
𝟐
𝒑), and 

directrix 𝒚 = −
𝟏
𝟐
𝒑.  What is the equation that 

represents this parabola?  

 

 

 

 

 

 

 

𝑝 
1

2
𝑝 

1

2
𝑝 

 𝟎,
𝟏

𝟐
𝒑  

𝒚 +
𝟏

𝟐
𝒑 

𝟏

𝟐
𝒑 

𝒚 = −
𝟏

𝟐
𝒑 

Scaffolding: 

For more advanced students, 

derive the general vertex form 

of a parabola with the vertex at 

(ℎ, 𝑘) and the horizontal 

directrix and distance 𝑝 

between the focus and 

directrix:   

𝑦 = ±
1
2𝑝

(𝑥 − ℎ)2 + 𝑘.   
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 What are the coordinates of the vertex? 

 The coordinates of the vertex are (0,0). 

 Find a formula for the distance between the focus and the point (𝑥, 𝑦).  

 √(𝑥 − 0)2 + (𝑦 −
1
2
𝑝)

2

 

 Find a formula for the distance between (𝑥, 𝑦) and the directrix. 

 𝑦 +
1
2
𝑝 

 By the definition of a parabola, these distances are equal.  Create 

an equation. 

 𝑦 +
1
2
𝑝 = √(𝑥 − 0)2 + (𝑦 −

1
2
𝑝)

2

 

 Solve the equation for 𝑦.   

 Start by squaring both sides.  When you expand the 

squared binomials, the 𝑦2 and 
1

4
𝑝2 terms drop out of 

the equation.  You may need to provide some 

additional scaffolding for students who are still not 

fluent with expanding binomial expressions.  

 𝑦 +
1

2
𝑝 

2

= 𝑥2 +  𝑦 −
1

2
𝑝 

2

 

 𝑦 +
1

2
𝑝 

2

−  𝑦 −
1

2
𝑝 

2

= 𝑥2 

𝑦2 + 𝑝𝑦 +
1

4
𝑝2 − 𝑦2 + 𝑝𝑦 −

1

4
𝑝 = 𝑥2 

2𝑝𝑦 = 𝑥2 

𝑦 =
1

2𝑝
𝑥2 

 Therefore, 𝑃 = {(𝑥, 𝑦)| 𝑦 =
1
2𝑝

𝑥2}. 

 How does this result verify the conjecture that as 𝑝 increases, the parabola gets flatter?  (Note to teacher:  

Now is a good time to demonstrate with the applet  

http://www.intmath.com/plane-analytic-geometry/parabola-interactive.php.) 

 We can confirm the conjecture that the graph of a parabola vertically shrinks as 𝑝 increases because 

the expression 
1

2𝑝
 will get smaller as 𝑝 gets larger; thus, the parabola appears flatter. 

 

Discussion  (3 minutes) 

The goal of this brief discussion is to introduce the vertex form of the equation of a parabola without going through the 

entire derivation of the formula and to make the connection between what we are doing now with parabolas and what 

was done in Algebra I, Module 2, Topic B with quadratic functions.  Completing the square on any quadratic function  

𝑦 = 𝑓(𝑥) produces the equation of a parabola in vertex form, which could then be quickly graphed since the coordinates 

of the vertex and distance 𝑝 from focus to directrix are known. 

Scaffolding: 

As an alternative to Example 1, use graphing 

software to explore the relationship 

between the distance between the focus 

and directrix, and the coefficient of 𝑥2.  

Organize the results in a table like the one 

shown below, and ask students to generalize 

the patterns they are seeing. 

Equation Focus Directrix 

Distance 

from focus 

to directrix 

𝑦 =
1

2
𝑥2  0,

1

2
  𝑦 = −

1

2
 1 

𝑦 =
1

4
𝑥2 (0,1) 𝑦 = −1 2 

𝑦 =
1

6
𝑥2  0,

3

2
  𝑦 = −

3

2
 3 

𝑦 =
1

8
𝑥2 (0, 2) 𝑦 = −2 4 

𝑦 =
1

2𝑝
𝑥2  0,

1

2
𝑝  𝑦 = −

1

2
𝑝 𝑝 

  

 

MP.7 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://www.intmath.com/plane-analytic-geometry/parabola-interactive.php


 
 
 
 
 

 

    NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 34 

ALGEBRA II 

Lesson 34: Are All Parabolas Congruent? 
 
 

 

388 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Discussion 

We have shown that any parabola with a distance 𝒑 > 𝟎 between the focus (𝟎,
𝟏
𝟐
𝒑) and directrix 𝒚 = −

𝟏
𝟐
𝒑 has a vertex 

at the origin and is represented by a quadratic equation of the form 𝒚 =
𝟏
𝟐𝒑

𝒙𝟐. 

Suppose that the vertex of a parabola with a horizontal directrix that opens upward is (𝒉, 𝒌), and the distance from the 

focus to directrix is 𝒑 > 𝟎.  Then, the focus has coordinates (𝒉, 𝒌 +
𝟏
𝟐
𝒑), and the directrix has equation 𝒚 = 𝒌 −

𝟏
𝟐
𝒑.  If 

we go through the above derivation with  focus (𝒉, 𝒌 +
𝟏
𝟐
𝒑) and directrix 𝒚 = 𝒌 −

𝟏
𝟐
𝒑, we should not be surprised to get 

a quadratic equation.  In fact, if we complete the square on that equation, we can write it in the form  

𝒚 =
𝟏
𝟐𝒑

(𝒙 − 𝒉)𝟐 + 𝒌.  

In Algebra I, Module 4, Topic B, we saw that any quadratic function can be put into vertex form:  𝒇(𝒙) = 𝒂(𝒙 − 𝒉)𝟐 + 𝒌.  

Now we see that any parabola that opens upward can be described by a quadratic function in vertex form, where 𝒂 =
𝟏
𝟐𝒑

.  

If the parabola opens downward, then the equation is 𝒚 = −
𝟏
𝟐𝒑

(𝒙 − 𝒉)𝟐 + 𝒌, and the graph of any quadratic equation of 

this form is a parabola with vertex at (𝒉, 𝒌), distance 𝒑 between focus and directrix, and opening downward.  Likewise, 

we can derive analogous equations for parabolas that open to the left and right.  This discussion is summarized in the box 

below.  

 

  

Vertex Form of a Parabola 

Given a parabola 𝑷 with vertex (𝒉, 𝒌), horizontal directrix, and distance 𝒑 > 𝟎 between focus and directrix, the 

analytic equation that describes the parabola 𝑷 is 

 𝒚 =
𝟏
𝟐𝒑

(𝒙 − 𝒉)𝟐 + 𝒌 if the parabola opens upward, and  

 𝒚 = −
𝟏
𝟐𝒑

(𝒙 − 𝒉)𝟐 + 𝒌 if the parabola opens downward.  

Conversely, if 𝒑 > 𝟎, then 

 The graph of the quadratic equation 𝒚 =
𝟏
𝟐𝒑

(𝒙 − 𝒉)𝟐 + 𝒌 is a parabola that opens upward with vertex at 

(𝒉, 𝒌) and distance 𝒑 from focus to directrix, and 

 The graph of the quadratic equation 𝒚 = −
𝟏
𝟐𝒑

(𝒙 − 𝒉)𝟐 + 𝒌 is a parabola that opens downward with 

vertex at (𝒉, 𝒌) and distance 𝒑 from focus to directrix. 

Given a parabola 𝑷 with vertex (𝒉, 𝒌), vertical directrix, and distance 𝒑 > 𝟎 between focus and directrix, the 

analytic equation that describes the parabola 𝑷 is 

 𝒙 =
𝟏
𝟐𝒑

(𝒚 − 𝒌)𝟐 + 𝒉 if the parabola opens to the right, and  

 𝒙 = −
𝟏
𝟐𝒑

(𝒚 − 𝒌)𝟐 + 𝒉 if the parabola opens to the left.  

Conversely, if 𝒑 > 𝟎, then 

 The graph of the quadratic equation 𝒙 =
𝟏
𝟐𝒑

(𝒚 − 𝒌)𝟐 + 𝒉 is a parabola that opens to the right with 

vertex at (𝒉, 𝒌) and distance 𝒑 from focus to directrix, and 

 The graph of the quadratic equation 𝒙 = −
𝟏
𝟐𝒑

(𝒚 − 𝒌)𝟐 + 𝒉 is a parabola that opens to the left with 

vertex at (𝒉, 𝒌) and distance 𝒑 from focus to directrix. 
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Example 2  (8 minutes)  

The goal of this section is to present and prove the theorem that all parabolas that have the same distance from the 

focus to the directrix (that is, the same value of 𝑝) are congruent.  Start by having students sketch the parabola defined 

by the focus and directrix on the diagram shown on the student pages. 

 

Example 2 

THEOREM:  Given a parabola 𝑷 given by a directrix 𝑳 and a focus 𝑭 in 

the Cartesian plane, then 𝑷 is congruent to the graph of 𝒚 =
𝟏
𝟐𝒑

𝒙𝟐, 

where 𝒑 is the distance from 𝑭 to 𝑳. 

 

 

 

 

 

A more concrete approach also appears below and could be used as an alternative approach to the formal proof or as a 

precursor to the formal proof.  If this additional scaffolding is provided, this lesson may need to extend to an additional 

day to provide time to prove the theorem below rather than just demonstrate it by the examples provided in the 

scaffolds. 

The following examples provide concrete evidence to support the proof provided on the next pages.  Use this before or 

after the proof based on the needs of students.  Print graphs of these parabolas on paper.  Then, print the graph of 

𝑦 =
1
2
𝑥2 on a transparency.  Use this to help students understand the rigid transformations that map the given parabola 

onto 𝑦 =
1
2
𝑥2. 

 The graphs of 𝑦 =
1
2
𝑥2 (in blue) and another parabola (in red) are shown in each coordinate plane.  Describe a 

series of rigid transformations that map the red parabola onto the graph of 𝑦 =
1
2
𝑥2. 

 

 There are many sequences of transformations that can take the red parabola to the blue one.  For the 

graphs on the left, translate the red graph one unit vertically up and one unit to the left, then reflect the 

resulting graph about the 𝑥-axis.  For the graphs on the right, rotate the graph 90° counter-clockwise 

about the point (−3,0), then translate the graph 3 units to the right. 
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 Suppose we changed the distance between the focus and the directrix to 2 units instead of 1, and then 

mapped the given parabolas onto the graph of 𝑦 =
1
4
𝑥2.  Would the resulting graphs be the same?  Why? 

 The resulting graphs would be the same since the distance between the focus and the directrix for the 

parabola 𝑦 =
1
4
𝑥2 is 2 units.  The parabolas would map exactly onto the parabola whose vertex is 

(0,0). 

 Under what conditions would two parabolas be congruent?  How could you verify this using transformations 

that map one parabola onto the other? 

 If the distance between the focus and the directrix is the same, then the two parabolas will be 

congruent.  You could describe a series of rotations, reflections, and/or translations that will map one 

parabola onto the other.  These rigid transformations preserve the size and shape of the graph and 

show that the two figures are congruent. 

  

PROOF 

Let 𝑨 be the point on the perpendicular line to 𝑳 that passes 

through 𝑭, which is the midpoint of the line segment between 

𝑭 and 𝑳. 

 

Translate 𝑨 to the origin 𝑨′ = (𝟎, 𝟎) using a translation.  

Then, 𝑭 translates to 𝑭′ and 𝑳 translates to 𝑳′. 

Next, rotate 𝑭′ and 𝑳′ about (𝟎, 𝟎) until 𝑭′′ = (𝟎,
𝟏
𝟐
𝒑) and  

𝑳′′ = {(𝒙, 𝒚)| 𝒚 = −
𝟏
𝟐
𝒑}.  We are guaranteed we can do this 

because 𝑨′ is on the line perpendicular to 𝑳′ that passes 

through 𝑭′. 

 

The translations described above are shown below. 

 

 

 

 

 

 

 

 

 

Since 𝑷 is determined by 𝑭 and 𝑳, the first translation takes 𝑷 to a parabola 𝑷′ such that 𝑷 ≅ 𝑷′.  The rotation takes 𝑷′ to 

a parabola 𝑷′′ such that 𝑷′ ≅ 𝑷′′.  Therefore, 𝑷 ≅ 𝑷′′ by transitivity. 

Now, by Example 1 above,  

𝑷′′ = {(𝒙, 𝒚)| 𝒚 =
𝟏

𝟐𝒑
𝒙𝟐} ; 

that is, 𝑷′′ is the graph of the equation 𝒚 =
𝟏
𝟐𝒑

𝒙𝟐, which is what we wanted to prove. 
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Depending on the level of students, begin with the scaffold examples using 𝑦 =
1
2
𝑥2; the proof of this theorem can be 

presented directly, or students can try to work through the proof with some scaffolding and support. 

Consider these discussion questions to help students get started with thinking about a proof if  they  work collaboratively 

in small groups to create a proof. 

 How can we apply transformations to show that every parabola is congruent to 𝑦 =
1
2𝑝

𝑥2, where 𝑝 is the 

distance between the focus and the directrix? 

 The parabola’s vertex is (0,0).  We could translate any parabola so that its vertex is also (0,0). 

 Then we would need to rotate the parabolas so that the directrix is a horizontal line and the focus is a 

point along the 𝑦-axis. 

The teacher may need to remind students that translations and rotations are rigid transformations and, therefore, 

guarantee that the parabolas determined by the focus and directrix as they are translated and rotated remain the same 

shape and size.  For more information, see Module 1 from high school Geometry. 

 

Exercises 6–9  (4 minutes):  Reflecting on the Theorem 

Have students respond individually and then share within their groups.  Post a few responses on the board for a whole 

class debrief, and correct any misconceptions at that point. 

 

Exercises 6–9:  Reflecting on the Theorem 

6. Restate the results of the theorem from Example 2 in your own words. 

All parabolas that have the same distance between the focus point and the directrix are congruent. 

 

7. Create the equation for a parabola that is congruent to 𝒚 = 𝟐𝒙𝟐.  Explain how you determined your answer. 

𝒚 = 𝟐𝒙𝟐 + 𝟏.  As long as the coefficient of the 𝒙𝟐 term is the same, the parabolas will be congruent. 

 

8. Create an equation for a parabola that IS NOT congruent to 𝒚 = 𝟐𝒙𝟐.  Explain how you determined your answer. 

𝒚 = 𝒙𝟐.  As long as the coefficient of the 𝒙𝟐 term is different, the parabolas will not be congruent. 

 

9. Write the equation for two different parabolas that are congruent to the parabola with focus point (𝟎, 𝟑) and 

directrix line 𝒚 = −𝟑. 

The distance between the focus and the directrix is 𝟔 units.  Therefore, any parabola with a coefficient of  
𝟏

𝟐𝒑
=

𝟏

𝟐(𝟔)
=

𝟏

𝟏𝟐
 will be congruent to this parabola.  Here are two options:  𝒚 =

𝟏
𝟏𝟐

𝒙𝟐 + 𝟏 and 𝒙 =
𝟏
𝟏𝟐

𝒚𝟐. 
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Closing  (2 minutes) 

Revisit the conjecture from the beginning of this lesson:  Under what conditions are two parabolas congruent?  Give 

students time to reflect on this question in writing before reviewing the points listed below.  Summarize the following 

key points as this lesson is wrapped up.  In the next lesson, students consider whether or not all parabolas are similar.  

This lesson has established that given a distance 𝑝 between the directrix and focus, all parabolas with equal values of 𝑝 

are congruent to the parabola that is the graph of the equation 𝑦 =
1
2𝑝

𝑥2. 

 The points of a parabola are determined by the directrix and a focus. 

 Every parabola is congruent to a parabola defined by a focus on the 𝑦-axis and a directrix that is parallel to the 

𝑥-axis. 

 All parabolas that have the same distance between the focus and the directrix are congruent. 

 When the focus is at (0,
1
2
𝑝) and the directrix is given by the equation 𝑦 = −

1
2
𝑝, then the parabola is the 

graph of the equation 𝑦 =
1
2𝑝

𝑥2. 

 When the vertex is at (ℎ, 𝑘), and the distance from the focus to directrix is 𝑝 > 0, then: 

– If it opens upward, the parabola is the graph of the equation 𝑦 =
1
2𝑝

(𝑥 − ℎ)2 + 𝑘; 

– If it opens downward, the parabola is the graph of the equation 𝑦 = −
1
2𝑝

(𝑥 − ℎ)2 + 𝑘;  

– If it opens to the right, the parabola is the graph of the equation 𝑥 =
1
2𝑝

(𝑦 − 𝑘)2 + ℎ;  

– If it opens to the left, the parabola is the graph of the equation 𝑥 = −
1
2𝑝

(𝑦 − 𝑘)2 + ℎ. 

 

Exit Ticket  (4 minutes)  
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Name                                   Date                          

Lesson 34:  Are All Parabolas Congruent? 

 
Exit Ticket 
 

Which parabolas shown below are congruent to the parabola that is the graph of the equation 𝑦 =
1
12

𝑥2?  Explain how 

you know. 

a.  b.  c.  
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Exit Ticket Sample Solutions 

 

Which parabolas shown below are congruent to the parabola that is the graph of the equation 𝒚 =
𝟏
𝟏𝟐

𝒙𝟐?  Explain how 

you know. 

The 𝒑-value is 𝟔.  So, any parabola where the distance between the focus and the directrix is equal to 𝟔 units will be 

congruent to the parabola that is the graph of the equation 𝒚 =
𝟏
𝟏𝟐

𝒙𝟐.  Of the parabolas shown below, (a) and (c) meet 

this condition, but (b) does not. 

a.  b.  c.  

 
 
Problem Set Sample Solutions 

Problems 1–9 in this Problem Set review how to create the analytic equation of a parabola.  Students may use the 

process from the previous lesson or use the vertex form of the equation of a parabola included in this lesson.  Starting 

with Problem 10, the focus of the Problem Set shifts to recognizing when parabolas are congruent. 

 

1. Show that if the point with coordinates (𝒙, 𝒚) is equidistant from (𝟒, 𝟑), and the line 𝒚 = 𝟓, then 𝒚 = −
𝟏
𝟒
𝒙𝟐 + 𝟐𝒙. 

Students might start with the equation √(𝒙 − 𝟒)𝟐 + (𝒚 − 𝟑)𝟐 = 𝟓 − 𝒚 and solve for 𝒚 as follows: 

√(𝒙 − 𝟒)𝟐 + 𝒚𝟐 − 𝟔𝒚 + 𝟗 = 𝟓− 𝒚 

(𝒙 − 𝟒)𝟐 + 𝒚𝟐 − 𝟔𝒚 + 𝟗 = 𝟐𝟓 − 𝟏𝟎𝒚 + 𝒚𝟐 

(𝒙 − 𝟒)𝟐 = −𝟒𝒚 + 𝟏𝟔 

𝟒𝒚 = −(𝒙 − 𝟒)𝟐 + 𝟏𝟔 

𝒚 = −
𝟏

𝟒
(𝒙𝟐 − 𝟖𝒙 + 𝟏𝟔) + 𝟒 

𝒚 = −
𝟏

𝟒
𝒙𝟐 + 𝟐𝒙. 

Or, they might apply what we have learned about the vertex form of the equation of a parabola.  Since the directrix 

is above the focus, we know the parabola opens downward, so 𝒑 will be negative.  Since the distance from the point 
(𝟒, 𝟑) to the line 𝒚 = 𝟓 is 𝟐 units, we know that 𝒑 = −𝟐.  The vertex is halfway between the focus and directrix, so 

the coordinates of the vertex are (𝟒, 𝟒).  Then, the vertex form of the equation that represents the parabola is 

𝒚 = −
𝟏

𝟒
(𝒙 − 𝟒)𝟐 + 𝟒 

𝒚 = −
𝟏

𝟒
𝒙𝟐 + 𝟐𝒙. 
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2. Show that if the point with coordinates (𝒙, 𝒚) is equidistant from the point (𝟐, 𝟎) and the line 𝒚 = −𝟒, then  

𝒚 =
𝟏
𝟖
(𝒙 − 𝟐)𝟐 − 𝟐. 

Students might start with the equation √(𝒙 − 𝟐)𝟐 + (𝒚 − 𝟎)𝟐 = 𝒚 + 𝟒, and then solve it for 𝒚, or they might apply 

the vertex form of the equation of a parabola.  Since the vertex is above the directrix, we know that the parabola 

opens upward, and 𝒑 > 𝟎.  Since the distance from the point (𝟐, 𝟎) to the line 𝒚 = −𝟒 is 𝟒 units, we know that  

𝒑 = 𝟒.  The vertex is halfway between the focus and directrix, so the vertex is (𝟐,−𝟐).  Thus, the equation that 

represents the parabola is 𝒚 =
𝟏
𝟖
(𝒙 − 𝟐)𝟐 − 𝟐. 

 

3. Find the equation of the set of points which are equidistant from (𝟎, 𝟐) and the 𝒙-axis.  Sketch this set of points. 

The focus is (𝟎, 𝟐), and the directrix is the 𝒙-axis.  Thus, the vertex is the 

point (𝟎, 𝟏), which is halfway between the vertex and directrix.  Since 

the parabola opens upward, 𝒑 > 𝟎, so 𝒑 = 𝟐.  Then, the vertex form of 

the equation of the parabola is 

𝒚 =
𝟏

𝟒
𝒙𝟐 + 𝟏. 

 

 

 

 

 

4. Find the equation of the set of points which are equidistant from the origin and the line 𝒚 = 𝟔.  Sketch this set of 

points. 

𝒚 = −
𝟏

𝟏𝟐
𝒙𝟐 + 𝟑 

 

 

 

 

 

 

 

 

5. Find the equation of the set of points which are equidistant from (𝟒,−𝟐) and the line 𝒚 = 𝟒.  Sketch this set of 

points. 

𝒚 = −
𝟏

𝟏𝟐
(𝒙 − 𝟒)𝟐 + 𝟏 
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6. Find the equation of the set of points which are equidistant from (𝟒, 𝟎) and the 𝒚-axis.  Sketch this set of points. 

𝒙 =
𝟏

𝟖
𝒚𝟐 + 𝟐 

 

 

 

 

 

 

 

 

7. Find the equation of the set of points which are equidistant from the origin and the line 𝒙 = −𝟐.  Sketch this set of 

points. 

𝒙 =
𝟏

𝟒
𝒚𝟐 − 𝟏 

 

 

 

 

 

 

8. Use the definition of a parabola to sketch the parabola defined by the given focus and directrix. 

a. Focus:  (𝟎, 𝟓) Directrix:  𝒚 = −𝟏 

 

 

 

 

 

 

 

 

 

 

b. Focus:  (−𝟐, 𝟎) Directrix:  𝒚-axis 
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c. Focus:  (𝟒,−𝟒) Directrix:  𝒙-axis 

 

 

 

 

 

 

 

 

d. Focus:  (𝟐, 𝟒) Directrix:  𝒚 = −𝟐 

 

 

 

 

 

 

 

 

 

9. Find an analytic equation for each parabola described in Problem 8. 

a. 𝑷 = {(𝒙, 𝒚) | 𝒚 =
𝟏
𝟏𝟐

𝒙𝟐 + 𝟐}; thus, 𝑷 is the graph of the equation 𝒚 =
𝟏
𝟏𝟐

𝒙𝟐 + 𝟐. 

b. 𝑷 = {(𝒙, 𝒚) | 𝒙 = −
𝟏
𝟒
𝒚𝟐 − 𝟏}; thus, 𝑷 is the graph of the equation 𝒙 = −

𝟏
𝟒
𝒚𝟐 − 𝟏. 

c. 𝑷 = {(𝒙, 𝒚) | 𝒚 = −
𝟏
𝟖
(𝒙 − 𝟒)𝟐 − 𝟐}; thus, 𝑷 is the graph of the equation 𝒚 = −

𝟏
𝟖
(𝒙 − 𝟒)𝟐 − 𝟐. 

d. 𝑷 = {(𝒙, 𝒚) | 𝒚 =
𝟏
𝟏𝟐

(𝒙 − 𝟐)𝟐 + 𝟏}; thus, 𝑷 is the graph of the equation 𝒚 =
𝟏
𝟏𝟐

(𝒙 − 𝟐)𝟐 + 𝟏. 

 

10. Are any of the parabolas described in Problem 9 congruent?  Explain your reasoning. 

(a) 𝒑 = 𝟔, (b) 𝒑 = 𝟐, (c) 𝒑 = 𝟒, and (d) 𝒑 = 𝟔; therefore, the parabolas in parts (a) and (d) are congruent because 

they have the same distance between the focus and directrix.   

 

11. Sketch each parabola, labeling its focus and directrix. 

Each sketch should have the appropriate vertex, focus, and directrix and be fairly accurate.  Sketches for parts (a) 

and (c) are shown. 

 

a. 𝒚 =
𝟏
𝟐
𝒙𝟐 + 𝟐 

Distance between focus and directrix is 𝟏 unit, vertex (𝟎, 𝟐), 

focus (𝟎, 𝟐. 𝟓), directrix 𝒚 = 𝟏. 𝟓 
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b. 𝒚 = −
𝟏
𝟒
𝒙𝟐 + 𝟏 

Distance between focus and directrix is 𝟐 units, vertex (𝟎, 𝟏), focus (𝟎, 𝟎), directrix 𝒚 = 𝟐 

 

c. 𝒙 =
𝟏
𝟖
𝒚𝟐 

Distance between focus and directrix is 𝟒 units, vertex (𝟎, 𝟎), 

focus (𝟐, 𝟎), directrix 𝒙 = −𝟐 

 

 

 

 

 

 

 

 

 

d. 𝒙 =
𝟏
𝟐
𝒚𝟐 + 𝟐 

Distance between focus and directrix is 𝟏 unit, vertex (𝟐, 𝟎), focus (𝟐. 𝟓, 𝟎), directrix 𝒙 = 𝟏. 𝟓 

 

e. 𝒚 =
𝟏
𝟏𝟎

(𝒙 − 𝟏)𝟐 − 𝟐 

Distance between focus and directrix is 𝟓 units, vertex (𝟏, −𝟐), focus (𝟏, 𝟎. 𝟓), directrix 𝒚 = −𝟒.𝟓 
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12. Determine which parabolas are congruent to the parabola with equation 𝒚 = −
𝟏
𝟒
𝒙𝟐. 

a.  c. 

  

 

 

 

 

 

 

 

b.                                                     d.                                                       

 

 

 

 

 

 

 

Parabolas (a), (b), and (c) are congruent because all have 𝒑 = 𝟐.  Parabola (d) has 𝒑 = 𝟏, so it is not congruent to 

the others. 

 

13. Determine which equations represent the graph of a parabola 

that is congruent to the parabola shown to the right. 

a. 𝒚 =
𝟏
𝟐𝟎

𝒙𝟐 

b. 𝒚 =
𝟏
𝟏𝟎

𝒙𝟐 + 𝟑 

c. 𝒚 = −
𝟏
𝟐𝟎

𝒙𝟐 + 𝟖 

d. 𝒚 =
𝟏
𝟓
𝒙𝟐 + 𝟓 

e. 𝒙 =
𝟏
𝟏𝟎

𝒚𝟐 

f. 𝒙 =
𝟏
𝟓
(𝒚 − 𝟑)𝟐 

g. 𝒙 =
𝟏
𝟐𝟎

𝒚𝟐 + 𝟏 

 

The parabolas in parts (a), (c), and (g) are congruent and are congruent to the parabola shown.  They all have the 

same distance of 𝟏𝟎 units between the focus and the directrix like the parabola shown. 
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14. Jemma thinks that the parabola with equation 𝒚 =
𝟏
𝟑
𝒙𝟐 is NOT congruent to the parabola with equation  

𝒚 = −
𝟏
𝟑
𝒙𝟐 + 𝟏.  Do you agree or disagree?  Create a convincing argument to support your reasoning.   

Jemma is wrong.  These two parabolas are congruent.  If you translate the graph of 𝒚 = −
𝟏
𝟑
𝒙𝟐 + 𝟏 down one unit 

and then reflect the resulting graph about the 𝒙-axis, the resulting parabola will have equation 𝒚 =
𝟏
𝟑
𝒙𝟐.  

Alternately, the focus and directrix of each parabola are the same distance apart, 𝟏. 𝟓 units. 

 

15. Let 𝑷 be the parabola with focus (𝟐, 𝟔) and directrix 𝒚 = −𝟐. 

a. Write an equation whose graph is a parabola congruent to 𝑷 with focus (𝟎, 𝟒). 

The equation 𝒚 =
𝟏
𝟏𝟔

𝒙𝟐 is one option.  The directrix for this parabola is 𝒚 = −𝟒.  Another possible solution 

would be the parabola with focus (𝟎, 𝟒) and directrix 𝒚 = 𝟏𝟐.  The equation would be 𝒚 = −
𝟏
𝟏𝟔

𝒙𝟐 + 𝟖. 

 

b. Write an equation whose graph is a parabola congruent to 𝑷 with focus (𝟎, 𝟎). 

𝒚 =
𝟏

𝟏𝟔
𝒙𝟐 − 𝟒 

 

c. Write an equation whose graph is a parabola congruent to 𝑷 with the same directrix but different focus. 

The focus would be a reflection of the original focus across the directrix, or (𝟐, −𝟏𝟎).  The equation would be 

𝒚 = −
𝟏
𝟏𝟔

(𝒙 − 𝟐)𝟐 − 𝟔. 

 

d. Write an equation whose graph is a parabola congruent to 𝑷 with the same focus but with a vertical directrix. 

𝒙 =
𝟏

𝟏𝟔
(𝒚 − 𝟔)𝟐 − 𝟐  or  𝒙 = −

𝟏

𝟏𝟔
(𝒚 − 𝟔)𝟐 + 𝟖 

 

16. Let 𝑷 be the parabola with focus (𝟎, 𝟒) and directrix 𝒚 = 𝒙. 

a. Sketch this parabola. 

The sketch is shown to the right. 

 

b. By how many degrees would you have to rotate 𝑷 about the 

focus to make the directrix line horizontal? 

One possible answer is a clockwise rotation of 𝟒𝟓°. 

 

c. Write an equation in the form 𝒚 =
𝟏
𝟐𝒂

𝒙𝟐 whose graph is a 

parabola that is congruent to 𝑷. 

The distance between the focus and the directrix is 𝟐√𝟐.  The equation is 𝒚 =
𝟏

𝟒√𝟐
𝒙𝟐. 

 

d. Write an equation whose graph is a parabola with a vertical directrix that is congruent to 𝑷. 

Since the exact focus and directrix are not specified, there are infinitely many possible parabolas.  A vertical 

directrix does require that the 𝒚-term be squared.  Thus, 𝒙 =
𝟏

𝟒√𝟐
𝒚𝟐 satisfies the conditions specified in the 

problem.   
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e. Write an equation whose graph is 𝑷′, the parabola congruent to 𝑷 that results after 𝑷 is rotated clockwise 

𝟒𝟓° about the focus. 

The directrix will be 𝒚 = 𝟒 − 𝟐√𝟐.  The equation is 𝒚 =
𝟏

𝟒√𝟐
𝒙𝟐 + 𝟒− √𝟐. 

 

f. Write an equation whose graph is 𝑷′′, the parabola congruent to 𝑷 that results after the directrix of 𝑷 is 

rotated 𝟒𝟓° about the origin. 

The focus will be (𝟐√𝟐, 𝟐√𝟐), and the directrix will be the 𝒙-axis.  The equation is 𝒚 =
𝟏

𝟒√𝟐
(𝒙 − 𝟐√𝟐)

𝟐
+ √𝟐. 

 

Extension: 

17. Consider the function 𝒇(𝒙) =
𝟐𝒙𝟐−𝟖𝒙+𝟗

−𝒙𝟐+𝟒𝒙−𝟓
, where 𝒙 is a real number.   

a. Use polynomial division to rewrite 𝒇 in the form 𝒇(𝒙) = 𝒒 +
𝒓

−𝒙𝟐+𝟒𝒙−𝟓
 for some real numbers 𝒒 and 𝒓. 

Using polynomial division, 𝒇(𝒙) = −𝟐 +
−𝟏

−𝒙𝟐+𝟒𝒙−𝟓
. 

 

b. Find the 𝒙-value where the maximum occurs for the function 𝒇 without using graphing technology.  Explain 

how you know.  

We can rewrite 𝒇 as 𝒇(𝒙) = −𝟐 +
𝟏

𝒙𝟐−𝟒𝒙+𝟓
.  Since 𝒙𝟐 − 𝟒𝒙 + 𝟓 = (𝒙 − 𝟐)𝟐 + 𝟏, the graph of  

𝒚 = 𝒙𝟐 − 𝟒𝒙 + 𝟓 is a parabola with vertex (𝟐, 𝟏) that opens upward.  Thus, the lowest point on the graph is 

(𝟐, 𝟏).  The function 𝒇 will take on its maximum value when 
𝟏

𝒙𝟐−𝟒𝒙+𝟓
 is maximized; this happens when the 

value of 𝒙𝟐 − 𝟒𝒙 + 𝟓 is minimized.  Since we have already seen that 𝒙𝟐 − 𝟒𝒙 + 𝟓 is minimized at 𝒙 = 𝟐, the 

expression 
𝟏

𝒙𝟐−𝟒𝒙+𝟓
 takes on its maximum value when 𝒙 = 𝟐, and, thus, the original function 𝒇 takes on its 

maximum value when 𝒙 = 𝟐. 
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Lesson 35:  Are All Parabolas Similar?  

 
Student Outcomes 

 Students apply the geometric transformation of dilation to show that all parabolas are similar.  

 

Lesson Notes 

In the previous lesson, students used transformations to prove that all parabolas with the same distance between the 

focus and directrix are congruent.  In the process, they made a connection between geometry, coordinate geometry, 

transformations, equations, and functions.  In this lesson, students explore how dilation can be applied to prove that all 

parabolas are similar. 

Students may express disagreement with or confusion about the claim that all parabolas are similar because the various 

graphical representations of parabolas they have seen do not appear to have the “same shape.”  Because a parabola is 

an open figure as opposed to a closed figure, like a triangle or quadrilateral, it is not easy to see similarity among 

parabolas.  Students must understand that similar is strictly defined via similarity transformations; in other words, two 

parabolas are similar if there is a sequence of translations, rotations, reflections, and dilations that takes one parabola to 

the other.  In the last lesson, students saw that every parabola is congruent to the graph of the equation  

𝑦 =
1

2𝑝
𝑥2 for some 𝑝 > 0; in this lesson, students need only consider dilations of parabolas in this form.  

When students claim that two parabolas are not similar, they should be reminded that the parts of the parabolas they 

are looking at may well appear to be different in size or magnification, but the parabolas themselves are not different in 

shape.  Remind students that similarity is established by dilation; in other words, by magnifying a figure in both the 

horizontal and vertical directions.  By analogy, although circles with different radii have different curvature, every 

student should agree that any circle can be dilated to be the same size and shape as any other circle; thus, all circles are 

similar. 

Quadratic curves such as parabolas belong to a family of curves known as conic sections.  The technical term in 

mathematics for how much a conic section deviates from being circular is eccentricity, and two conic sections with the 

same eccentricity are similar.  Circles have eccentricity 0, and parabolas have eccentricity 1.  After this lesson, consider 

asking students to research and write a report on eccentricity. 

 

Classwork 

Provide graph paper for students as they work the first seven exercises.  They first 

examine three congruent parabolas and then make a conjecture about whether 

or not all parabolas are similar.  Finally, they explore this conjecture by graphing 

parabolas of the form 𝑦 = 𝑎𝑥2 that have different 𝑎-values. 

  

 

Scaffolding: 

 Allow students access to graphing 

calculators or software to focus on 

conceptual understanding if they 

are having difficulty sketching the 

graphs. 

 Consider providing students with 

transparencies with a variety of 

parabolas drawn on them (as in 

prior lesson), such as 𝑦 = 𝑥2,  

𝑦 =
1
2

𝑥2, and 𝑦 =
1
4

𝑥2 to help 

them illustrate these principles. 
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Exercises 1–7  (4 minutes) 

 

Exercises 1–8 

1. Write equations for two parabolas that are congruent to the parabola given by 𝒚 = 𝒙𝟐, and explain how you 

determined your equations.   

(Student answers will vary.)  The parabolas given by 𝒚 = (𝒙 − 𝟐)𝟐 and 𝒚 = 𝒙𝟐 − 𝟑 are congruent to the parabola 

given by 𝒚 = 𝒙𝟐. The first parabola is translated horizontally to the right by two units and the second parabola is 

translated down by 3 units, so they each are congruent to the original parabola.   

 

2. Sketch the graph of 𝒚 = 𝒙𝟐 and the two parabolas you created on the same coordinate axes. 

 

3. Write the equation of two parabolas that are NOT congruent to 𝒚 = 𝒙𝟐.  Explain how you determined your 

equations. 

(Student answers will vary.) By our work in the previous lesson, we know that the equation any parabola can be 

written in the form 𝒚 =
𝟏

𝟐𝒑
(𝒙 − 𝒉)𝟐 + 𝒌, and that two parabolas are congruent if and only if their equations have 

the same value of |𝒑|.  Then the parabolas 𝒚 = 𝟐𝒙𝟐 and 𝒚 =
𝟏

𝟐
𝒙𝟐 are both not congruent to the parabola given by 

𝒚 = 𝒙𝟐. 

 

4. Sketch the graph of 𝒚 = 𝒙𝟐 and the two non-congruent parabolas you created on the same coordinate axes. 
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5. What does it mean for two triangles to be similar?  How do we use geometric transformation to determine if two 

triangles are similar? 

Two triangles are similar if we can transform one onto the other by a sequence of rotations, reflections, translations 

and dilations.  

 

6. What would it mean for two parabolas to be similar?  How could we use geometric transformation to determine if 

two parabolas are similar? 

Two parabolas should be similar if we can transform one onto the other by a sequence of rotations, reflections, 

translations and dilations.  

 

7. Use your work in Exercises 1–6 to make a conjecture:  Are all parabolas similar?  Explain your reasoning. 

(Student answers will vary.)  It seems that any pair of parabolas should be similar because we can line up the 

vertices through a sequence of rotations, reflections and translations, then we should be able to dilate the width of 

one parabola to match the other.   

 

Discussion 

After students have examined the fact 

that when the 𝑎-value in the equation 

of the parabola is changed, the 

resulting graph is basically the same 

shape, this point can be further 

emphasized by exploring the graph of 

𝑦 = 𝑥2 on a graphing calculator or 

graphing program on the computer.  

Use the same equation but different 

viewing windows so students can see 

that an image can be created of what 

appears to be a different parabola by 

transforming the dimensions of the 

viewing window.  However, the images 

are just a dilation of the original that is 

created when the scale is changed.  

See the images to the right.  Each 

figure is a graph of the equation  

𝑦 = 𝑥2 with different scales on the 

horizontal and vertical axes.  
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Exercise 8  (5 minutes) 

In this exercise, students derive the analytic equation for a parabola given its graph, focus, and directrix.  Students have 

worked briefly with parabolas with a vertical directrix in previous lessons, so this exercise is an opportunity for the 

teacher to assess whether or not students are able to transfer and extend their thinking to a slightly different situation. 

 

8. The parabola at right is the graph of which equation? 

a. Label a point (𝒙, 𝒚) on the graph of 𝑷. 

 

b. What does the definition of a parabola tell us about the 

distance between the point (𝒙, 𝒚) and the directrix 𝑳, and the 

distance between the point (𝒙, 𝒚) and the focus 𝑭? 

Let (𝒙, 𝒚) be any point on the graph of 𝑷.  Then, these 

distances are equal because 𝑷 = {(𝒙, 𝒚)|(𝒙, 𝒚) is equidistant 

from 𝑭 and 𝑳}. 

 

c. Create an equation that relates these two distances. 

Distance from (𝒙, 𝒚) to 𝑭:  √(𝒙 − 𝟐)𝟐 + (𝒚 − 𝟎)𝟐 

Distance from (𝒙, 𝒚) to 𝑳:  𝒙 + 𝟐  

Therefore, any point on the parabola has coordinates (𝒙, 𝒚) that satisfy √(𝒙 − 𝟐)𝟐 + (𝒚 − 𝟎)𝟐 = 𝒙 + 𝟐. 

 

d. Solve this equation for 𝒙. 

The equation can be solved as follows.  

√(𝒙 − 𝟐)𝟐 + (𝒚 − 𝟎)𝟐 = 𝒙 + 𝟐 

(𝒙 − 𝟐)𝟐 + 𝒚𝟐 = (𝒙 + 𝟐)𝟐 

𝒙𝟐 − 𝟒𝒙 + 𝟒 + 𝒚𝟐 = 𝒙𝟐 + 𝟒𝒙 + 𝟒 

𝒚𝟐 = 𝟖𝒙 

𝒙 =
𝟏

𝟖
𝒚𝟐 

Thus, 

𝑷 = {(𝒙, 𝒚) | 𝒙 =
𝟏
𝟖

𝒚𝟐}.  

 

e. Find two points on the parabola 𝑷, and show that they satisfy the equation found in part (d). 

By observation, (𝟐, 𝟒) and (𝟐, −𝟒) are points on the graph of 𝑷.  Both points satisfy the equation that defines 

𝑷. 

(𝟐, 𝟒):      
𝟏

𝟖
(𝟒)𝟐 =

𝟏𝟔

𝟖
= 𝟐 

(𝟐, −𝟒):      
𝟏

𝟖
(−𝟒)𝟐 =

𝟏𝟔

𝟖
= 𝟐 
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Discussion  (8 minutes) 

After giving students time to work through Exercises 1–8, ask the following questions to revisit concepts from Algebra I, 

Module 3. 

 In the previous exercise, is 𝑃 a function of 𝑥? 

 No, because the 𝑥-value 2 corresponds to two 𝑦-values. 

 Is 𝑃 a function of 𝑦? 

 Yes, if we take 𝑦 to be in the domain and 𝑥 to be in the range, then each 𝑦-value on 𝑃 corresponds to 

exactly one 𝑥-value, which is the definition of a function. 

These two questions remind students that just because we typically use the variable 𝑥 to represent the domain element 

of an algebraic function, this does not mean that it must always represent the domain element. 

Next, transition to summarizing what was learned in the last two lessons.  We have defined a parabola and determined 

the conditions required for two parabolas to be congruent.  Use the following questions to summarize these ideas. 

 What have we learned about the definition of a parabola? 

 The points on a parabola are equidistant from the directrix and the focus. 

 What transformations can be applied to a parabola to create a parabola congruent to the original one? 

 If the directrix and the focus are transformed by a rigid motion (e.g., translation, rotation, or reflection), 

then the new parabola defined by the transformed directrix and focus will be congruent to the original. 

Essentially, every parabola that has a distance of 𝑝 units between its focus and directrix is congruent to a parabola with 

focus (0,
1
2

𝑝) and directrix 𝑦 = −
1
2

𝑝.  What is the equation of this parabola? 

𝑃 = {(𝑥, 𝑦)| 𝑦 =
1

2𝑝
𝑥2} 

Thus, all parabolas that have the same distance between the focus and the directrix are congruent. 

The family of graphs given by the equation 𝑦 =
1

2𝑝
𝑥2 for 𝑝 > 0 describes the set of non-congruent parabolas, one for 

each value of 𝑝. 

Ask students to consider the question from the lesson title.  Chart responses to revisit at the end of this lesson to 

confirm or refute their claims. 

 

Discussion 

Do you think that all parabolas are similar?  Explain why you think so. 

Yes, they all have the same basic shape.  

 

What could we do to show that two parabolas are similar?  How might you show this? 

Since every parabola can be transformed into a congruent parabola by applying one or more rigid transformations, 

perhaps similar parabolas can be created by applying a dilation which is a non-rigid transformation.   

 

To check to see if all parabolas are similar, it only needs to be shown that any parabola that is the graph of 𝑦 =
1

2𝑝
𝑥2 for 

𝑝 > 0 is similar to the graph of 𝑦 = 𝑥2.  This is done through a dilation by some scale factor 𝑘 > 0 at the origin (0,0).   
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Note that a dilation of the graph of a function is the same as performing a horizontal 

scaling followed by a vertical scaling that students studied in Algebra I, Module 3. 

 

Exercises 9–12  (8 minutes) 

The following exercises review the function transformations studied in Algebra I that are 

required to define dilation at the origin.  These exercises provide students with an 

opportunity to recall what they learned in a previous course so that they can apply it here.  

Students must read points on the graphs to determine that the vertical scaling is by a 

factor of 2 for the graphs on the left and by a factor of 
1

2
 for the graphs on the right.  In 

Algebra I, Module 3, students saw that the graph of a function can be transformed with a 

non-rigid transformation in two ways:  vertical scaling and horizontal scaling.  

A vertical scaling of a graph by a scale factor 𝑘 > 0 takes every point (𝑥, 𝑦) on the graph 

of 𝑦 = 𝑓(𝑥) to (𝑥, 𝑘𝑦).  The result of the transformation is given by the graph of  

𝑦 = 𝑘𝑓(𝑥). 

A horizontal scaling of a graph by a scale factor 𝑘 > 0 takes every point (𝑥, 𝑦) on the 

graph of 𝑦 = 𝑓(𝑥) to (𝑘𝑥, 𝑦).  The result of the transformation is given by the graph of 𝑦 = 𝑓 (
1
𝑘

𝑥).  

 

Exercises 9–12 

Use the graphs below to answer Exercises 9 and 10. 

 

9. Suppose the unnamed red graph on the left coordinate plane is the graph of a function 𝒈.  Describe 𝒈 as a vertical 

scaling of the graph of 𝒚 = 𝒇(𝒙); that is, find a value of 𝒌 so that 𝒈(𝒙) = 𝒌𝒇(𝒙).  What is the value of 𝒌?  Explain 

how you determined your answer. 

The graph of 𝒈 is a vertical scaling of the graph of 𝒇 by a factor of 𝟐.  Thus, 𝒈(𝒙) = 𝟐𝒇(𝒙).  By comparing points on 

the graph of 𝒇 to points on the graph of 𝒈, you can see that the 𝒚-values on 𝒈 are all twice the 𝒚-values on 𝒇. 

 

10. Suppose the unnamed red graph on the right coordinate plane is the graph of a function 𝒉.  Describe 𝒉 as a vertical 

scaling of the graph of 𝒚 = 𝒇(𝒙); that is, find a value of 𝒌 so that 𝒉(𝒙) = 𝒌𝒇(𝒙).  Explain how you determined your 

answer. 

The graph of 𝒉 is a vertical scaling of the graph of 𝒇 by a factor of 
𝟏

𝟐
.  Thus, 𝒉(𝒙) =

𝟏
𝟐

𝒇(𝒙).  By comparing points on 

the graph of 𝒇 to points on the graph of 𝒉, you can see that the 𝒚-values on 𝒉 are all half of the 𝒚-values on 𝒇. 

Scaffolding: 

 Allow students access to 

graphing calculators or 

software to focus on 

conceptual understanding 

if they are having difficulty 

sketching the graphs. 

 The graphs shown in 

Exercises 9 and 10 are 

𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = 2𝑥2, 

and ℎ(𝑥) =
1
2

𝑥2.  The 

graphs shown in Exercises 

11 and 12 are 𝑓(𝑥) = 𝑥2, 

𝑔(𝑥) = (
1
2

𝑥)
2

, and 

ℎ(𝑥) = (2𝑥)2. 
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Use the graphs below to answer Exercises 11–12. 

 

 

11. Suppose the unnamed function graphed in red on the left coordinate plane is 𝒈.  Describe 𝒈 as a horizontal scaling 

of the graph of 𝒚 = 𝒇(𝒙).  What is the value of the scale factor 𝒌?  Explain how you determined your answer. 

The graph of 𝒈 is a horizontal scaling of the graph of 𝒇 by a factor of 𝟐.  Thus, 𝒈(𝒙) = 𝒇 (
𝟏
𝟐

𝒙).  By comparing points 

on the graph of 𝒇 to points on the graph of 𝒈, you can see that for the same 𝒚-values, the 𝒙-values on 𝒈 are all twice 

the 𝒙-values on 𝒇. 

 

12. Suppose the unnamed function graphed in red on the right coordinate plane is 𝒉.  Describe 𝒉 as a horizontal scaling 

of the graph of 𝒚 = 𝒇(𝒙).  What is the value of the scale factor 𝒌?  Explain how you determined your answer. 

The graph of 𝒉 is a horizontal scaling of the graph of 𝒇 by a factor of 
𝟏

𝟐
.  Thus, 𝒉(𝒙) = 𝒇(𝟐𝒙).  By comparing points 

on the graph of 𝒇 to points on the graph of 𝒉, you can see that for the same 𝒚-values, the 𝒙-values on 𝒉 are all half 

of the 𝒙-values on 𝒇. 

 

When these exercises are debriefed, model marking up the diagrams to illustrate the vertical and horizontal scaling.  A 

sample is provided below. 

Marked up diagrams for vertical scaling in Exercises 9 and 10: 
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Definition:  A dilation at the origin 𝑫𝒌 is a horizontal scaling by 𝒌 > 𝟎 followed by a vertical scaling by the same 

factor 𝒌.  In other words, this dilation of the graph of 𝒚 = 𝒇(𝒙) is the graph of the equation 𝒚 = 𝒌𝒇 (
𝟏
𝒌

𝒙).   

Marked up diagrams for horizontal scaling in Exercises 11 and 12: 

 

After working through Exercises 9–12, pose the following discussion question. 

 If a dilation by scale factor 𝑘 involves both horizontal and vertical scaling by a factor of 𝑘, how could we 

express the dilation of the graph of 𝑦 = 𝑓(𝑥)? 

 You could combine both types of scaling.  Thus, 𝑦 = 𝑘𝑓 (
1
𝑘

𝑥). 

Explain the definition of dilation at the origin as a combination of a horizontal and then vertical scaling by the same 

factor.  Exercises 1–3 in the Problem Set will address this idea further. 

 

 

It is important for students to clearly understand that this dilation of the graph of 𝑦 = 𝑓(𝑥) is the graph of the equation  

𝑦 = 𝑘𝑓 (
1
𝑘

𝑥).  Remind students of the following two facts that they studied in Geometry:   

1. When one figure is a dilation of another figure, the two figures are similar. 

2. A dilation at the origin is just a particular type of dilation transformation.   

Thus, the graph of 𝑦 = 𝑓(𝑥) is similar to the graph of 𝑦 = 𝑘𝑓 (
1
𝑘

𝑥).  Students may realize here that their thinking about 

“stretching” the graph creating a similar parabola is not quite enough to prove that all parabolas are similar because they 

must consider both a horizontal and vertical dilation in order to connect back to the geometric definition of similar 

figures. 
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Example  (5 minutes):  Dilation at the Origin  

This example helps students gain a level of comfort with the notation and mathematics before moving on to proving that 

all parabolas are similar. 

 

Example:  Dilation at the Origin 

Let 𝒇(𝒙) = 𝒙𝟐 and let 𝒌 = 𝟐.  Write a formula for the function 𝒈 that results from dilating 𝒇 at the origin by a factor of 
𝟏

𝟐
. 

The new function will have equation 𝒈(𝒙) = 𝟐𝒇 (
𝟏
𝟐

𝒙).  Since 𝒇(𝒙) = 𝒙𝟐, the new function will have equation  

𝒈(𝒙) = 𝟐 (
𝟏
𝟐

𝒙)
𝟐

.  That is,  𝒈(𝒙) =
𝟏
𝟐

𝒙𝟐. 

 

What would the results be for 𝒌 = 𝟑, 𝟒, or 𝟓?  What about 𝒌 =
𝟏
𝟐

? 

For 𝒌 = 𝟑, 𝒈(𝒙) =
𝟏
𝟑

𝒙𝟐. 

For 𝒌 = 𝟒, 𝒈(𝒙) =
𝟏
𝟒

𝒙𝟐. 

For 𝒌 = 𝟓, 𝒈(𝒙) =
𝟏
𝟓

𝒙𝟐. 

For 𝒌 =
𝟏
𝟐

, 𝒈(𝒙) = 𝟐𝒙𝟐. 

 

After working through this example, the following questions help prepare 

students for the upcoming proof using a general parabola from the earlier 

discussion. 

 Based on this example, what can you conclude about these parabolas? 

 They are all similar to one another because they represent 

dilations of the graph at the origin of the original function. 

 Based on this example, what can you conclude about these parabolas? 

 Is this enough information to prove ALL parabolas are similar? 

 No, we have only proven that these specific parabolas are 

similar. 

 How could we prove that all parabolas are similar? 

 We would have to use the patterns we observed here to make a 

generalization and algebraically show that it works in the same 

way. 

  

Scaffolding: 

Some students might find this 

derivation easier if the parabola  

𝑦 = 𝑎𝑥2 is used.  Then, the proof would 

be as follows: 

If 𝑓(𝑥) = 𝑎𝑥2, then the graph of 𝑓 is 

similar to the graph of the equation  

𝑦 = 𝑘 (𝑎 (
1

𝑘
𝑥))

2

. 

Simplifying the right side gives 

𝑦 =
𝑎
𝑘

𝑥2. 

This new parabola should be similar to 

𝑦 = 𝑥2, which it will be if 
𝑎

𝑘
= 1.  

Therefore, let 𝑎 = 𝑘.  Thus, dilating the 

graph of 𝑦 = 𝑎𝑥2about the origin by a 

factor of 𝑎, students see that this 

parabola is similar to 𝑦 = 𝑥2. 

To further support students, supply 

written reasons, such as those provided, 

as these steps are worked through on 

the board.   
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Discussion  (8 minutes):  Prove All Parabolas Are Similar  

In this discussion, work through a dilation at the origin of a general parabola with equation 𝑦 =
1

2𝑝
𝑥2 to transform it to a 

basic parabola with equation 𝑦 = 𝑥2 by selecting the appropriate value of 𝑘.  At that point, it can be argued that all 
parabolas are similar.  Walk through the outline below slowly, and ask the class for input at each step, but expect that 
much of this discussion will be teacher-centered.  For students not ready to show this result at an abstract level, have 
them work in small groups to show that a few parabolas, such as 

𝑦 =
1
2

𝑥2, 𝑦 = 4𝑥2, and 𝑦 =
1
8

𝑥2, 

are similar to 𝑦 = 𝑥2 by finding an appropriate dilation about the origin.  Then, generalize from these examples in the 

following discussion. 

 Recall from Lesson 34 that any parabola is congruent to an “upright” parabola of the form 𝑦 =
1

2𝑝
𝑥2, where 𝑝 

is the distance between the vertex and directrix.  That is, given any parabola we can rotate, reflect and 

translate it so that it has its vertex at the origin and axis of symmetry along the 𝑦-axis.  We now want to show 

that all parabolas of the form 𝑦 =
1

2𝑝
𝑥2 are similar to the parabola 𝑦 = 𝑥2.  To do this, we apply a dilation at 

the origin to the parabola 𝑦 =
1

2𝑝
𝑥2.  We just need to find the right value of 𝑘 for the dilation.  

 Recall that the graph of 𝑦 = 𝑓(𝑥) is similar to the graph of 𝑦 = 𝑘𝑓 (
1
𝑘

𝑥).   

If 𝑓(𝑥) =
1

2𝑝
𝑥2, then the graph of 𝑓 is similar to the graph of the equation 𝑦 = 𝑘𝑓 (

1
𝑘

𝑥) = 𝑘 (
1

2𝑝
(

1
𝑘

𝑥)
2

), which 

simplifies to 𝑦 =
1

2𝑝𝑘
𝑥2. 

We want to find the value of 𝑘 that dilates the graph of 𝑓(𝑥) =
1

2𝑝
𝑥2 into 𝑦 = 𝑥2.  That is, we need to choose the 

dilation factor 𝑘 so that 𝑦 =
1

2𝑝
𝑥2 becomes 𝑦 = 𝑥2; therefore, we want 

1

2𝑝𝑘
= 1.  Solving this equation for 𝑘 gives  

𝑘 =
1

2𝑝
. 

 Therefore, if we dilate the parabola 𝑦 =
1

2𝑝
𝑥2 about the origin by a factor of 

1

2𝑝
, we have  

𝑦 = 𝑘𝑓 (
1

𝑘
𝑥) 

= 𝑘 (
1

2𝑝
(

1

𝑘
𝑥)

2

) 

=
1

2𝑝𝑘
𝑥2 

= 𝑥2. 

Thus, we have shown that the original parabola is similar to 𝑦 = 𝑥2.  
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 In the previous lesson, we showed that any parabola is congruent to a parabola given by 𝑦 =
1

2𝑝
𝑥2 for some 

value of 𝑝.  Now, we have shown that every parabola with equation of the form 𝑦 =
1

2𝑝
𝑥2 is similar to our 

basic parabola given by 𝑦 = 𝑥2.  Then, any parabola in the plane is similar to the basic parabola given by  

𝑦 = 𝑥2. 

 Further, all parabolas are similar to each other because we have just shown that they are all similar to the 

same parabola. 

 

Closing  (3 minutes) 

Revisit the title of this lesson by asking students to summarize what they learned about the reason why all parabolas are 

similar.  Then, take time to bring closure to this cycle of three lessons.  The work students have engaged in has drawn 

together three different domains:  geometry, algebra, and functions.  In working through these examples and exercises 

and engaging in the discussions presented here, students can gain an appreciation for how mathematics can model real-

world scenarios.  The past three lessons show the power of using algebra and functions to solve problems in geometry. 

Combining the power of geometry, algebra, and functions is one of the most powerful techniques available to solve 

science, technology and engineering problems. 

 

 

 

Exit Ticket  (4 minutes) 

 

  

Lesson Summary 

 We started with a geometric figure of a parabola defined by geometric requirements and recognized 

that it involved the graph of an equation we studied in algebra. 

 We used algebra to prove that all parabolas with the same distance between the focus and directrix are 

congruent to each other, and in particular, they are congruent to a parabola with vertex at the origin, 

axis of symmetry along the 𝒚-axis, and equation of the form 𝒚 =
𝟏

𝟐𝒑
𝒙𝟐. 

 Noting that the equation for a parabola with axis of symmetry along the 𝒚-axis is of the form 𝒚 = 𝒇(𝒙) 

for a quadratic function 𝒇, we proved that all parabolas are similar using transformations of functions. 
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Name                                   Date                          

Lesson 35:  Are All Parabolas Similar? 

 
Exit Ticket 
 

1. Describe the sequence of transformations that transform the parabola 𝑃𝑥  into the similar parabola 𝑃𝑦. 

    

Graph of 𝑃𝑥                Graph of 𝑃𝑦 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Are the two parabolas defined below similar or congruent or both?  Justify your reasoning. 

 

Parabola 1:  The parabola with a focus of (0,2) and a directrix line of 𝑦 = −4 

Parabola 2:  The parabola that is the graph of the equation 𝑦 =
1
6

𝑥2 
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Exit Ticket Sample Solutions 

 

1. Describe the sequence of transformations that would transform the parabola 𝑷𝒙 into the similar parabola 𝑷𝒚. 

 Graph of 𝑷𝒙 Graph of 𝑷𝒚 

 

Vertical scaling by a factor of 
𝟏

𝟐
, vertical translation up 𝟑 units, and a 𝟗𝟎° rotation clockwise about the origin 

 

2. Are the two parabolas defined below similar or congruent or both? 

 

Parabola 1:  The parabola with a focus of (𝟎, 𝟐) and a directrix line of 𝒚 = −𝟒 

Parabola 2:  The parabola that is the graph of the equation 𝒚 =
𝟏
𝟔

𝒙𝟐 

They are similar but not congruent because the distance between the focus and the directrix on Parabola 1 is 𝟔 units, 

but on Parabola 2, it is only 𝟑 units.  Alternatively, students may describe that you cannot apply a series of rigid 

transformations that will map Parabola 1 onto Parabola 2.  However, by using a dilation and a series of rigid 

transformations, the two parabolas can be shown to be similar since ALL parabolas are similar. 

 
 
Problem Set Sample Solutions 

 

1. Let (𝒙) = √𝟒 − 𝒙𝟐.  The graph of 𝒇 is shown below.  On the same axes, graph the function 𝒈, where  

𝒈(𝒙) = 𝒇 (
𝟏
𝟐

𝒙).  Then, graph the function 𝒉, where 𝒉(𝒙) = 𝟐𝒈(𝒙). 

 

MP.3 
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2. Let 𝒇(𝒙) = −|𝒙| + 𝟏.  The graph of 𝒇 is shown below.  On the same axes, graph the function 𝒈, where  

𝒈(𝒙) = 𝒇 (
𝟏
𝟑

𝒙).  Then, graph the function 𝒉, where 𝒉(𝒙) = 𝟑𝒈(𝒙). 

 

 

3. Based on your work in Problems 1 and 2, describe the resulting function when the original function is transformed 

with a horizontal and then a vertical scaling by the same factor, 𝒌. 

The resulting function is scaled by a factor of 𝒌 in both directions.  It is a dilation about the origin of the original 

figure and is similar to it. 

 

4. Let 𝒇(𝒙) = 𝒙𝟐. 

a. What are the focus and directrix of the parabola that is the graph of the function 𝒇(𝒙) = 𝒙𝟐? 

Since 
𝟏

𝟐𝒑
= 𝟏, we know 𝒑 =

𝟏
𝟐
, and that is the distance between the focus and the directrix.  The point (𝟎, 𝟎) 

is the vertex of the parabola and the midpoint of the segment connecting the focus and the directrix.  Since 

the distance between the focus and vertex is 
𝟏

𝟐
𝒑 =

𝟏

𝟒
, which is the same as the distance between the vertex 

and directrix; therefore, the focus has coordinates (𝟎,
𝟏
𝟒

), and the directrix is 𝒚 = −
𝟏
𝟒

. 

 

b. Describe the sequence of transformations that would take the graph of 𝒇 to each parabola described below. 

i. Focus:  (𝟎, −
𝟏
𝟒

), directrix:  𝒚 =
𝟏
𝟒

 

This parabola is a reflection of the graph of 𝒇 across the 𝒙-axis. 

 

ii. Focus:  (
𝟏
𝟒

, 𝟎), directrix:  𝒙 = −
𝟏
𝟒

 

This parabola is a 𝟗𝟎° clockwise rotation of the graph of 𝒇. 

 

iii. Focus:  (𝟎, 𝟎), directrix:  𝒚 = −
𝟏
𝟐

 

This parabola is a vertical translation of the graph of 𝒇 down 
𝟏

𝟒
 unit. 

 

iv. Focus:  (𝟎,
𝟏
𝟒

), directrix:  𝒚 = −
𝟑
𝟒

 

This parabola is a vertical scaling of the graph of 𝒇 by a factor of 
𝟏

𝟐
 and a vertical translation of the 

resulting image down 
𝟏

𝟒
 unit. 
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v. Focus:  (𝟎, 𝟑), directrix: 𝒚 = −𝟏 

This parabola is a vertical scaling of the graph of 𝒇 by a factor of 
𝟏

𝟖
 and a vertical translation of the 

resulting image up 𝟏 unit. 

 

c. Which parabolas are similar to the parabola that is the graph of 𝒇?  Which are congruent to the parabola that 

is the graph of 𝒇? 

All of the parabolas are similar.  We have proven that all parabolas are similar.  The congruent parabolas are 

(i), (ii), and (iii).  These parabolas are the result of a rigid transformation of the original parabola that is the 

graph of 𝒇.  They have the same distance between the focus and directrix line as the original parabola. 

 

5. Derive the analytic equation for each parabola described in Problem 4(b) by applying your knowledge of 

transformations. 

i. 𝒚 = −𝒙𝟐  

ii. 𝒙 = 𝒚𝟐 

iii. 𝒚 = 𝒙𝟐 −
𝟏
𝟒

 

iv. 𝒚 =
𝟏
𝟐

𝒙𝟐 −
𝟏
𝟒

 

v. 𝒚 =
𝟏
𝟖

𝒙𝟐 + 𝟏 

 

6. Are all parabolas the graph of a function of 𝒙 in the 𝒙𝒚-plane?  If so, explain why, and if not, provide an example (by 

giving a directrix and focus) of a parabola that is not.   

No, they are not.  Examples include the graph of the equation 𝒙 = 𝒚𝟐, or a list stating a directrix and focus.  For 

example, students may give the example of a directrix given by 𝒙 = −𝟐 and focus (𝟐, 𝟎),  or an even more 

interesting example, such as a directrix given by 𝒚 = 𝒙 with focus (𝟏, −𝟏).  Any line and any point not on that line 

define a parabola. 

 

7. Are the following parabolas congruent?  Explain your reasoning. 

 

They are not congruent, but they are similar.  I can see that the parabola on the left appears to contain the point 

(𝟏, 𝟏), while the parabola on the right appears to contain the point (𝟏,
𝟏
𝟐

).  This implies that the graph of the 

parabola on the right is a dilation of the graph of the parabola on the left, so they are not congruent. 
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8. Are the following parabolas congruent?  Explain your reasoning. 

 

They are congruent.  Both graphs contain the points (𝟎, 𝟎), (𝟏, 𝟏), and (𝟐, 𝟒) that satisfy the equation 𝒚 = 𝒙𝟐.  The 

scales are different on these graphs, making them appear non-congruent. 

 

9. Write the equation of a parabola congruent to 𝒚 = 𝟐𝒙𝟐 that contains the point (𝟏, −𝟐).  Describe the 

transformations that would take this parabola to your new parabola. 

There are many solutions.  Two possible solutions: 

Reflect the graph about the 𝒙-axis to get 𝒚 = −𝟐𝒙𝟐. 

OR 

Translate the graph down four units to get 𝒚 = 𝟐𝒙𝟐 − 𝟒. 

 

10. Write the equation of a parabola similar to 𝒚 = 𝟐𝒙𝟐 that does NOT contain the point (𝟎, 𝟎) but does contain the 

point (𝟏, 𝟏). 

Since all parabolas are similar, as established in the lesson, any parabola that passes through (𝟏, 𝟏) and not (𝟎, 𝟎) is 

a valid response.  One solution is 𝒚 = (𝒙 − 𝟏)𝟐 + 𝟏.  This parabola is congruent to 𝒚 = 𝒙𝟐 and, therefore, similar to 

the original parabola, but the graph has been translated horizontally and vertically to contain the point (𝟏, 𝟏) but 

not the point (𝟎, 𝟎). 
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Lesson 36:  Overcoming a Third Obstacle to Factoring—

What If There Are No Real Number Solutions? 

 
Student Outcomes 

 Students understand the possibility that there might be no real number solution to an equation or system of 

equations.  Students identify these situations and make the appropriate geometric connections. 

 

Lesson Notes 

Lessons 36–40 provide students with the necessary tools to find solutions to polynomial equations outside the realm of 

the real numbers.  This lesson illustrates how to both analytically and graphically identify a system of equations that has 

no real number solution.  In the next lesson, the imaginary unit 𝑖 is introduced, and students begin to work with complex 

numbers through the familiar geometric context of rotation.  Students realize that the set of complex numbers inherits 

the arithmetic and algebraic properties from the real numbers.  The work with complex solutions to polynomial 

equations in these lessons culminates with the fundamental theorem of Algebra in Lesson 40, the final lesson in this 

module.  

 

Classwork  

Opening  (1 minutes) 

This lesson illustrates how to identify a system of equations that has no real number solution, both graphically and 

analytically.  In this lesson, students explore systems of equations that have no real number solutions.  

 

Opening Exercise 1  (5 minutes) 

Instruct students to complete the following exercise individually and then to pair up with a partner after a few minutes 

to compare their answers.  Allow students to search for solutions analytically or graphically as they choose.  After a few 

minutes, ask students to share their answers and solution methods.  Both an analytic and a graphical solution should be 

presented for each system, either by a student or by the teacher if all students used the same approach.  Circulate while 

students are working, and take note of which students are approaching the question analytically and which are 

approaching the question graphically.   
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Opening Exercise  

Find all solutions to each of the systems of equations below using any method.   

 

All three systems have no real number solutions, which is evident from the non-intersecting graphs in each.  Instead of 

graphing the systems, students may have used an analytic approach such as the approach outlined in the Discussion 

below.  

 

 

Discussion  (10 minutes) 

Ask students to explain their reasoning for each of the three systems in the Opening Exercise with both approaches 

shown for each part, allowing six students the opportunity to present their solutions to the class.  It is important to go 

through both the analytical and graphical approaches for each system so that students draw the connection between 

graphs that do not intersect and systems that have no analytic solution.  Be sure to display the graph of each system of 

equations as students are led through this discussion. 

Part (a): 

 Looking at the graphs of the equations in the first system, 2𝑥 − 4𝑦 = −1 and 3𝑥 − 6𝑦 = 4, how can we tell 

that the system has no solution? 

 The two lines never intersect.   

 The two lines are parallel. 

 Using an algebraic approach, how can we tell that there is no solution? 

 If we multiply both sides of the top equation by 3 and the bottom equation by 2, we see that an 

equivalent system can be written. 

6𝑥 − 12𝑦 = −3 

6𝑥 − 12𝑦 = 8 

Subtracting the first equation from the second results in the false number sentence 

0 = 11. 

Thus, there are no real numbers 𝑥 and 𝑦 that satisfy both equations.  

  

𝒚 = 𝒙𝟐 − 𝟐 

𝒚 = 𝟐𝒙 − 𝟓 

𝒙𝟐 + 𝒚𝟐 = 𝟏 

𝒙𝟐 + 𝒚𝟐 = 𝟒 
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 The graphs of these equations are lines.  What happens if we put them in slope-intercept form? 

 Rewriting both linear equations in slope-intercept form, the system from part (a) can be written as 

𝑦 =
1

2
𝑥 +

1

4
 

𝑦 =
1

2
𝑥 −

2

3
. 

From what we know about graphing lines, the lines associated to these equations have the same slope 

and different 𝑦-intercepts, so they will be parallel.  Since parallel lines do not intersect, the lines have no 

points in common and, therefore, this system has no solution. 

Part (b): 

 Looking at the graphs of the equations in the second system, 𝑦 = 𝑥2 − 2 and = 2𝑥 − 5 , how can we tell that 

the system has no solution? 

 The line and the parabola never intersect.   

 Can we confirm, algebraically, that the system in part (b) has no real solution? 

 Yes.  Since 𝑦 = 𝑥2 − 2 and 𝑦 = 2𝑥 − 5, we must have 𝑥2 − 2 = 2𝑥 − 5, which is equivalent to the  

quadratic equation 𝑥2 − 2𝑥 + 3 = 0.  Solving for 𝑥 using the quadratic formula, we get  

𝑥 =
−(−2) ± √(−2)2 − 4(1)(3) 

2(1)
= 1 ±

√−8

2
. 

Since the square root of a negative real number is not a real number, there is no real number 𝑥 that 

satisfies the equation 𝑥2 − 2𝑥 + 3 = 0; therefore, there is no point in the plane with coordinates (𝑥, 𝑦) 

that satisfies both equations in the original system. 

Part (c): 

 Looking at the graphs of the equations in the final system, 𝑥2 + 𝑦2 = 1 and 𝑥2 + 𝑦2 = 4, how can we tell that 

there the system has no solution? 

 The circles are concentric, meaning that they have the same center and different radii.  Thus, they never 

intersect, and there are no points that lie on both circles. 

 Can we algebraically confirm that the system in part (c) has no solution? 

 Yes.  If we try to solve this system, we could subtract the first equation from the second, giving the false 

number sentence 0 = 3.  Since this statement is false, we know that there are no values of 𝑥 and 𝑦 that 

satisfy both equations simultaneously; thus, the system has no solution.  

At this point, ask students to summarize in writing or with a partner what they have learned so far.  Use this brief 

exercise as an opportunity to check for understanding. 

 

Exercise 1  (4 minutes)  

Have students work individually and then check their answers with a partner.  Make sure they write out their steps as 

they did in the sample solutions.  After a few minutes, invite students to share one or two solutions on the board.  
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Exercises 1–4  

1. Are there any real number solutions to the system 𝒚 = 𝟒 and 𝒙𝟐 + 𝒚𝟐 = 𝟐?  Support your findings both analytically 

and graphically.  

𝒙𝟐 + (𝟒)𝟐 = 𝟐 

𝒙𝟐 + 𝟏𝟔 = 𝟐 

𝒙𝟐 = −𝟏𝟒 

Since 𝒙𝟐 is non-negative for all real numbers 𝒙, there 

are no real numbers 𝒙 so that 𝒙𝟐 = −𝟏𝟒.  Then, there 

is no pair of real numbers (𝒙, 𝒚) that solves the system 

consisting of the line 𝒚 = 𝟒 and the circle  𝒙𝟐 + 𝒚𝟐 =

𝟐.  Thus, the line 𝒚 = 𝟒 does not intersect the circle 

𝒙𝟐 + 𝒚𝟐 = 𝟐 in the real plane.  This is confirmed 

graphically as follows.  

 

 

Discussion  (7 minutes) 

This lesson does not mention complex numbers or complex solutions; those are 

introduced in the next lesson.  Make sure students understand that analytical findings can 

be confirmed graphically and vice-versa.  Students turn their focus to quadratic equations 

in one variable 𝑥 without real solutions and to how the absence of any real solution 𝑥 can 

be confirmed by graphing a system of equations with two variables 𝑥 and 𝑦. 

 

Present students with the following graphs of parabolas: 

 Remember that a parabola with a vertical axis of symmetry is the graph of an equation of the form  

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 for some real number coefficients 𝑎, 𝑏, and 𝑐 with 𝑎 ≠ 0.  We can consider the solutions of 

the quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 to be the 𝑥-coordinates of solutions to the system of equations  

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 and 𝑦 = 0.  Thus, when we are investigating whether a quadratic equation 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 has a solution, we can think of this as finding the 𝑥-intercepts of the graph of  

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. 

 Which of these three parabolas are represented by a quadratic equation 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 that has no 

solution to 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0?  Explain how you know. 

 Because the parabola has no 𝑥-intercepts, we know that there are no solutions to the associated 

equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. 

Parabola 1 Parabola 2 Parabola 3 

𝑥2 + 5 = 0 

𝑥2 − 4 = 0 

𝑥2 + 1 = 0 

𝑥2 − 10 = 0 

Scaffolding: 

Feel free to assign an optional 

extension exercise, such as:  

“Which of these equations will 

have no solution?  Explain how 

you know in terms of a graph.” 

Solution:  𝑥2 + 5 = 0 and  

𝑥2 + 1 = 0 will not have real 

solutions because the graphs of 

the equations 𝑦 = 𝑥2 + 5 and 

𝑦 = 𝑥2 + 1 do not intersect the 

𝑥-axis, the line given by 𝑦 = 0.  
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 Now, consider Parabola 2, which is the graph of the equation 𝑦 = 8 − (𝑥 + 1)2.  How many solutions are there 

to the equation 8 − (𝑥 + 1)2 = 0?  Explain how you know. 

 Because Parabola 2 intersects the 𝑥-axis twice, the system consisting of 𝑦 = 8 − (𝑥 + 1)2 and 𝑦 = 0 

has two real solutions.  The graph suggests that the system will have one positive solution and one 

negative solution. 

 Now, consider Parabola 3, which is the graph of the equation 𝑦 = 𝑥2.  How does the graph tell us how many 

solutions there are to the equation 𝑥2 = 0?  Explain how you know. 

 Parabola 3 touches the 𝑥-axis only at (0, 0), so the parabola and the line with equation 𝑦 = 0 intersect 

at only one point.  Accordingly, the system has exactly one solution, and there is exactly one solution to 

the equation 𝑥2 = 0. 

Pause, and ask students to again summarize what they have learned, either in writing or orally to a neighbor.  Students 

should be making connections between the graph of the quadratic equation 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (which is a parabola), the 

number of 𝑥-intercepts of the graph, and the number of solutions to the system consisting of 𝑦 = 0 and  

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. 

 

Exercises 2–4  (12 minutes) 

Students should work individually or in pairs on these exercises.  To solve these problems analytically, they need to 

understand that they can determine the 𝑥-coordinates of the intersection points of the graphs of these geometric 

figures by solving an equation.  Make sure students are giving their answers to these questions as coordinate pairs.  

Encourage students to solve the problems analytically and verify the solutions graphically. 

 

2. Does the line 𝒚 = 𝒙 intersect the parabola 𝒚 = −𝒙𝟐?  If so, how many times and where?  Draw graphs on the same 

set of axes. 

𝒙 = −𝒙𝟐 

𝒙 + 𝒙𝟐 = 𝟎 

𝒙(𝟏 + 𝒙) = 𝟎 

𝒙 = 𝟎  or  𝒙 = −𝟏 

If 𝒙 = 𝟎, then 𝒚 = −𝒙𝟐 = 𝟎, and if 𝒙 = −𝟏, then 𝒚 = −𝒙𝟐 = −(−𝟏)𝟐 = −𝟏. 

The line 𝒚 = 𝒙 intersects the parabola 𝒚 = −𝒙𝟐 at two distinct points:  (𝟎, 𝟎) and (−𝟏, −𝟏). 

 

  

Scaffolding: 

 Consider having students 

follow along with the 

instructor using a graphing 

calculator to show that the 

graph of 𝑦 = 𝑥 intersects 

the graph of 𝑦 = −𝑥2 

twice, at the points 

indicated. 

 Consider tasking advanced 

students with generating a 

system that meets certain 

criteria.  For example, ask 

them to write the equations 

of a circle and a parabola 

that intersect once at 

(0, 1).  One appropriate 

answer is 𝑥2 + 𝑦2 = 1 and 

𝑦 = 𝑥2 + 1. 
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3. Does the line 𝒚 = −𝒙 intersect the circle 𝒙𝟐 + 𝒚𝟐 = 𝟏?  If so, how many times and where?  Draw graphs on the same 

set of axes. 

𝒙𝟐 + (−𝒙)𝟐 = 𝟏 

𝟐𝒙𝟐 = 𝟏 

𝒙𝟐 =
𝟏

𝟐
 

𝒙 = −
√𝟐

𝟐
  or  𝒙 =

√𝟐

𝟐
 

The line 𝒚 = −𝒙 intersects the circle 𝒙𝟐 + 𝒚𝟐 = 𝟏 at two distinct points:  (−
√𝟐
𝟐

,
√𝟐
𝟐

) and (
√𝟐
𝟐

, −
√𝟐
𝟐

). 

 

 

4. Does the line 𝒚 = 𝟓 intersect the parabola 𝒚 = 𝟒 − 𝒙𝟐?  Why or why not?  Draw the graphs on the same set of axes. 

𝟓 = 𝟒 − 𝒙𝟐 

𝟏 = −𝒙𝟐 

𝒙𝟐 = −𝟏 

A squared real number cannot be negative, so the line 𝒚 = 𝟓 does not intersect the parabola 𝒚 = 𝟒 − 𝒙𝟐. 

 

 

Before moving on, discuss these results as a whole class.  Have students put both graphical and analytical solutions to 

each exercise on the board.  Start to reinforce the connection that when the graphs intersect, the related system of 

equations has real solutions, and when the graphs do not intersect, there are no real solutions to the related system of 

equations. 
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Closing  (2 minutes) 

Have students discuss with their neighbors the key points from today’s lesson.  Encourage them to discuss the 

relationship between the solution(s) to a quadratic equation of the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and the system 

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

𝑦 = 0. 

They should discuss an understanding of the relationship between any solution(s) to a system of two equations and the 

𝑥-coordinate of any point(s) of intersection of the graphs of the equations in the system.  

The Lesson Summary below contains key findings from today’s lesson. 

 

 

 

Exit Ticket  (4 minutes)  

In this Exit Ticket, students show that a particular system of two equations has no real solutions.  They demonstrate this 

both analytically and graphically. 

  

Lesson Summary 

An equation or a system of equations may have one or more solutions in the real numbers, or it may have no real 

number solution.  

Two graphs that do not intersect in the coordinate plane correspond to a system of two equations without a real 

solution.  If a system of two equations does not have a real solution, the graphs of the two equations do not 

intersect in the coordinate plane.  

A quadratic equation in the form 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎, where 𝒂, 𝒃, and 𝒄 are real numbers and 𝒂 ≠ 𝟎, that has no real 

solution indicates that the graph of 𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 does not intersect the 𝒙-axis. 
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Name                                   Date                          

Lesson 36:  Overcoming a Third Obstacle—What If There Are No 

Real Number Solutions? 

 
Exit Ticket 
 

Solve the following system of equations or show that it does not have a real solution.  Support your answer analytically 

and graphically. 

𝑦 = 𝑥2 − 4 

𝑦 = −(𝑥 + 5) 
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Exit Ticket Sample Solutions 

 

Solve the following system of equations, or show that it does not have a real solution.  Support your answer analytically 

and graphically. 

𝒚 = 𝒙𝟐 − 𝟒 

𝒚 = −(𝒙 + 𝟓) 

We distribute over the set of parentheses in the second equation and rewrite the system. 

𝒚 = 𝒙𝟐 − 𝟒 

𝒚 = −𝒙 − 𝟓 

The graph of the system shows a parabola and a line that do not intersect.  As such, we know that the system does not 

have a real solution. 

 
 

 

Algebraically,  

𝒙𝟐 − 𝟒 = −𝒙 − 𝟓 

𝒙𝟐 + 𝒙 + 𝟏 = 𝟎. 

Using the quadratic formula with 𝒂 = 𝟏, 𝒃 = 𝟏, and 𝒄 = 𝟏,   

𝒙 =
−𝟏 + √𝟏𝟐 − 𝟒(𝟏)(𝟏)

𝟐(𝟏)
 or 𝒙 =  

−𝟏 − √𝟏𝟐 − 𝟒(𝟏)(𝟏)

𝟐(𝟏)
 , 

 

which indicates that the solutions would be 
−𝟏+√−𝟑

𝟐
 and 

−𝟏−√−𝟑

𝟐
.   

Since the square root of a negative number is not a real number, there is no real number 𝒙 that solves this equation.  

Thus, the system has no solution (𝒙, 𝒚) where 𝒙 and 𝒚 are real numbers.   
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Problem Set Sample Solutions 

 

1. For each part, solve the system of linear equations, or show that no real solution exists.  Graphically support your 

answer. 

a. 𝟒𝒙 + 𝟐𝒚 = 𝟗 
𝒙 + 𝒚 = 𝟑 

Multiply the second equation by 𝟒. 

𝟒𝒙 + 𝟐𝒚 = 𝟗 

𝟒𝒙 + 𝟒𝒚 = 𝟏𝟐 

 

Subtract the first equation from the second equation. 

𝟐𝒚 = 𝟑 

 

Then 𝒚 =
𝟑
𝟐

 . 

 

Substitute 
𝟑

𝟐
 for 𝒚 in the original second equation. 

𝒙 +
𝟑

𝟐
= 𝟑 

Then 𝒙 =
𝟑
𝟐

. 
 

The lines from the system intersect at the point (
𝟑

𝟐
,

𝟑

𝟐
). 
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b. 𝟐𝒙 − 𝟖𝒚 = 𝟗 
𝟑𝒙 − 𝟏𝟐𝒚 = 𝟎 

Multiply the first equation by 𝟑 and the second equation by 𝟐 on both sides. 

𝟔𝒙 − 𝟐𝟒𝒚 = 𝟐𝟕 

𝟔𝒙 − 𝟐𝟒𝒚 = 𝟎 

Subtracting the new second equation from the first equation gives the false number sentences 𝟐𝟕 = 𝟎.  Thus, 

there is no solution to the system.  The graph of the system appropriately shows two parallel lines. 

 

 

2. Solve the following system of equations, or show that no real solution exists.  Graphically confirm your answer.  

𝟑𝒙𝟐 + 𝟑𝒚𝟐 = 𝟔 
𝒙 − 𝒚 = 𝟑 

We can factor out 𝟑 from the top equation and isolate 𝒚 in the bottom equation to give us a better idea of what the 

graphs of the equations in the system look like.  The first equation represents a circle centered at the origin with 

radius √𝟐, and the second equation 

represents the line 𝒚 = 𝒙 − 𝟑. 

Algebraically, 

𝟑𝒙𝟐 + 𝟑(𝒙 − 𝟑)𝟐 = 𝟔 

𝒙𝟐 + (𝒙 − 𝟑)𝟐 = 𝟐 

𝒙𝟐 + (𝒙𝟐 − 𝟔𝒙 + 𝟗) = 𝟐 

𝟐𝒙𝟐 − 𝟔𝒙 + 𝟕 = 𝟎 

 

We solve for 𝒙 using the quadratic formula: 

𝒂 = 𝟐,   𝒃 = −𝟔,   𝒄 = 𝟕 

𝒙 =
−(−𝟔) ± √(−𝟔)𝟐 − 𝟒(𝟐 ⋅ 𝟕)

𝟐 ⋅ 𝟐
 

𝒙 =
𝟔 ± √𝟑𝟔 − 𝟓𝟔

𝟒
. 

The solutions would be 
𝟔+√−𝟐𝟎

𝟒
  and  

𝟔−√−𝟐𝟎

𝟒
. 

Since both solutions for 𝒙 contain a square root of a negative number, no real solution 𝒙 exists; so the system has no 

solution (𝒙, 𝒚) where 𝒙 and 𝒚 are real numbers. 
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3. Find the value of 𝒌 so that the graph of the following system of equations has no solution. 

𝟑𝒙 − 𝟐𝒚 − 𝟏𝟐 = 𝟎 

𝒌𝒙 + 𝟔𝒚 − 𝟏𝟎 = 𝟎 

First, we rewrite the linear equations in the system in slope-intercept form. 

𝒚 =
𝟑

𝟐
𝒙 − 𝟔 

𝒚 = −
𝒌

𝟔
𝒙 +

𝟏𝟎

𝟔
 

There is no solution to this system when the lines are parallel.  Two lines are parallel when they share the same slope 

and have different 𝒚-intercepts.  Here, the first line has slope 
𝟑

𝟐
 and 𝒚-intercept −𝟔, and the second line has slope 

−
𝒌

𝟔
 and 𝒚-intercept 

𝟏𝟎

𝟔
.  The lines have different 𝒚-intercepts and will be parallel when −

𝒌

𝟔
=

𝟑

𝟐
. 

𝟑

𝟐
= −

𝒌

𝟔
 

𝟐𝒌 = −𝟏𝟖 

𝒌 = −𝟗 

Thus, there is no solution only when 𝒌 = −𝟗. 

 

4. Offer a geometric explanation to why the equation 𝒙𝟐 − 𝟔𝒙 + 𝟏𝟎 = 𝟎 has no real solutions.   

The graph of 𝒚 = 𝒙𝟐 − 𝟔𝒙 + 𝟏𝟎 opens upward (since the leading coefficient is positive) and takes on its lowest value 

at the vertex (𝟑, 𝟏).  Hence, it does not intersect the 𝒙-axis, and, therefore, the equation has no real solutions. 

 

5. Without his pencil or calculator, Joey knows that 𝟐𝒙𝟑 + 𝟑𝒙𝟐 − 𝟏 = 𝟎 has at least one real solution.  How does he 

know? 

The graph of every cubic polynomial function intersects the 𝒙-axis at least once because the end behaviors are 

opposite:  one end goes up and the other goes down.  This means that the graph of any cubic equation  

𝒚 = 𝒂𝒙𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅 must have at least one 𝒙-intercept.  Thus, every cubic equation must have at least one real 

solution.  
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6. The graph of the quadratic equation 𝒚 = 𝒙𝟐 + 𝟏 has no 𝒙-intercepts.  However, Gia claims that when the graph of 

𝒚 = 𝒙𝟐 + 𝟏 is translated by a distance of 𝟏 in a certain direction, the new (translated) graph would have exactly one 

𝒙-intercept.  Further, if 𝒚 = 𝒙𝟐 + 𝟏 is translated by a distance greater than 𝟏 in the same direction, the new 

(translated) graph would have exactly two 𝒙-intercepts.  Support or refute Gia’s claim.  If you agree with her, in 

which direction did she translate the original graph?  Draw graphs to illustrate. 

By translating the graph of 𝒚 = 𝒙𝟐 + 𝟏 DOWN by 𝟏 unit, the new graph has equation 𝒚 = 𝒙𝟐, which has one  

𝒙-intercept at 𝒙 = 𝟎.  When translating the original graph DOWN by more than 𝟏 unit, the new graph will cross the 

𝒙-axis exactly twice.  

 

 

7. In the previous problem, we mentioned that the graph of 𝒚 = 𝒙𝟐 + 𝟏 has no 𝒙-intercepts.  Suppose that 𝒚 = 𝒙𝟐 + 𝟏 

is one of two equations in a system of equations and that the other equation is linear.  Give an example of a linear 

equation such that this system has exactly one solution. 

The line with equation 𝒚 = 𝟏 is tangent to 𝒚 = 𝒙𝟐 + 𝟏 only at (𝟎, 𝟏); so there would be exactly one real solution to 

the system. 

𝒚 = 𝒙𝟐 + 𝟏 

𝒚 = 𝟏 

Another possibility is an equation of any vertical line, such as 𝒙 = −𝟑 or 𝒙 = 𝟒, or 𝒙 = 𝒂 for any real number 𝒂. 

 

8. In prior problems, we mentioned that the graph of 𝒚 = 𝒙𝟐 + 𝟏 has no 𝒙-intercepts.  Does the graph of 𝒚 = 𝒙𝟐 + 𝟏 

intersect the graph of 𝒚 = 𝒙𝟑 + 𝟏? 

Setting these equations together, we can rearrange terms to get 𝒙𝟑 − 𝒙𝟐 = 𝟎, which is an equation we can solve by 

factoring.  We have 𝒙𝟐(𝒙 − 𝟏) = 𝟎, which has solutions at 𝟎 and 𝟏.  Thus, the graphs of these equations intersect 

when 𝒙 = 𝟎 and when 𝒙 = 𝟏.  When 𝒙 = 𝟎, 𝒚 = 𝟏, and when 𝒙 = 𝟏, 𝒚 = 𝟐.  Thus, the two graphs intersect at the 

points (𝟎, 𝟏) and (𝟏, 𝟐). 

The quick answer:  The highest term in both equations has degree 𝟑.  The third-degree term does not cancel when 

setting the two equations (in terms of 𝒙) equal to each other.  All cubic equations have at least one real solution, so 

the two graphs intersect at least at one point.  

MP.3 
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Lesson 37:  A Surprising Boost from Geometry 

 

Student Outcomes  

 Students write a complex number in the form 𝑎 + 𝑏𝑖, where 𝑎 and 𝑏 are real numbers and the imaginary unit 𝑖 

satisfies 𝑖2 = −1.  Students geometrically identify 𝑖 as a multiplicand effecting a 90° counterclockwise rotation 

of the real number line.  Students locate points corresponding to complex numbers in the complex plane.  

 Students understand complex numbers as a superset of the real numbers (i.e., a complex number 𝑎 + 𝑏𝑖 is real 

when 𝑏 = 0).  Students learn that complex numbers share many similar properties of the real numbers:  

associative, commutative, distributive, addition/subtraction, multiplication, etc.   

 

Lesson Notes 

Students first receive an introduction to the imaginary unit 𝑖 and develop an algebraic and geometric understanding of 

the complex numbers (N-CN.A.1).  Notice that at this level, mathematical tools needed to define the complex numbers 

are unavailable just as they are unavailable for defining the real numbers; however, students can describe them, 

understand them, and use them.  The lesson then underscores that complex numbers satisfy the same properties of 

operations as real numbers (N-CN.A.2).  Finally, students perform exercises to reinforce their understanding of and 

facility with complex numbers algebraically.  This lesson ties into the work in the next lesson, which involves complex 

solutions to quadratic equations (N-CN.C.7).  

Students first encounter complex numbers when they classify equations such as 𝑥2 + 1 = 0 as having no real number 

solutions.  At that point, the possibility that a solution exists within a superset of the real numbers called the complex 

numbers is not introduced.  At the end of this module, the idea is briefly introduced that every polynomial 𝑃 of degree 𝑛 

has 𝑛 values 𝑟𝑖  for which 𝑃(𝑟𝑖) = 0, where 𝑛 is a whole number and 𝑟𝑖  is a real or complex number.  Further, in 

preparation for students’ work in Precalculus and Advanced Topics, it is stated (but students are not expected to know) 

that 𝑃 can be written as the product of 𝑛 linear factors, a result known as the fundamental theorem of algebra.  The 

usefulness of complex numbers as solutions to polynomial equations comes with a cost:  While real numbers can be 

ordered (put in order from smallest to greatest), complex numbers cannot be compared.  For example, the complex 

number 
1

2
+ 𝑖

√3

2
 is not larger or smaller than 

√2

2
+ 𝑖

√2

2
.  However, this is a small price to pay.  Students begin to see just 

how important complex numbers are to geometry and computer science in Modules 1 and 2 in Precalculus and 

Advanced Topics.  In college-level science and engineering courses, complex numbers are used in conjunction with 

differential equations to model circular motion and periodic phenomena in two dimensions. 

 

Classwork  

Opening  (1 minute) 

We introduce a geometric context for complex numbers by demonstrating the analogous relationship between rotations 

in the plane and multiplication.  The intention is for students to develop a deep understanding of 𝑖 through geometry.   

 Today, we encounter a new number system that allows us to identify solutions to some equations that have no 

real number solutions.  The complex numbers share many properties with the real numbers with which you 

are familiar.  We take a geometric approach to introducing complex numbers. 
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Opening Exercise  (5 minutes) 

Have students work alone on this motivating Opening Exercise.  This exercise provides the context and invites the 

necessity for introducing an alternative number system, namely the complex numbers.  Go over parts (a), (b), and (c) 

with the class; then, suggest that part (d) may be solvable using an alternative number system.  Have students table this 

thought while beginning a geometrically-oriented discussion.  

 

Opening Exercise  

Solve each equation for 𝒙.   

a. 𝒙 − 𝟏 = 𝟎 𝟏 

b. 𝒙 + 𝟏 = 𝟎 −𝟏 

c. 𝒙𝟐 − 𝟏 = 𝟎 𝟏, −𝟏 

d. 𝒙𝟐 + 𝟏 = 𝟎 No real solution 

 

Discussion  (20 minutes) 

Before beginning, allow students to prepare graph paper for drawing images as the discussion unfolds.  At the close of 

this discussion, have students work with partners to summarize at least one thing they learned; then, provide time for 

some teacher-guided note-taking to capture the definition of the imaginary unit and its connection to geometric 

rotation. 

Recall that multiplying by −1 rotates the number line in the plane by 180° about the point 0.  

 

Pose this interesting thought question to students:  Is there a number we can multiply by that corresponds to a 90° 

rotation? 

  

Scaffolding: 

Demonstrate the rotation 

concept by drawing the 

number line carefully on a 

piece of white paper, drawing 

an identical number line on a 

transparency, putting a pin at 

zero, and rotating the 

transparency to show that the 

number line is rotating.  For 

example, rotate from 2 to −2.  

This, of course, is the same as 

multiplying by −1. 

Scaffolding: 

There were times in the past 

when people would have said 

that an equation such as  

𝑥2 = 2 also had no solution. 
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Students may find that this is a strange question.  First, such a number does not map the number line to itself, so we 

have to imagine another number line that is a 90° rotation of the original: 

 

This is like the coordinate plane.  However, how should we label the points on the vertical axis? 

Well, since we imagined such a number existed, let’s call it the imaginary axis and subdivide it into units of something 

called 𝑖.  Then, the point 1 on the number line rotates to 1 ∙ 𝑖 on the rotated number line and so on, as follows: 
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 What happens if we multiply a point on the vertical number line by 𝑖?  

 We rotate that point by 90° counterclockwise: 

 

When we perform two 90° rotations, it is the same as performing a 180° rotation, so multiplying by 𝑖 twice results in the 

same rotation as multiplying by −1.  Since two rotations by 90° is the same as a single rotation by 180°, two rotations by 

90° is equivalent to multiplication by 𝑖 twice, and one rotation by 180° is equivalent to multiplication by −1,  we have 

𝑖2 ∙ 𝑥 = −1 ∙ 𝑥 

for any real number 𝑥; thus,   

𝑖2 = −1. 

 Why might this new number 𝑖 be useful? 

 Recall from the Opening Exercise that there are no real solutions to the equation 

𝑥2 + 1 = 0. 

However, this new number 𝑖 is a solution. 

(𝑖)2 + 1 = −1 + 1 = 0 

In fact, “solving” the equation 𝑥2 + 1 = 0, we get 

𝑥2 = −1 

√𝑥2 = √−1 

𝑥 = √−1 or 𝑥 = −√−1.  

However, because we know from above that 𝑖2 = −1, and (−𝑖)2 = (−1)2(𝑖)2 = −1, we have two solutions to the 

quadratic equation 𝑥2 = −1, which are 𝑖 and −𝑖. 

These results suggests that 𝑖 = √−1.  That seems a little weird, but this new imagined number 𝑖 already appears to solve 

problems we could not solve before.   

 

MP.2 
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For example, in Algebra I, when we applied the quadratic formula to 

𝑥2 + 2𝑥 + 5 = 0, 

we found that 

𝑥 =
−2+√2

2
−4(1)(5)

2(1)
 or 𝑥 =

−2−√22−4(1)(5)

2(1)
 

𝑥 =
−2+√−16

2
 or 𝑥 =

−2−√−16

2
. 

Recognizing the negative number under the square root, we reported that the equation 𝑥2 + 2𝑥 + 5 = 0 has no real 

solutions.  Now, however, we can write 

√−16 = √16 ⋅ −1 = √16 ⋅ √−1 = 4𝑖. 

Therefore, 𝑥 = −1 + 2𝑖 or 𝑥 = −1 − 2𝑖, which means −1 + 2𝑖 and −1 − 2𝑖 are the solutions to 𝑥2 + 2𝑥 + 5 = 0. 

The solutions −1 + 2𝑖 and −1 − 2𝑖 are numbers called complex numbers, which we can locate in the complex plane.  

 

In fact, all complex numbers can be written in the form 

𝑎 + 𝑏𝑖, 

where 𝑎 and 𝑏 are real numbers.  Just as we can represent real numbers on 

the number line, we can represent complex numbers in the complex plane.  

Each complex number 𝑎 + 𝑏𝑖 can be located in the complex plane in the 

same way we locate the point (𝑎, 𝑏) in the Cartesian plane.  From the origin, 

translate 𝑎 units horizontally along the real axis and 𝑏 units vertically along 

the imaginary axis.  

Since complex numbers are built from real numbers, we should be able to add, subtract, multiply, and divide them.  They 

should also satisfy the commutative, associative, and distributive properties, just as real numbers do. 

Let’s check how some of these operations work for complex numbers.   

Scaffolding: 

Name a few complex numbers 

for students to plot on their 

graph paper.  This builds an 

understanding of their 

locations in this coordinate 

system.  For example, consider 

−2𝑖 − 3, −𝑖, 𝑖, 𝑖 − 1, and 
3

2
𝑖 + 2.  Make sure students 

are also cognizant of the fact 

that real numbers are also 

complex numbers (e.g., −
3
2

, 0, 

1, 𝜋).  
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Examples 1–2  (4 minutes):  Addition and Subtraction with Complex Numbers  

Addition of variable expressions is a matter of rearranging terms according to the properties of operations.  Often, we 

call this combining like terms.  These properties of operations apply to complex numbers. 

(𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖 

 

Example 1:  Addition with Complex Numbers 

Compute (𝟑 + 𝟒𝒊) + (𝟕 − 𝟐𝟎𝒊). 

(𝟑 + 𝟒𝒊) + (𝟕 − 𝟐𝟎𝒊) = 𝟑 + 𝟒𝒊 + 𝟕 − 𝟐𝟎𝒊 = (𝟑 + 𝟕) + (𝟒 − 𝟐𝟎)𝒊 = 𝟏𝟎 − 𝟏𝟔𝒊 

 

Example 2:  Subtraction with Complex Numbers 

Compute (𝟑 + 𝟒𝒊) − (𝟕 − 𝟐𝟎𝒊). 

(𝟑 + 𝟒𝒊) − (𝟕 − 𝟐𝟎𝒊) = 𝟑 + 𝟒𝒊 − 𝟕 + 𝟐𝟎𝒊 = (𝟑 − 𝟕) + (𝟒 + 𝟐𝟎)𝒊 = −𝟒 + 𝟐𝟎𝒊 

 

Examples 3-4  (6 minutes):  Multiplication with Complex Numbers  

Multiplication is analogous to polynomial multiplication, using the addition, 

subtraction, and multiplication operations and the fact that 𝑖2  =  −1. 

(𝑎 + 𝑏𝑖) ⋅ (𝑐 + 𝑑𝑖) = 𝑎𝑐 + 𝑏𝑐𝑖 + 𝑎𝑑𝑖 + 𝑏𝑑𝑖2 
= (𝑎𝑐 − 𝑏𝑑) + (𝑏𝑐 + 𝑎𝑑)𝑖 

 

Example 3:  Multiplication with Complex Numbers 

Compute (𝟏 + 𝟐𝒊)(𝟏 − 𝟐𝒊). 

(𝟏 + 𝟐𝒊)(𝟏 − 𝟐𝒊) = 𝟏 + 𝟐𝒊 − 𝟐𝒊 − 𝟒𝒊𝟐 

= 𝟏 + 𝟎 − 𝟒(−𝟏) 

= 𝟏 + 𝟒 

= 𝟓 

 

Example 4:  Multiplication with Complex Numbers 

Verify that −𝟏 + 𝟐𝒊 and −𝟏 − 𝟐𝒊 are solutions to 𝒙𝟐 + 𝟐𝒙 + 𝟓 = 𝟎. 

−𝟏 + 𝟐𝒊: 

(−𝟏 + 𝟐𝒊)𝟐 + 𝟐(−𝟏 + 𝟐𝒊) + 𝟓 = 𝟏 − 𝟒𝒊 + 𝟒𝒊𝟐 − 𝟐 + 𝟒𝒊 + 𝟓 

= 𝟒𝒊𝟐 − 𝟒𝒊 + 𝟒𝒊 + 𝟏 − 𝟐 + 𝟓 

= −𝟒 + 𝟎 + 𝟒 

= 𝟎 

−𝟏 − 𝟐𝒊: 

(−𝟏 − 𝟐𝒊)𝟐 + 𝟐(−𝟏 − 𝟐𝒊) + 𝟓 = 𝟏 + 𝟒𝒊 + 𝟒𝒊𝟐 − 𝟐 − 𝟒𝒊 + 𝟓 

= 𝟒𝒊𝟐 + 𝟒𝒊 − 𝟒𝒊 + 𝟏 − 𝟐 + 𝟓 

= −𝟒 + 𝟎 + 𝟒 

= 𝟎 

So, both complex numbers −𝟏 − 𝟐𝒊 and −𝟏 + 𝟐𝒊 are solutions to the quadratic equation 𝒙𝟐 + 𝟐𝒙 + 𝟓 = 𝟎. 

 

MP.7 

Scaffolding: 

As needed, do more exercises with addition 

and multiplication of complex numbers, such 

as: 

 (6 − 𝑖) + (3 − 2𝑖) = 9 − 3𝑖 

 (3 + 2𝑖)(−3 + 2𝑖) = −13 

 (5 + 4𝑖)(2 − 𝑖) = 14 + 3𝑖 

 (2 + √3 𝑖)(−2 + √3 𝑖) = −7 

 (1 − 6𝑖)2 = 37 − 12𝑖 

 (−3 − 𝑖)((2 − 4𝑖) + (1 + 3𝑖)) = −10 

MP.7 
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Closing  (4 minutes) 

Ask students to write or discuss with a neighbor some responses to the following prompts: 

 What are the advantages of introducing the complex numbers? 

 How can we use geometry to explain the imaginary number 𝑖? 

The Lesson Summary box presents key findings from today’s lesson. 

 

 

Exit Ticket  (5 minutes) 

In this Exit Ticket, students reduce a complex expression to 𝑎 + 𝑏𝑖 form and then locate the corresponding point on the 

complex plane.   

  

Lesson Summary 

Multiplication by 𝒊 rotates every complex number in the complex plane by 𝟗𝟎° about the origin.   

Every complex number is in the form 𝒂 + 𝒃𝒊, where 𝒂 is the real part and 𝒃 is the imaginary part of the number.  

Real numbers are also complex numbers; the real number 𝒂 can be written as the complex number 𝒂 + 𝟎𝒊.  

Numbers of the form 𝒃𝒊, for real numbers 𝒃, are called imaginary numbers.  

Adding two complex numbers is analogous to combining like terms in a polynomial expression. 

Multiplying two complex numbers is like multiplying two binomials, except one can use 𝒊𝟐 = −𝟏 to further write 

the expression in simpler form. 

Complex numbers satisfy the associative, commutative, and distributive properties. 

Complex numbers allow us to find solutions to polynomial equations that have no real number solutions.   
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Name                                   Date                          

Lesson 37:  A Surprising Boost from Geometry 

 
Exit Ticket 
 

Express the quantities below in 𝑎 + 𝑏𝑖 form, and graph the corresponding points on the complex plane.  If you use one 

set of axes, be sure to label each point appropriately.  

(1 + 𝑖) − (1 − 𝑖) 

(1 + 𝑖)(1 − 𝑖) 

𝑖(2 − 𝑖)(1 + 2𝑖) 
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Exit Ticket Sample Solutions 

 

Express the quantities below in 𝒂 + 𝒃𝒊 form, and graph the corresponding points on the complex plane.  If you use one 

set of axes, be sure to label each point appropriately. 

(𝟏 + 𝒊) − (𝟏 − 𝒊) 

(𝟏 + 𝒊)(𝟏 − 𝒊) 

𝒊(𝟐 − 𝒊)(𝟏 + 𝟐𝒊) 

 

(𝟏 + 𝒊) − (𝟏 − 𝒊) = 𝟎 + 𝟐𝒊 

= 𝟐𝒊 

 

(𝟏 + 𝒊)(𝟏 − 𝒊) = 𝟏 + 𝒊 − 𝒊 − 𝒊𝟐 

                             = 𝟏 − 𝒊𝟐 

                             = 𝟏 + 𝟏 

                             = 𝟐 + 𝟎𝒊 

= 𝟐 

 

𝒊(𝟐 − 𝒊)(𝟏 + 𝟐𝒊) = 𝒊(𝟐 + 𝟒𝒊 − 𝒊 − 𝟐𝒊𝟐) 

= 𝒊(𝟐 + 𝟑𝒊 − 𝟐(−𝟏)) 

= 𝒊(𝟐 + 𝟑𝒊 + 𝟐) 

= 𝒊(𝟒 + 𝟑𝒊) 

= 𝟒𝒊 + 𝟑𝒊𝟐 

= −𝟑 + 𝟒𝒊 
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Problem Set Sample Solutions 

This problem set offers students an opportunity to practice and gain facility with complex numbers and complex number 

arithmetic.  

 

1. Locate the point on the complex plane corresponding to the complex number given in parts (a)–(h).  On one set of 

axes, label each point by its identifying letter.  For example, the point corresponding to 𝟓 + 𝟐𝒊 should be labeled 𝒂. 

a. 𝟓 + 𝟐𝒊 

b. 𝟑 − 𝟐𝒊 

c. −𝟐 − 𝟒𝒊 

d. −𝒊 

e. 
𝟏

𝟐
+ 𝒊 

f. √𝟐 − 𝟑𝒊 

g. 𝟎 

h. −
𝟑

𝟐
+

√𝟑

𝟐
𝒊 

 

 

 

 

 

 

 

 

2. Express each of the following in 𝒂 + 𝒃𝒊 form. 

a. (𝟏𝟑 + 𝟒𝒊) + (𝟕 + 𝟓𝒊) 

(𝟏𝟑 + 𝟕) + (𝟒 + 𝟓)𝒊 = 𝟐𝟎 + 𝟗𝒊 

 

b. (𝟓 − 𝒊) − 𝟐(𝟏 − 𝟑𝒊) 

𝟓 − 𝒊 − 𝟐 + 𝟔𝒊 = 𝟑 + 𝟓𝒊 

 

c. ((𝟓 − 𝒊) − 𝟐(𝟏 − 𝟑𝒊))
𝟐
 

(𝟑 + 𝟓𝒊)𝟐 = 𝟗 + 𝟑𝟎𝒊 + 𝟐𝟓𝒊𝟐 

= 𝟗 + 𝟑𝟎𝒊 + (−𝟐𝟓) 

= −𝟏𝟔 + 𝟑𝟎𝒊 

 

d. (𝟑 − 𝒊)(𝟒 + 𝟕𝒊) 

𝟏𝟐 − 𝟒𝒊 + 𝟐𝟏𝒊 − 𝟕𝒊𝟐 = 𝟏𝟐 + 𝟏𝟕𝒊 − (−𝟕) 

= 𝟏𝟗 + 𝟏𝟕𝒊 

 

e. (𝟑 − 𝒊)(𝟒 + 𝟕𝒊) − ((𝟓 − 𝒊) − 𝟐(𝟏 − 𝟑𝒊)) 

(𝟏𝟗 + 𝟏𝟕𝒊) − (𝟑 + 𝟓𝒊) = (𝟏𝟗 − 𝟑) + (𝟏𝟕 − 𝟓)𝒊 

= 𝟏𝟔 + 𝟏𝟐𝒊 
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3. Express each of the following in 𝒂 + 𝒃𝒊 form.  

a. (𝟐 + 𝟓𝒊) + (𝟒 + 𝟑𝒊) 

(𝟐 + 𝟓𝒊) + (𝟒 + 𝟑𝒊) = (𝟐 + 𝟒) + (𝟓 + 𝟑)𝒊 

= 𝟔 + 𝟖𝒊 

 

b. (– 𝟏 + 𝟐𝒊) − (𝟒 − 𝟑𝒊) 

(−𝟏 + 𝟐𝒊) − (𝟒 − 𝟑𝒊) = −𝟏 + 𝟐𝒊 − 𝟒 + 𝟑𝒊 

= −𝟓 + 𝟓𝒊 

 

c. (𝟒 + 𝒊) + (𝟐 − 𝒊) − (𝟏 − 𝒊) 

(𝟒 + 𝒊) + (𝟐 − 𝒊) − (𝟏 − 𝒊) = 𝟒 + 𝒊 + 𝟐 − 𝒊 − 𝟏 + 𝒊 

= 𝟓 + 𝒊 

 

d. (𝟓 + 𝟑𝐢)(𝟑 + 𝟓𝐢) 

(𝟓 + 𝟑𝒊)(𝟑 + 𝟓𝒊) = 𝟓 ⋅ 𝟑 + 𝟑 ⋅ 𝟑𝒊 + 𝟓 ⋅ 𝟓𝒊 + 𝟑𝒊 ⋅ 𝟓𝒊 

= 𝟏𝟓 + 𝟗𝒊 + 𝟐𝟓𝒊 + 𝟏𝟓𝒊𝟐 

= 𝟏𝟓 + 𝟑𝟒𝒊 − 𝟏𝟓 

= 𝟎 + 𝟑𝟒𝒊 

= 𝟑𝟒𝒊 

 

e. −𝒊(𝟐 − 𝒊)(𝟓 + 𝟔𝒊) 

−𝒊(𝟐 − 𝒊)(𝟓 + 𝟔𝒊) = −𝒊(𝟏𝟎 − 𝟓𝒊 + 𝟏𝟐𝒊 − 𝟔𝒊𝟐) 

= −𝒊(𝟏𝟎 + 𝟕𝒊 + 𝟔) 

= −𝒊(𝟏𝟔 + 𝟕𝒊) 

= −𝟏𝟔𝒊 − 𝟕𝒊𝟐 

= −𝟏𝟔𝒊 + 𝟕 

= 𝟕 − 𝟏𝟔𝒊 

 

f. (𝟏 + 𝒊)(𝟐 − 𝟑𝒊) + 𝟑𝒊(𝟏 − 𝒊) − 𝒊 

(𝟏 + 𝒊)(𝟐 − 𝟑𝒊) + 𝟑𝒊(𝟏 − 𝒊) − 𝒊 = (𝟐 + 𝟐𝒊 − 𝟑𝒊 − 𝟑𝒊𝟐) + 𝟑𝒊 − 𝟑𝒊𝟐 − 𝒊 

= 𝟐 + 𝟐𝒊 − 𝟑𝒊 + 𝟑 + 𝟑𝒊 + 𝟑 − 𝒊 

= 𝟖 + 𝒊 

 

4. Find the real values of 𝒙 and 𝒚 in each of the following equations using the fact that if 𝒂 + 𝒃𝒊 = 𝒄 + 𝒅𝒊, then 𝒂 = 𝒄 

and 𝒃 = 𝒅.  

a. 𝟓𝒙 + 𝟑𝒚𝒊 = 𝟐𝟎 + 𝟗𝒊 

𝟓𝒙 = 𝟐𝟎 

𝒙 = 𝟒 

𝟑𝒚𝒊 = 𝟗𝒊 

𝒚 = 𝟑 

 

  

MP.7 
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b. 𝟐(𝟓𝒙 + 𝟗) = (𝟏𝟎 − 𝟑𝒚)𝒊 

𝟐(𝟓𝒙 + 𝟗) + 𝟎𝒊 = 𝟎 + (𝟏𝟎 − 𝟑𝒚)𝒊 

𝟐(𝟓𝒙 + 𝟗) = 𝟎 

𝒙 = −
𝟗

𝟓
 

 

𝟎𝒊 = (𝟏𝟎 − 𝟑𝒚)𝒊 

𝟏𝟎 − 𝟑𝒚 = 𝟎 

𝒚 =
𝟏𝟎

𝟑
 

 

c. 𝟑(𝟕 − 𝟐𝒙) − 𝟓(𝟒𝒚 − 𝟑)𝒊 = 𝒙 − 𝟐(𝟏 + 𝒚)𝒊 

𝟑(𝟕 − 𝟐𝒙) = 𝒙 

𝟐𝟏 − 𝟔𝒙 = 𝒙 

𝟐𝟏 = 𝟕𝒙 

𝒙 = 𝟑 

 

−𝟓(𝟒𝒚 − 𝟑)𝒊 = −𝟐(𝟏 + 𝒚)𝒊 

−𝟓(𝟒𝒚 − 𝟑) = −𝟐(𝟏 + 𝒚) 

−𝟐𝟎𝒚 + 𝟏𝟓 = −𝟐 − 𝟐𝒚 

𝟏𝟕 = 𝟏𝟖𝒚 

𝒚 =
𝟏𝟕

𝟏𝟖
 

 

5. Since 𝒊𝟐 = −𝟏, we see that 

𝒊𝟑 = 𝒊𝟐 ⋅ 𝒊 = −𝟏 ⋅ 𝒊 = −𝒊 

𝒊𝟒 = 𝒊𝟐 ⋅ 𝒊𝟐 = −𝟏 ⋅ −𝟏 = 𝟏. 

Plot 𝒊, 𝒊𝟐, 𝒊𝟑, and 𝒊𝟒 on the complex plane, and describe how multiplication by each rotates points in the complex 

plane. 

Multiplying by 𝒊 rotates points by 𝟗𝟎° counterclockwise 

around (𝟎, 𝟎).  Multiplying by 𝒊𝟐 = −𝟏 rotates points 

by 𝟏𝟖𝟎° about (𝟎, 𝟎).  Multiplying by 𝒊𝟑 = −𝒊 rotates 

points counterclockwise by 𝟐𝟕𝟎° about the origin, 

which is equivalent to rotation by 𝟗𝟎° clockwise about 

the origin.  Multiplying by 𝒊𝟒 rotates points 

counterclockwise by 𝟑𝟔𝟎°, which is equivalent to not 

rotating at all.  The points 𝒊, 𝒊𝟐, 𝒊𝟑, and 𝒊𝟒 are plotted 

below on the complex plane. 

 

 

 

 

 

 

6. Express each of the following in 𝒂 + 𝒃𝒊 form. 

a. 𝒊𝟓 𝟎 + 𝒊 

b. 𝒊𝟔 −𝟏 + 𝟎𝒊 

c. 𝒊𝟕 𝟎 − 𝒊 

d. 𝒊𝟖 𝟏 + 𝟎𝒊 

e. 𝒊𝟏𝟎𝟐 −𝟏 + 𝟎𝒊 

A simple approach is to notice that every 𝟒 multiplications by 𝒊 result in four 𝟗𝟎° rotations, which takes 𝒊𝟒 back to 𝟏.  

Therefore, divide 𝟏𝟎𝟐 by 𝟒, which is 𝟐𝟓 with remainder 𝟐.  So, 𝟏𝟎𝟐 𝟗𝟎° rotations is equivalent to 𝟐𝟓 𝟑𝟔𝟎° rotations 

and a 𝟏𝟖𝟎° rotation, and thus 𝒊𝟏𝟎𝟐 = −𝟏.  
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7. Express each of the following in 𝒂 + 𝒃𝒊 form. 

a. (𝟏 + 𝒊)𝟐 (𝟏 + 𝒊)(𝟏 + 𝒊) = 𝟏 + 𝒊 + 𝒊 + 𝒊𝟐 

= 𝟏 + 𝟐𝒊 − 𝟏 

= 𝟐𝒊 

 

b. (𝟏 + 𝒊)𝟒 

 

(𝟏 + 𝒊)𝟒 = ((𝟏 + 𝒊)𝟐)𝟐 

= (𝟐𝒊)𝟐 

= 𝟒𝒊𝟐 

= −𝟒 

 

c. (𝟏 + 𝒊)𝟔 

 

(𝟏 + 𝒊)𝟔 = (𝟏 + 𝒊)𝟐(𝟏 + 𝒊)𝟒 

= (𝟐𝒊)(−𝟒) 

= −𝟖𝒊 

8. Evaluate 𝒙𝟐 − 𝟔𝒙 when 𝒙 = 𝟑 − 𝒊.  

−𝟏𝟎 

 

9. Evaluate 𝟒𝒙𝟐 − 𝟏𝟐𝒙 when 𝒙 =
𝟑
𝟐

−
𝒊
𝟐

. 

−𝟏𝟎 

 

10. Show by substitution that 
𝟓−𝒊√𝟓

𝟓
 is a solution to 𝟓𝒙𝟐 − 𝟏𝟎𝒙 + 𝟔 = 𝟎. 

𝟓 (
𝟓 − 𝒊√𝟓

𝟓
)

𝟐

− 𝟏𝟎 (
𝟓 − 𝒊√𝟓

𝟓
) + 𝟔 =

𝟏

𝟓
(𝟓 − 𝒊√𝟓)(𝟓 − 𝒊√𝟓) − 𝟐(𝟓 − 𝒊√𝟓) + 𝟔 

=
𝟏

𝟓
(𝟐𝟓 − 𝟏𝟎𝒊√𝟓 + 𝟓𝒊𝟐) − 𝟐(𝟓 − 𝒊√𝟓) + 𝟔 

=
𝟏

𝟓
(𝟐𝟓 − 𝟏𝟎𝒊√𝟓 − 𝟓) − 𝟐(𝟓 − 𝒊√𝟓) + 𝟔 

= 𝟓 − 𝟐𝒊√𝟓 − 𝟏 − 𝟏𝟎 + 𝟐𝒊√𝟓 + 𝟔 

= 𝟎 

 

11.  

a. Evaluate the four products below.  

Evaluate √𝟗 ⋅ √𝟒.   𝟑 ∙ 𝟐 = 𝟔 

Evaluate √𝟗 ⋅ √−𝟒.   𝟑 ∙ 𝟐𝐢 = 𝟔𝐢 

Evaluate √−𝟗 ⋅ √𝟒.    𝟑𝐢 ∙ 𝟐 = 𝟔𝐢 

Evaluate √−𝟗 ⋅ √−𝟒.   𝟑𝐢 ∙ 𝟐𝐢 = 𝟔𝐢𝟐 = −𝟔 

 

b. Suppose 𝒂 and 𝒃 are positive real numbers.  Determine whether the following quantities are equal or not 

equal. 

√𝒂 ∙ √𝒃 and √−𝒂 ∙ √−𝒃   not equal 

√−𝒂 ∙ √𝒃 and √𝒂 ∙ √−𝒃  equal 

MP.7 
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Scaffolding: 

Advanced students may be able to handle a more abstract framing 

of—in essence—the same exercise.  The exercise below offers the 

advanced student an opportunity to discover the discriminant and 

its significance on his or her own. 

“Recall that a quadratic equation can have exactly two distinct real 

solutions, exactly one distinct real solution, or exactly two distinct 

complex solutions.  What is the quadratic formula that we can use 

to solve an equation in the form 𝑎𝑥2 + 𝑏𝑥 + 𝑥 = 0, where 𝑎, 𝑏, 

and 𝑐 are real numbers and 𝑎 ≠ 0?  Analyze this formula to decide 

when the equation will have two, one, or no real solutions.” 

Solution:  

The type of solutions to a quadratic equation hinges on the 

expression under the radical in the quadratic formula, namely, 

𝑏2 − 4𝑎𝑐.  When 𝑏2 − 4𝑎𝑐 < 0, both solutions will have imaginary 

parts.  When 𝑏2 − 4𝑎𝑐 > 0, the quadratic equation has two 

distinct real solutions.  When 𝑏2 − 4𝑎𝑐 = 0, the quadratic formula 

simplifies to 𝑥 = − 𝑏
2𝑎

.  In this case, there is only one real solution, 

which we call a zero of multiplicity two. 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐 

2𝑎
 

Lesson 38:  Complex Numbers as Solutions to Equations  

 
Student Outcomes  

 Students solve quadratic equations with real coefficients that have complex solutions (N-CN.C.7).  They 

recognize when the quadratic formula gives complex solutions and write them as 𝑎 + 𝑏𝑖 for real numbers 𝑎 

and 𝑏.  (A-REI.B.4b)  

 

Lesson Notes  

This lesson models how to solve quadratic equations over the set of complex numbers.  Students relate the sign of the 

discriminant to the nature of the solution set for a quadratic equation.  Continue to encourage students to make 

connections between graphs of a quadratic equation, 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, and the number and type of solutions to the 

equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. 

 

Classwork  

Opening  (2 minutes) 

In Algebra I, students learned that when the quadratic 

formula resulted in an expression that contained a 

negative number in the radicand, the equation would 

have no real solution.  Now, students understand the 

imaginary unit 𝑖 as a number that satisfies 𝑖2  =  −1, 

which allows them to solve quadratic equations over 

the complex numbers.  Thus, they can see that every 

quadratic equation has at least one solution. 

 

Opening Exercises  (5 minutes)  

Have students work on this opening exercise alone or 

in pairs.  In this exercise, students apply the quadratic 

formula to three different relatively simple quadratic 

equations:  one with two real roots, one with one real 

repeated root, and one with two complex roots.  

Students are then asked to explain the results in terms 

of the discriminant.  Afterward, go over the answers 

with the class. 
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Review the quadratic formula 𝑥 =
−𝑏±√𝑏

2
−4𝑎𝑐

2𝑎
 before beginning this exercise, and define the discriminant as the 

number under the radical; that is, the discriminant is the quantity 𝑏2 − 4𝑎𝑐. 

 

Opening Exercises 

1. The expression under the radical in the quadratic formula, 𝒃𝟐 − 𝟒𝒂𝒄, is called the discriminant.   

Use the quadratic formula to solve the following quadratic equations.  Calculate the discriminant for each equation.  

a. 𝒙𝟐 − 𝟗 = 𝟎 

The equation 𝒙𝟐 − 𝟗 = 𝟎 has two real solutions:  𝒙 = 𝟑 and 𝒙 = −𝟑.  The discriminant of 𝒙𝟐 − 𝟗 = 𝟎 is 𝟑𝟔. 

 

b. 𝒙𝟐 − 𝟔𝒙 + 𝟗 = 𝟎 

The equation 𝒙𝟐 − 𝟔𝒙 + 𝟗 = 𝟎 has one real solution:  𝒙 = 𝟑.  The discriminant of 𝒙𝟐 − 𝟔𝒙 + 𝟗 = 𝟎 is 𝟎. 

 

c. 𝒙𝟐 + 𝟗 = 𝟎 

The equation 𝒙𝟐 + 𝟗 = 𝟎 has two complex solutions:  𝒙 = 𝟑𝒊 and 𝒙 = −𝟑𝒊.  The discriminant of 𝒙𝟐 + 𝟗 = 𝟎 is 

−𝟑𝟔. 

 

2. How does the value of the discriminant for each equation relate the number of solutions you found? 

If the discriminant is negative, the equation has complex solutions.  If the discriminant is zero, the equation has one 

real solution.  If the discriminant is positive, the equation has two real solutions.  

 

Discussion  (8 minutes) 

 Why do you think we call 𝑏2 − 4𝑎𝑐 the discriminant? 

 In English, a discriminant is a characteristic that allows something (e.g., 

an object, a person, a function) among a group of other somethings to be 

distinguished. 

 In this case, the discriminant distinguishes a quadratic equation by its 

number and type of solutions:  one real solution (repeated), two real 

solutions, or two complex solutions. 

 Let’s examine the situation when the discriminant is zero.  Why does a quadratic equation with discriminant 

zero have only one real solution? 

 When the discriminant is zero, the quadratic formula gives the single solution −
𝑏±0
2𝑎

= −
𝑏

2𝑎
.   

 Why is the solution when 𝑏2 − 4𝑎𝑐 = 0 a repeated zero? 

 If 𝑏2 − 4𝑎𝑐 = 0, then 𝑐 =
𝑏

2

4𝑎
, and we can factor the quadratic expression 𝑎𝑥2 + 𝑏𝑥 + 𝑐 as follows: 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑎𝑥2 + 𝑏𝑥 +
𝑏2

4𝑎
=  𝑎 (𝑥2 +

𝑏

𝑎
𝑥 +

𝑏2

4𝑎2
) = 𝑎 (𝑥 +

𝑏

2𝑎
)

2

. 

From what we know of factoring quadratic expressions from Lesson 11, −
𝑏

2𝑎
 is a repeated zero. 

Analytically, the solutions can be thought of as −
𝑏+0
2𝑎

 and −
𝑏−0
2𝑎

, which are both −
𝑏

2𝑎
.  So, there are 

two solutions that are the same number. 

Scaffolding: 

English language learners may 
benefit from a Frayer diagram 
or other vocabulary exercise 
for the word discriminant. 
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 Geometrically, a quadratic equation represents a parabola.  If the discriminant is zero, then the 

equation of the parabola is 𝑦 = 𝑎 (𝑥 +
𝑏

2𝑎
)

2

, so the vertex of this parabola is (−
𝑏

2𝑎
, 0), meaning the 

vertex of the parabola lies on the 𝑥-axis.  Thus, the parabola is tangent to the 𝑥-axis and intersects the 

𝑥-axis only at the point (−
𝑏

2𝑎
, 0).   

 For example, the graph of 𝑦 = 𝑥2 + 6𝑥 + 9 intersects the 𝑥-axis only at (−3, 0), as follows. 

 

 Describe the graph of a quadratic equation with positive discriminant. 

 If the discriminant is positive, then the quadratic formula gives two different real solutions.   

 Two real solutions mean the graph intersects the 𝑥-axis at two distinct real points. 

 For example, the graph of 𝑦 = 𝑥2 + 𝑥 − 6 intersects the 𝑥-axis at (−3, 0) and (2, 0), as follows. 
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 Describe the graph of a quadratic equation with negative discriminant. 

 Since the discriminant is negative, the quadratic formula will give two different complex solutions. 

 Since there are no real solutions, the graph does not cross or touch the 𝑥-axis in the real plane. 

 For example, the graph of 𝑦 = 𝑥2 + 4, shown below, does not intersect the 𝑥-axis. 

 

 

Example 1  (5 minutes)  

 

Example 1 

Consider the equation 𝟑𝒙 + 𝒙𝟐 = −𝟕.  

What does the value of the discriminant tell us about number of solutions to this equation? 

 

Solve the equation.  Does the number of solutions match the information provided by the discriminant?  Explain. 

 

Consider the equation 3𝑥 + 𝑥2 = −7.  

 What does the value of the discriminant tell us about number of solutions to this equation? 

 The equation in standard form is 𝑥2 + 3𝑥 + 7 = 0, so we have 𝑎 = 1, 𝑏 = 3, 𝑐 = 7. 

 The discriminant is 32 − 4(1)(7) = −19.  The negative discriminant indicates that no real solutions 

exist.  There are two complex solutions. 

 Solve the equation.  Does the number of solutions match the information provided by the discriminant?  

Explain. 

 Using the quadratic formula,  

𝑥 =
−3+√−19

2
 or 𝑥 =

−3+√−19
2

. 

 The solutions, in 𝑎 + 𝑏𝑖 form, are −
3
2

+
√19

2
𝑖 and −

3
2

−
√19

2
𝑖. 

 The two complex solutions are consistent with the rule for a negative discriminant.  
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Exercise  (15 minutes)  

Have students work individually on this exercise; then, have them work with a partner or in a small group to check their 

solutions.  This exercise could also be conducted by using personal white boards and having students show their answers 

to each question after a few minutes.  If many students struggle, invite them to exchange papers with a partner to check 

for errors.  Having students identify errors in their work or the work of others will help them to build fluency when 

working with these complicated expressions.  Debrief this exercise by showing the related graph of the equation in the 

coordinate plane, and verify that the number of solutions corresponds to the number of 𝑥-intercepts.  

 

Exercise 

Compute the value of the discriminant of the quadratic equation in each part.  Use the value of the discriminant to 

predict the number and type of solutions.  Find all real and complex solutions.  

a. 𝒙𝟐 + 𝟐𝒙 + 𝟏 = 𝟎 

We have 𝒂 = 𝟏, 𝒃 = 𝟐, and 𝒄 = 𝟏.  Then 

𝒃𝟐 − 𝟒𝒂𝒄 = 𝟐𝟐 − 𝟒(𝟏)(𝟏) = 𝟎. 

Note that the discriminant is zero, so this equation has exactly one real solution. 

𝒙 =
−(𝟐) ± √𝟎

𝟐(𝟏)
= −𝟏 

Thus, the only solution is −𝟏. 

 

b. 𝒙𝟐 + 𝟒 = 𝟎 

We have 𝒂 = 𝟏, 𝒃 = 𝟎, and 𝒄 = 𝟒.  Then 
𝒃𝟐 − 𝟒𝒂𝒄 = −𝟏𝟔. 

Note that the discriminant is negative, so this equation has two complex solutions. 

𝒙 =
−𝟎 ± √−𝟏𝟔

𝟐(𝟏)
 

Thus, the two complex solutions are 𝟐𝒊 and − 𝟐𝒊. 

 

c. 𝟗𝒙𝟐 − 𝟒𝒙 − 𝟏𝟒 = 𝟎 

We have 𝒂 = 𝟗, 𝒃 = −𝟒, and 𝒄 = −𝟏𝟒.  Then 

𝒃𝟐 − 𝟒𝒂𝒄 = (−𝟒)𝟐 − 𝟒(𝟗)(−𝟏𝟒) 

= 𝟏𝟔 + 𝟓𝟎𝟒 

= 𝟓𝟐𝟎. 

Note that the discriminant is positive, so this equation has two distinct real solutions. 

Using the quadratic formula, 

𝒙 =
−(−𝟒) ± 𝟐√𝟏𝟑𝟎

𝟐(𝟗)
. 

So, the two real solutions are 
𝟐+√𝟏𝟑𝟎

𝟗
 and  

𝟐−√𝟏𝟑𝟎

𝟗
.    
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d. 𝟑𝒙𝟐 + 𝟒𝒙 + 𝟐 = 𝟎 

We have 𝒂 = 𝟑, 𝒃 = 𝟒, and 𝒄 = 𝟐.  Then 

𝒃𝟐 − 𝟒𝒂𝒄 = 𝟒𝟐 − 𝟒(𝟑)(𝟐) 

= 𝟏𝟔 − 𝟐𝟒 

= −𝟖. 

The discriminant is negative, so there will be two complex solutions.  Using the quadratic formula, 

𝒙 =
−𝟒 ± √−𝟖

𝟐(𝟑)
. 

So, the two complex solutions are −
𝟐
𝟑

+
√𝟐
𝟑

𝒊 and −
𝟐
𝟑

−
√𝟐
𝟑

𝒊. 

 

e. 𝒙 = 𝟐𝒙𝟐 + 𝟓 

We can rewrite this equation in standard form with 𝒂 = 𝟐, 𝒃 = −𝟏, and 𝒄 = 𝟓: 

𝟐𝒙𝟐 − 𝒙 + 𝟓 = 𝟎. 

Then 

𝒃𝟐 − 𝟒𝒂𝒄 = (−𝟏)𝟐 − 𝟒(𝟐)(𝟓) 

= 𝟏 − 𝟒𝟎 

= −𝟑𝟗. 

The discriminant is negative, so there will be two complex solutions.  Using the quadratic formula, 

𝒙 =
−(−𝟏) ± √−𝟑𝟗

𝟐(𝟐)
 

𝒙 =
𝟏 ± 𝒊√𝟑𝟗

𝟒
. 

The two solutions are 
𝟏

𝟒
+

√𝟑𝟗

𝟒
𝒊 and 

𝟏

𝟒
−

√𝟑𝟗

𝟒
𝒊. 

 

f. 𝟖𝒙𝟐 + 𝟒𝒙 + 𝟑𝟐 = 𝟎 

We can factor 𝟒 from the left side of this equation to obtain 𝟒(𝟐𝒙𝟐 + 𝒙 + 𝟖) = 𝟎, and 

we know that a product is zero when one of the factors are zero.  Since 𝟒 ≠ 𝟎, we 

must have 𝟐𝒙𝟐 + 𝒙 + 𝟖 = 𝟎.  This is a quadratic equation with 𝒂 = 𝟐, 𝒃 = 𝟏, and  

𝒄 = 𝟖.  Then 

𝒃𝟐 − 𝟒𝒂𝒄 = 𝟏𝟐 − 𝟒(𝟐)(𝟖) = −𝟔𝟑. 

The discriminant is negative, so there will be two complex solutions.  Using the 

quadratic formula, 

𝒙 =
−𝟏 ± √−𝟔𝟑

𝟐(𝟐)
 

𝒙 =
−𝟏 ± 𝟑𝒊√𝟕

𝟒
. 

The complex solutions are −
𝟏
𝟒

+
𝟑√𝟕

𝟒
𝒊 and −

𝟏
𝟒

− 
𝟑√𝟕

𝟒
𝒊  . 

 

 

Scaffolding: 

Consider assigning advanced 

students to create quadratic 

equations that have specific 

solutions.  For example, 

request a quadratic equation 

that has only the solution −5.   

Answer:  One such equation is 

𝑥2 − 10𝑥 + 25 = 0.  This 

follows from the expansion of 

the left side of (𝑥 + 5)2 = 0.  

Also consider requesting a 

quadratic equation with 

solutions 3 + 𝑖 and 3 − 𝑖.  One 

answer is 𝑥2 − 6𝑥 + 10 = 0. 
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Closing  (5 minutes) 

As this lesson is summarized, ask students to create a graphic organizer that allows them to compare and contrast the 

nature of the discriminant, the number and types of solutions to 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, and the graphs of the equation  

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐.  Have them record a problem of each type from the previous exercise as an example in their graphic 

organizer.  

 

 

Exit Ticket  (5 minutes)  

The Exit Ticket gives students the opportunity to demonstrate their mastery of this lesson’s content. 

  

Lesson Summary 

 A quadratic equation with real coefficients may have real or complex solutions. 

 Given a quadratic equation 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎, the discriminant 𝒃𝟐 − 𝟒𝒂𝒄 indicates whether the 

equation has two distinct real solutions, one real solution, or two complex solutions. 

– If 𝒃𝟐 − 𝟒𝒂𝒄 > 𝟎, there are two real solutions to 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎. 

– If 𝒃𝟐 − 𝟒𝒂𝒄 = 𝟎, there is one real solution to 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎. 

– If 𝒃𝟐 − 𝟒𝒂𝒄 < 𝟎, there are two complex solutions to 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎. 
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Name                                   Date                          

Lesson 38:  Complex Numbers as Solutions to Equations 

 
Exit Ticket 
 

Use the discriminant to predict the nature of the solutions to the equation 4𝑥 − 3𝑥2 = 10.  Then, solve the equation. 
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Exit Ticket Sample Solutions 

 

Use the discriminant to predict the nature of the solutions to the equation 𝟒𝒙 − 𝟑𝒙𝟐 = 𝟏𝟎.  Then, solve the equation. 

𝟑𝒙𝟐 − 𝟒𝒙 + 𝟏𝟎 = 𝟎 

We have 𝒂 = 𝟑, 𝒃 = −𝟒, and 𝒄 = 𝟏𝟎.  Then 

𝒃𝟐 − 𝟒𝒂𝒄 = (−𝟒)𝟐 − 𝟒(𝟑)(𝟏𝟎) 

= 𝟏𝟔 − 𝟏𝟐𝟎 

= −𝟏𝟎𝟒. 

The value of the discriminant is negative, indicating that there are two complex solutions. 

𝒙 =
−(−𝟒) ± √−𝟏𝟎𝟒

𝟐(𝟑)
 

𝒙 =
𝟒 ± 𝟐𝒊√𝟐𝟔

𝟔
 

Thus, the two solutions are 
𝟐

𝟑
+

√𝟐𝟔

𝟑
𝒊 and 

𝟐

𝟑
−

√𝟐𝟔

𝟑
𝒊. 

 
 
Problem Set Sample Solutions 

The Problem Set offers students more practice solving quadratic equations with complex solutions.   

 

1. Give an example of a quadratic equation in standard form that has …  

a. Exactly two distinct real solutions. 

Since (𝒙 + 𝟏)(𝒙 − 𝟏) = 𝒙𝟐 − 𝟏, the equation 𝒙𝟐 − 𝟏 = 𝟎 has two distinct real solutions, 𝟏 and −𝟏. 

 

b. Exactly one distinct real solution. 

Since (𝒙 + 𝟏)𝟐 = 𝒙𝟐 + 𝟐𝒙 + 𝟏, the equation 𝒙𝟐 + 𝟐𝒙 + 𝟏 = 𝟎 has only one real solution, 𝟏. 

 

c. Exactly two complex (non-real) solutions. 

Since 𝒙𝟐 + 𝟏 = 𝟎 has no solutions in the real numbers, this equation must have two complex solutions.  They 

are 𝒊 and −𝒊. 

 

2. Suppose we have a quadratic equation 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎 so that 𝒂 + 𝒄 = 𝟎.   Does the quadratic equation have one 

solution or two distinct solutions?  Are they real or complex?  Explain how you know. 

If 𝒂 + 𝒄 = 𝟎, then either 𝒂 = 𝒄 = 𝟎, 𝒂 > 𝟎 and 𝒄 < 𝟎, or 𝒂 < 𝟎 and 𝒄 > 𝟎.  

The definition of a quadratic polynomial requires that 𝒂 ≠ 𝟎, so either 𝒂 > 𝟎 and 𝒄 < 𝟎 or 𝒂 < 𝟎 and 𝒄 > 𝟎. 

In either case, 𝟒𝒂𝒄 < 𝟎.  Because 𝒃𝟐 is positive and 𝟒𝒂𝒄 is negative, we know 𝒃𝟐 − 𝟒𝒂𝒄 > 𝟎.   

Therefore, a quadratic equation 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎 always has two distinct real solutions when 𝒂 + 𝒄 = 𝟎. 
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3. Solve the equation 𝟓𝒙𝟐 − 𝟒𝒙 + 𝟑 = 𝟎. 

We have a quadratic equation with 𝒂 = 𝟓, 𝒃 = −𝟒, and 𝒄 = 𝟑. 

𝒙 =
−(−𝟒) ± 𝟐√−𝟏𝟏

𝟐(𝟓)
 

So, the solutions are 
𝟐

𝟓
+

𝒊√𝟏𝟏

𝟓
 and 

𝟐

𝟓
−

𝒊√𝟏𝟏

𝟓
 . 

 

4. Solve the equation 𝟐𝒙𝟐 + 𝟖𝒙 = −𝟗. 

In standard form, this is the quadratic equation 𝟐𝒙𝟐 + 𝟖𝒙 + 𝟗 = 𝟎 with 𝒂 = 𝟐, 𝒃 = 𝟖, and 𝒄 = 𝟗. 

𝒙 =
−𝟖 ± 𝟐√−𝟐

𝟐(𝟐)
=

−𝟒 ± 𝒊√𝟐

𝟐
 

Thus, the solutions are 𝟐 +
𝒊√𝟐

𝟐
 and  𝟐 −

𝒊√𝟐
𝟐

. 

 

5. Solve the equation 𝟗𝒙 − 𝟗𝒙𝟐 = 𝟑 + 𝒙 + 𝒙𝟐. 

In standard form, this is the quadratic equation 𝟏𝟎𝒙𝟐 − 𝟖𝒙 + 𝟑 = 𝟎 with 𝒂 = 𝟏𝟎, 𝒃 = −𝟖, and 𝒄 = 𝟑. 

𝒙 = −
−(−𝟖) ± 𝟐√−𝟏𝟒

𝟐(𝟏𝟎)
=

𝟖 ± 𝟐𝒊√𝟏𝟒

𝟐𝟎
 

Thus, the solutions are 
𝟐

𝟓
+

𝒊√𝟏𝟒

𝟏𝟎
 and 

𝟐

𝟓
−

𝒊√𝟏𝟒

𝟏𝟎
. 

 

6. Solve the equation 𝟑𝒙𝟐 − 𝒙 + 𝟏 = 𝟎. 

This is a quadratic equation with 𝒂 = 𝟑, 𝒃 = −𝟏, and 𝒄 = 𝟏. 

𝒙 = −
−(−𝟏) ± √−𝟏𝟏

𝟐(𝟑)
=

𝟏 ± 𝒊√𝟏𝟏

𝟔
 

Thus, the solutions are 
𝟏

𝟔
+

𝒊√𝟏𝟏

𝟔
  and 

𝟏

𝟔
−

𝒊√𝟏𝟏

𝟔
. 

 

7. Solve the equation 𝟔𝒙𝟒 + 𝟒𝒙𝟐 − 𝟑𝒙 + 𝟐 = 𝟐𝒙𝟐(𝟑𝒙𝟐 − 𝟏). 

When expanded, this is a quadratic equation with 𝒂 = 𝟔, 𝒃 = −𝟑, and 𝒄 = 𝟐. 

𝟔𝒙𝟒 + 𝟒𝒙𝟐 − 𝟑𝒙 + 𝟐 = 𝟔𝒙𝟒 − 𝟐𝒙𝟐 

𝟔𝒙𝟐 − 𝟑𝒙 + 𝟐 = 𝟎 

𝒙 =
−(−𝟑) ± √{−𝟑𝟗}

𝟐(𝟔)
 

So, the solutions are 
𝟏

𝟒
 +

𝒊√𝟑𝟗

𝟏𝟐
 and 

𝟏

𝟒
 −

𝒊√𝟑𝟗
𝟏𝟐

. 
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8. Solve the equation 𝟐𝟓𝒙𝟐 + 𝟏𝟎𝟎𝒙 + 𝟐𝟎𝟎 = 𝟎. 

We can factor 𝟐𝟓 from the left side of this equation to obtain 𝟐𝟓(𝒙𝟐 + 𝟒𝒙 + 𝟖) = 𝟎, and we know that a product is 

zero when one of the factors is zero.  Since 𝟐𝟓 ≠ 𝟎, we must have 𝒙𝟐 + 𝟒𝒙 + 𝟖 = 𝟎.  This is a quadratic equation 

with 𝒂 = 𝟏, 𝒃 = 𝟒, and 𝒄 = 𝟖.  Then  

𝒙 =
−𝟒 ± 𝟒√−𝟏

𝟐
, 

and the solutions are −𝟐 + 𝟐𝒊 and −𝟐 − 𝟐𝒊. 

 

9. Write a quadratic equation in standard form such that −𝟓 is its only solution. 

(𝒙 + 𝟓)𝟐 = 𝟎 

𝒙𝟐 + 𝟏𝟎𝒙 + 𝟐𝟓 = 𝟎 

 

10. Is it possible that the quadratic equation 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎 has a positive real solution if 𝒂, 𝒃, and 𝒄 are all positive 

real numbers? 

No.  The solutions are 
−𝒃+√𝒃𝟐−𝟒𝒂𝒄

𝟐𝒂
 and 

−𝒃−√𝒃𝟐−𝟒𝒂𝒄

𝟐𝒂
.  If 𝒃 is positive, the second one of these will be negative.  

So, we need to think about whether or not the first one can be positive.  If −𝒃 + √𝒃𝟐 − 𝟒𝒂𝒄 > 𝟎, then  

√𝒃𝟐 − 𝟒𝒂𝒄 > 𝒃; so, 𝒃𝟐 − 𝟒𝒂𝒄 > 𝒃𝟐, and −𝟒𝒂𝒄 > 𝟎.  This means that either 𝒂 or 𝒄 must be negative.  So, if all three 

coefficients are positive, then there cannot be a positive solution to 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎. 

 

11. Is it possible that the quadratic equation 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎 has a positive real solution if 𝒂, 𝒃, and 𝒄 are all negative 

real numbers? 

No.  If 𝒂, 𝒃, and 𝒄 are all negative, then −𝒂, −𝒃, and −𝒄 are all positive.  The solutions of 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎 are the 

same as the solutions to −𝒂𝒙𝟐 − 𝒃𝒙 − 𝒄 = 𝟎, and by Problem 10, this equation has no positive real solution since it 

has all positive coefficients.  

 

Extension: 

12. Show that if 𝒌 > 𝟑. 𝟐, the solutions of 𝟓𝒙𝟐 − 𝟖𝒙 + 𝒌 = 𝟎 are not real numbers. 

We have 𝒂 = 𝟓, 𝒃 = −𝟖, and 𝒄 = 𝒌; then 

𝒃𝟐 − 𝟒𝒂𝒄 = (−𝟖)𝟐 − 𝟒 ⋅ 𝟓 ⋅ 𝒌 

= 𝟔𝟒 − 𝟐𝟎𝒌. 

When the discriminant is negative, the solutions of the quadratic function are not real numbers. 

𝒃𝟐 − 𝟒𝒂𝒄 = 𝟔𝟒 − 𝟐𝟎𝒌 

𝒌 < 𝟑. 𝟐 

𝒃𝟐 − 𝟒𝒂𝒄 < 𝟔𝟒 − 𝟐𝟎(𝟑. 𝟐) 

𝒃𝟐 − 𝟒𝒂𝒄 < 𝟎 

 

𝒌 > 𝟑. 𝟐 

Thus, if 𝒌 > 𝟑. 𝟐, then the discriminant is negative and the solutions of 𝟓𝒙𝟐 − 𝟖𝒙 + 𝒌 = 𝟎 are not real numbers.  

  

MP.2 
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13. Let 𝒌 be a real number, and consider the quadratic equation (𝒌 + 𝟏)𝒙𝟐 + 𝟒𝒌𝒙 + 𝟐 = 𝟎. 

a. Show that the discriminant of (𝒌 + 𝟏)𝒙𝟐 + 𝟒𝒌𝒙 + 𝟐 = 𝟎 defines a quadratic function of 𝒌. 

The discriminant of a quadratic equation written in the form 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎  is 𝒃𝟐 − 𝟒𝒂𝒄. 

Here, 𝒂 = 𝒌 + 𝟏, 𝒃 = 𝟒𝒌, and 𝒄 = 𝟐.  We get 

𝒃𝟐 − 𝟒𝒂𝒄 = (𝟒𝒌)𝟐 − 𝟒 ⋅ (𝒌 + 𝟏) ⋅ 𝟐 

= 𝟏𝟔𝒌𝟐 − 𝟖(𝒌 + 𝟏) 

= 𝟏𝟔𝒌𝟐 − 𝟖𝒌 − 𝟖. 

With 𝒌 unknown, we can write 𝒇(𝒌) = 𝟏𝟔𝒌𝟐 − 𝟖𝒌 − 𝟖, which is a quadratic function of 𝒌. 

 

b. Find the zeros of the function in part (a), and make a sketch of its graph. 

If 𝒇(𝒌) = 𝟎, then we have  

𝟎 = 𝟏𝟔𝒌𝟐 − 𝟖𝒌 − 𝟖 

= 𝟐𝒌𝟐 − 𝒌 − 𝟏 

= 𝟐𝒌𝟐 − 𝟐𝒌 + 𝒌 − 𝟏 

= 𝟐𝒌(𝒌 − 𝟏) + 𝟏(𝒌 − 𝟏) 

= (𝒌 − 𝟏)(𝟐𝒌 + 𝟏). 

Then, 𝒌 − 𝟏 = 𝟎 or 𝟐𝒌 + 𝟏 = 𝟎.   

So, 𝒌 = 𝟏 or 𝒌 = −
𝟏
𝟐

. 

 

 

 

 

 

 

 

c. For what value of 𝒌 are there two distinct real solutions to the original quadratic equation? 

The original quadratic equation has two distinct real solutions when the discriminant given by 𝒇(𝒌) is 

positive.  This occurs for all real numbers 𝒌 such that 𝒌 < −
𝟏
𝟐

 or 𝒌 > 𝟏. 

 

d. For what value of 𝒌 are there two complex solutions to the given quadratic equation? 

There are two complex solutions when 𝒇(𝒌) < 𝟎.  This occurs for all real numbers 𝒌 such that −
𝟏
𝟐

< 𝒌 < 𝟏. 

 

e. For what value of 𝒌 is there one solution to the given quadratic equation? 

There is one solution when 𝒇(𝒌) = 𝟎.  This occurs at 𝒌 = −
𝟏
𝟐

 and 𝒌 = 𝟏. 
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14. We can develop two formulas that can help us find errors in calculated solutions of quadratic equations. 

a. Find a formula for the sum 𝑺 of the solutions of the quadratic equation 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎. 

The zeros of the quadratic equation are given by 𝒙 =
−𝒃±√𝒃

𝟐
−𝟒𝒂𝒄

𝟐𝒂
.  Then 

𝑺 =
−𝒃 + √𝒃𝟐 − 𝟒𝒂𝒄

𝟐𝒂
+

−𝒃 − √𝒃𝟐 − 𝟒𝒂𝒄

𝟐𝒂
 

=
−𝒃 + √𝒃𝟐 − 𝟒𝒂𝒄 + −𝒃 − √𝒃𝟐 − 𝟒𝒂𝒄

𝟐𝒂
 

=
−𝒃 + −𝒃 + √𝒃𝟐 − 𝟒𝒂𝒄 − √𝒃𝟐 − 𝟒𝒂𝒄

𝟐𝒂
 

=
−𝟐𝒃

𝟐𝒂
 

= −
𝒃

𝒂
. 

Thus, 𝑺 = −
𝒃
𝒂

. 

 

b. Find a formula for the product 𝑹 of the solutions of the quadratic equation 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎. 

𝑹 =
−𝒃 + √𝒃𝟐 − 𝟒𝒂𝒄

𝟐𝒂
⋅

−𝒃 − √𝒃𝟐 − 𝟒𝒂𝒄

𝟐𝒂
 

Note that the numerators differ only in that one is a sum, and one is a difference.  The difference of squares 

formula applies where 𝒎 = −𝒃 and 𝒏 = √𝒃𝟐 − 𝟒𝒂𝒄.  Then, 

𝑹 =
(−𝒃)𝟐 − (√𝒃𝟐 − 𝟒𝒂𝒄)

𝟐

𝟐𝒂 ⋅ 𝟐𝒂
 

=
𝒃𝟐 − 𝒃𝟐 + 𝟒𝒂𝒄

𝟒𝒂𝟐
 

=
𝟒𝒂𝒄

𝟒𝒂𝟐
 

=
𝒄

𝒂
. 

So, the product is 𝑹 =
𝒄
𝒂

. 

 

c. June calculated the solutions 𝟕 and −𝟏 to the quadratic equation 𝒙𝟐 − 𝟔𝒙 + 𝟕 = 𝟎.  Do the formulas from 

parts (a) and (b) detect an error in her solutions?  If not, determine if her solution is correct. 

The sum formula agrees with June’s calculations.  From June’s zeros,   

𝟕 + −𝟏 = 𝟔, 
and from the formula, 

𝑺 =
𝟔

𝟏
= 𝟔. 

However, the product formula does not agree with her calculations.  From June’s zeros, 

𝟕 ⋅ −𝟏 = −𝟕, 

and from the formula, 

𝑹 =
𝟕

𝟏
= 𝟕. 

June’s solutions are not correct:  (𝟕)𝟐 − 𝟔(𝟕) + 𝟕 = 𝟒𝟗 − 𝟒𝟐 + 𝟕 = 𝟏𝟒; so, 𝟕 is not a solution to this 

quadratic equation.  Likewise, 𝟏 − 𝟔 + 𝟕 = 𝟐, so 𝟏 is also not a solution to this equation.  Thus, the formulas 

caught her error. 
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d. Paul calculated the solutions 𝟑 − 𝒊√𝟐 and 𝟑 + 𝒊√𝟐 to the quadratic equation 𝒙𝟐 − 𝟔𝒙 + 𝟕 = 𝟎.  Do the 

formulas from parts (a) and (b) detect an error in his solutions?  If not, determine if his solutions are correct.  

In part (c), we calculated that 𝑹 = 𝟕 and 𝑺 = 𝟔.  From Paul’s zeros, 

𝑺 = 𝟑 + 𝒊√𝟐 + 𝟑 − 𝒊√𝟐 = 𝟔, 

and for the product, 

𝑹 = (𝟑 + 𝒊√𝟐) ⋅ (𝟑 − 𝒊√𝟐) 

= 𝟑𝟐 − (𝒊√𝟐)
𝟐
 

= 𝟗— 𝟏 ⋅ 𝟐 

= 𝟏𝟏. 

This disagrees with the calculated version of 𝑹.  So, the formulas do find that he made an error. 

 

e. Joy calculated the solutions 𝟑 − √𝟐 and 𝟑 + √𝟐 to the quadratic equation 𝒙𝟐 − 𝟔𝒙 + 𝟕 = 𝟎.  Do the formulas 

from parts (a) and (b) detect an error in her solutions?  If not, determine if her solutions are correct.  

Joy’s zeros will have the same sum as Paul’s, so 𝑺 = 𝟔, which agrees with the sum from the formula.  For the 

product of her zeros we get 

𝑹 = (𝟑 − √𝟐)(𝟑 + √𝟐) 

= 𝟗 − 𝟐 
= 𝟕, 

which agrees with the formulas. 

Checking her solutions in the original equation, we find 

(𝟑 − √𝟐)
𝟐

− 𝟔(𝟑 − √𝟐) + 𝟕 = (𝟗 − 𝟔√𝟐 + 𝟐) − 𝟏𝟖 + 𝟔√𝟐 + 𝟕 

= 𝟎, 

(𝟑 + √𝟐)
𝟐

− 𝟔(𝟑 + √𝟐) + 𝟕 = (𝟗 + 𝟔√𝟐 + 𝟐) − 𝟏𝟖 − 𝟔√𝟐 + 𝟕 

= 𝟎. 

Thus, Joy has correctly found the solutions of this quadratic equation.  

 

f. If you find solutions to a quadratic equation that match the results from parts (a) and (b), does that mean 

your solutions are correct? 

Not necessarily.  We only know that if the sum and product of the solutions do not match 𝑺 and 𝑹, then we 

have not found a solution.  Evidence suggests that if the sum and product of the solutions do match 𝑺 and 𝑹, 

then we have found the correct solutions, but we do not know for sure until we check.   

 

g. Summarize the results of this exercise.  

For a quadratic equation of the form 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎, the sum of the solutions is given by 𝑺 = −
𝒃
𝒂

, and the 

product of the solutions is given by 𝑹 =
𝒄
𝒂

.  So, multiplying and adding the calculated solutions will identify if 

we have made an error.  Passing these checks, however, does not guarantee that the numbers we found are 

the correct solutions.  

MP.2 
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Lesson 39:  Factoring Extended to the Complex Realm  

 
Student Outcomes  

 Students solve quadratic equations with real coefficients that have complex solutions.  Students extend 

polynomial identities to the complex numbers. 

 Students note the difference between solutions to a polynomial equation and the 𝑥-intercepts of the graph of 

that equation. 

 

Lesson Notes  

This lesson extends the factoring concepts and techniques covered in Topic B of this module to the complex numbers 

and specifically addresses N-CN.C.7.  Students will learn how to solve and express the solutions to any quadratic 

equation.  Students observe that complex solutions to polynomial equations with real coefficients occur in conjugate 

pairs and that only real solutions to polynomial equations are also the 𝑥-intercepts of the graph of the related 

polynomial function.  In essence, this is the transition lesson to the next lesson on factoring all polynomials into linear 

factors.  

 

Classwork  

Opening  (1 minute) 

Since the complex numbers have the same arithmetic properties as the real numbers, we should be able to extend our 

processes for factoring polynomials and finding solutions to polynomial equations to the complex numbers.  Today, we 

extend factoring polynomial expressions and finding solutions to polynomial equations to the complex numbers.  

 

Opening Exercise  (8 minutes)  

Have students individually complete this opening exercise.  Students will eventually identify the expressions in this 

exercise as differences of squares, to which they can apply the identity (𝑥 + 𝑎𝑖)(𝑥 − 𝑎𝑖) = 𝑥2 + 𝑎2.  But, for now, allow 

them to work through the algebra and to confirm for themselves that the imaginary terms combine to  0 in each 

example, resulting in polynomials in standard form with real coefficients.  Invite students to the board to display their 

solutions, and let the class have the first opportunity to correct any mistakes, should it be necessary. 

 

Opening Exercise 

Rewrite each expression as a polynomial in standard form. 

a. (𝒙 + 𝒊)(𝒙 − 𝒊) 

(𝒙 + 𝒊)(𝒙 − 𝒊) = 𝒙𝟐 + 𝒊𝒙 − 𝒊𝒙 − 𝒊𝟐 

= 𝒙𝟐 − 𝒊𝟐 

= 𝒙𝟐 − (−𝟏) 

= 𝒙𝟐 + 𝟏 
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b. (𝒙 + 𝟓𝒊)(𝒙 − 𝟓𝒊) 

(𝒙 + 𝟓𝒊)(𝒙 − 𝟓𝒊) = 𝒙𝟐 + 𝟓𝒊𝒙 − 𝟓𝒊𝒙 − 𝟐𝟓𝒊𝟐 

= 𝒙𝟐 − 𝟐𝟓𝒊𝟐 

= 𝒙𝟐 − 𝟐𝟓(−𝟏) 

= 𝒙𝟐 + 𝟐𝟓 

 

c. (𝒙 − (𝟐 + 𝒊))(𝒙 − (𝟐 − 𝒊))  

(𝒙 − (𝟐 + 𝒊))(𝒙 − (𝟐 − 𝒊)) = 𝒙𝟐 − (𝟐 + 𝒊)𝒙 − (𝟐 − 𝒊)𝒙 + [(𝟐 + 𝒊)(𝟐 − 𝒊)] 

= 𝒙𝟐 − 𝟐𝒙 − 𝒊𝒙 − 𝟐𝒙 + 𝒊𝒙 + [𝟒 − 𝒊𝟐] 

= 𝒙𝟐 − 𝟒𝒙 + [𝟒 − (−𝟏)] 

= 𝒙𝟐 − 𝟒𝒙 + 𝟓 

 

Discussion  (5 minutes) 

Here we begin a dialogue that discusses patterns and regularity observed in the Opening Exercise.  As each question is 

posed, give students time to discuss them with a partner or in their small groups.  To encourage students to be 

accountable for responding to questions during discussion, have them write answers on personal white boards, show a 

thumbs-up when they have an idea, whisper their idea to a partner before asking for a response from the whole group, 

or show their agreement or disagreement to a question by showing a thumbs-up/thumbs-down.   

 Do you observe any patterns among parts (a)–(c) in the Opening Exercise? 

 After each expression is expanded and like terms are collected, we have quadratic polynomials with real 

coefficients.  The imaginary terms were opposites and combined to 0. 

 How could you generalize the patterns into a rule (or identity)? 

 Parts (a) and (b) are instances of the identity  

(𝑥 + 𝑎𝑖)(𝑥 − 𝑎𝑖) = 𝑥2 + 𝑎2.   

 What about part (c)?  Do you notice an instance of the same identity? 

 Yes 

(𝑥 − (2 + 𝑖))(𝑥 − (2 − 𝑖)) = ((𝑥 − 2) − 𝑖)((𝑥 − 2) + 𝑖) 

 Where have we seen a similar identity to (𝑥 + 𝑎𝑖)(𝑥 − 𝑎𝑖) = 𝑥2 + 𝑎2? 

 Recall the polynomial identity (𝑥 + 𝑎)(𝑥 − 𝑎) = 𝑥2 − 𝑎2 from Lesson 6. 

 Recall the quick mental arithmetic we learned in Lesson 7.  Can you compute (3 + 2𝑖)(3 − 2𝑖) mentally?  

 Yes  (3 + 2𝑖)(3 − 2𝑖) = 32 + 22 = 9 + 4 = 13 

 How about (9 + 4𝑖)(9 − 4𝑖)? 

 (9 + 4𝑖)(9 − 4𝑖) = 92 + 42 = 81 + 16 = 97 

 

Exercises 1–2  (5 minutes) 

Students understand that the expansion of (𝑥 + 𝑎𝑖)(𝑥 − 𝑎𝑖) is a polynomial with real coefficients; the imaginary terms 

disappear when working through the algebra.  Now, students are expected to understand this process in reverse; in 

other words, they factor polynomials with real coefficients but complex factors. 
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Exercises 1–4 

Factor the following polynomial expression into products of linear terms. 

1. 𝒙𝟐 + 𝟗 

𝒙𝟐 + 𝟗 = (𝒙 + 𝟑𝒊)(𝒙 − 𝟑𝒊) 

 

2. 𝒙𝟐 + 𝟓 

𝒙𝟐 + 𝟓 = (𝒙 + 𝒊√𝟓)(𝒙 − 𝒊√𝟓) 

 

Discussion  (6 minutes) 

This discussion is the introduction to conjugate pairs in the context of complex numbers.  

Relate this idea back to the idea of conjugate pairs for radical expressions from Lesson 29.  

 In Lesson 29, we saw that the conjugate of a radical expression such as 𝑥 + √5 is 

the expression 𝑥 − √5, and if we multiply a radical expression by its conjugate, 

the result is a rational expression—the radical part disappears.   

(𝑥 + √5)(𝑥 − √5) = 𝑥2 − 𝑥√5 + 𝑥√5 − 5 = 𝑥2 − 5 

 Analogously, complex numbers 𝑎 + 𝑏𝑖 have conjugates.  The conjugate of 𝑎 + 𝑏𝑖 

is 𝑎 − 𝑏𝑖.  Then, we see that 

(𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) = 𝑎2 − 𝑎𝑏𝑖 + 𝑎𝑏𝑖 − 𝑏2𝑖2 = 𝑎2 + 𝑏2.  

 We have observed, for real values of 𝑥 and 𝑎, that the expression  

(𝑥 + 𝑎𝑖)(𝑥 − 𝑎𝑖) is a real number.  The factors (𝑥 + 𝑎𝑖) and (𝑥 − 𝑎𝑖) form a 

conjugate pair.   

Quadratic expressions with real coefficients, as we have seen, can be decomposed into 

real factors or non-real complex factors.  However, non-real factors must be members of a 

conjugate pair; hence, a quadratic expression with real coefficients cannot have exactly 

one complex factor.  

 Similarly, quadratic equations can have real or non-real complex solutions.  If 

there are complex solutions, they will be conjugates of each other.  

 Can a polynomial equation with real coefficients have just one complex solution?  

 No.  If there is a complex solution, then the conjugate is also a solution.  Complex solutions come in 

pairs.  

 Now, can a polynomial equation have real and non-real solutions?  

 Yes, as long as all non-real complex solutions occur in conjugate pairs.  

 For example, the polynomial equation (𝑥2 + 1)(𝑥2 − 1) = 0 has two real solutions, 1 and −1, and two 

complex solutions.  The complex solutions, 𝑖 and −𝑖, form a conjugate pair.  

 If you know that 3 − 2𝑖 is a solution to the polynomial equation 𝑃(𝑥) = 0, can you tell me another solution?  

 Complex solutions come in conjugate pairs, so if 3 − 2𝑖 is a solution to the equation, then its conjugate, 

3 + 2𝑖, is also a solution.  

At this point, have students write down or discuss with their neighbors what they have learned so far.  The teacher 

should walk around the room and check for understanding. 

Scaffolding: 

 Show conjugate pairs 

graphically by graphing (as 

in the previous lessons) a 

parabola with 0, 1, and 2 

solutions and cubic curves 

with a various number of 

solutions.  Let students 

determine visually what is 

possible. 

 Additionally, consider 

having students complete 

a Frayer diagram for the 

term conjugate. 

 As an extension, ask 

students to generate 

conjugate pairs. 
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Exercise 3  (6 minutes)  

Students should work in groups of 2–4 on this exercise.  Invite students to the board to 

present their solutions.  

 

3. Consider the polynomial 𝑷(𝒙) = 𝒙𝟒 − 𝟑𝒙𝟐 − 𝟒. 

a. What are the solutions to 𝒙𝟒 − 𝟑𝒙𝟐 − 𝟒 = 𝟎? 

𝒙𝟒 − 𝟑𝒙𝟐 − 𝟒 = 𝟎 

(𝒙𝟐)𝟐 − 𝟑𝒙𝟐 − 𝟒 = 𝟎 

(𝒙𝟐 + 𝟏)(𝒙𝟐 − 𝟒) = 𝟎 

(𝒙 + 𝒊)(𝒙 − 𝒊)(𝒙 + 𝟐)(𝒙 − 𝟐) = 𝟎 

The solutions are −𝒊, 𝒊, −𝟐, and 𝟐. 

 

b. How many 𝒙-intercepts does the graph of the equation 𝒚 = 𝒙𝟒 − 𝟑𝒙𝟐 − 𝟒 have?  

What are the coordinates of the 𝒙-intercepts? 

The graph of 𝒚 = 𝒙𝟒 − 𝟑𝒙𝟐 − 𝟒 has two 𝒙-intercepts:  (−𝟐, 𝟎) and (𝟐, 𝟎). 

 

c. Are solutions to the polynomial equation 𝑷(𝒙) = 𝟎 the same as the 𝒙-intercepts of the graph of 𝒚 = 𝑷(𝒙)?  

Justify your reasoning.  

No.  Only the real solutions to the equation are 𝒙-intercepts of the graph.  By comparing the graph of the 

polynomial in part (b) to the equation’s solutions from part (c), you can see that only the real number 

solutions to the equation correspond to the 𝒙-intercepts in the Cartesian plane.  

 

 

Exercise 4  (5 minutes)  

Transition students to the next exercise by announcing that they now want to reverse their thinking.  In the previous 

problem, they solved an equation to find the solutions.  Now, pose the question:  Can we construct an equation if we 

know its solutions?  Remind students that when a polynomial equation is written in factored form  

𝑎(𝑥 − 𝑟1)(𝑥 − 𝑟2) ⋯ (𝑥 − 𝑟𝑛) = 0, the solutions to the equation are 𝑟1, 𝑟2, … , 𝑟𝑛.  Students will apply what they learned 

in the previous exercise to create a polynomial equation given its solutions.  The problems scaffold from easier to more 

difficult.  Students are encouraged to rewrite the factored form to show the polynomial in standard form for additional 

practice with complex number arithmetic, but consider having them leave the polynomial in factored form if time is a 

concern.  Have students work with a partner on this exercise.  

4𝑥3 − 𝑥 
𝑥3 − 4𝑥2 + 29𝑥  
𝑥3 − 6𝑥2 + 25𝑥 
𝑥4 − 1 
𝑥4 + 3𝑥2 − 4 
𝑥4 − 4𝑥3 + 5𝑥2 
𝑥4 − 4𝑥3 + 13𝑥2 
𝑥4 − 2𝑥3 − 10𝑥2 
𝑥4 + 13𝑥2 + 36  

Scaffolding: 

Consider having groups work 

Exercise 3 with different 

polynomials: 

 

MP.3 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
 
 
 

 

    

 

 

NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 39 
ALGEBRA II 

Lesson 39: Factoring Extended to the Complex Realm 
 
 

 

464 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

4. Write a polynomial 𝑷 with the lowest possible degree that has the given solutions.  Explain how you generated each 

answer. 

a. −𝟐, 𝟑, −𝟒𝒊, 𝟒𝒊  

The polynomial 𝑷 has two real zeros and two complex zeros.  Since the two complex zeros are members of a 

conjugate pair, 𝑷 may have as few as four total factors.  Therefore, 𝑷 has degree at least 𝟒.   

𝑷(𝒙) = (𝒙 + 𝟐)(𝒙 − 𝟑)(𝒙 + 𝟒𝒊)(𝒙 − 𝟒𝒊) 

= (𝒙𝟐 − 𝒙 − 𝟔)(𝒙𝟐 − 𝟏𝟔𝒊𝟐) 

= (𝒙𝟐 − 𝒙 − 𝟔)(𝒙𝟐 + 𝟏𝟔) 

= 𝒙𝟒 − 𝒙𝟑 − 𝟔𝒙𝟐 + 𝟏𝟔𝒙𝟐 − 𝟏𝟔𝒙 − 𝟗𝟔 

= 𝒙𝟒 − 𝒙𝟑 + 𝟏𝟎𝒙𝟐 − 𝟏𝟔𝒙 − 𝟗𝟔 

 

b. −𝟏, 𝟑𝒊 

The polynomial 𝑷 has one real zero and two complex zeros because complex zeros come in pairs.  Since 𝟑𝒊 and 

−𝟑𝒊 form a conjugate pair, 𝑷 has at least three total factors.  Therefore, 𝑷 has degree at least 𝟑.  

𝑷(𝒙) = (𝒙 + 𝟏)(𝒙 − 𝟑𝒊)(𝒙 + 𝟑𝒊) 

= (𝒙 + 𝟏)(𝒙𝟐 − 𝟗𝒊𝟐) 

= (𝒙 + 𝟏)(𝒙𝟐 + 𝟗) 

= 𝒙𝟑 + 𝒙𝟐 + 𝟗𝒙 + 𝟗 

 

c. 𝟎, 𝟐, 𝟏 + 𝒊, 𝟏 − 𝒊 

Since 𝟏 + 𝒊 and 𝟏 − 𝒊 are complex conjugates, 𝑷 is at least a 4th degree polynomial.  

𝑷(𝒙) = 𝒙(𝒙 − 𝟐)(𝒙 − (𝟏 + 𝒊))(𝒙 − (𝟏 − 𝒊)) 

= 𝒙(𝒙 − 𝟐)[(𝒙 − 𝟏) − 𝒊][(𝒙 − 𝟏) + 𝒊] 

= 𝒙(𝒙 − 𝟐)[(𝒙 − 𝟏)𝟐 − 𝒊𝟐] 

= 𝒙(𝒙 − 𝟐)[(𝒙𝟐 − 𝟐𝒙 + 𝟏) + 𝟏] 

= 𝒙(𝒙 − 𝟐)(𝒙𝟐 − 𝟐𝒙 + 𝟐) 

= 𝒙(𝒙𝟑 − 𝟐𝒙𝟐 + 𝟐𝒙 − 𝟐𝒙𝟐 + 𝟒𝒙 − 𝟒) 

= 𝒙(𝒙𝟑 − 𝟒𝒙𝟐 + 𝟔𝒙 − 𝟒) 

= 𝒙𝟒 − 𝟒𝒙𝟑 + 𝟔𝒙𝟐 − 𝟒𝒙 

 

d. √𝟐, −√𝟐, 𝟑, 𝟏 + 𝟐𝒊 

Since 𝟏 + 𝟐𝒊 is a complex solution to 𝑷(𝒙) = 𝟎, its conjugate, 𝟏 − 𝟐𝒊, must also be a complex solution.  Thus, 

𝑷 is at least a fifth-degree polynomial. 

𝑷(𝒙) = (𝒙 − √𝟐)(𝒙 + √𝟐)(𝒙 − 𝟑)(𝒙 − (𝟏 + 𝟐𝒊))(𝒙 − (𝟏 − 𝟐𝒊)) 

= (𝒙𝟐 − 𝟐)(𝒙 − 𝟑)[(𝒙 − 𝟏) − 𝟐𝒊][(𝒙 − 𝟏) + 𝟐𝒊] 

= (𝒙𝟐 − 𝟐)(𝒙 − 𝟑)[(𝒙 − 𝟏)𝟐 − 𝟒𝒊𝟐] 

= (𝒙𝟐 − 𝟐)(𝒙 − 𝟑)[(𝒙𝟐 − 𝟐𝒙 + 𝟏) + 𝟒] 

= (𝒙𝟐 − 𝟐)(𝒙 − 𝟑)(𝒙𝟐 − 𝟐𝒙 + 𝟓) 

= (𝒙𝟑 − 𝟑𝒙𝟐 − 𝟐𝒙 + 𝟔)(𝒙𝟐 − 𝟐𝒙 + 𝟓) 

= 𝒙𝟓 − 𝟓𝒙𝟒 + 𝟗𝒙𝟑 − 𝟓𝒙𝟐 − 𝟐𝟐𝒙 + 𝟑𝟎 
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e. 𝟐𝒊, 𝟑 − 𝒊 

The complex conjugates of 𝟐𝒊 and 𝟑 − 𝒊 are −𝟐𝒊 and 𝟑 + 𝒊, respectively.  So, 𝑷 is at least a fourth-degree 

polynomial. 

𝑷(𝒙) = (𝒙 − 𝟐𝒊)(𝒙 + 𝟐𝒊)(𝒙 − (𝟑 − 𝒊))(𝒙 − (𝟑 + 𝒊)) 

= (𝒙𝟐 − 𝟒𝒊𝟐)[(𝒙 − 𝟑) + 𝒊][(𝒙 − 𝟑) − 𝒊] 

= (𝒙𝟐 + 𝟒)[(𝒙 − 𝟑)𝟐 − 𝒊𝟐] 

= (𝒙𝟐 + 𝟒)[(𝒙𝟐 − 𝟔𝒙 + 𝟗) + 𝟏] 

= (𝒙𝟐 + 𝟒)(𝒙𝟐 − 𝟔𝒙 + 𝟏𝟎) 

= 𝒙𝟒 − 𝟔𝒙𝟑 + 𝟏𝟒𝒙𝟐 − 𝟐𝟒𝒙 + 𝟒𝟎 

 

Closing  (3 minutes) 

Have students break into small groups to discuss what they learned today.  Today’s lesson is summarized in the box 

below.  

 

 

Exit Ticket  (6 minutes)  

In this Exit Ticket, students solve quadratic equations with real and complex solutions.   

  

Lesson Summary  

 Polynomial equations with real coefficients can have real or complex solutions or they can have both.  

 If a complex number is a solution to a polynomial equation, then its conjugate is also a solution. 

 Real solutions to polynomial equations correspond to the 𝒙-intercepts of the associated graph, but 

complex solutions do not. 
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Name                                   Date                          

Lesson 39:  Factoring Extended to the Complex Realm 

 
Exit Ticket 
 

1. Solve the quadratic equation 𝑥2 + 9 = 0.  What are the 𝑥-intercepts of the graph of the function 𝑓(𝑥) = 𝑥2 + 9? 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Find the solutions to 2𝑥5 − 5𝑥3 − 3𝑥 = 0.  What are the 𝑥-intercepts of the graph of the function  

𝑓(𝑥) = 2𝑥5 − 5𝑥3 − 3𝑥? 
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Exit Ticket Sample Solutions 

 

1. Solve the quadratic equation 𝒙𝟐 + 𝟗 = 𝟎.  What are the 𝒙-intercepts of the graph of the function 𝒇(𝒙) = 𝒙𝟐 + 𝟗? 

𝒙𝟐 + 𝟗 = 𝟎 

𝒙𝟐 = −𝟗 

𝒙 = √−𝟗  or 𝒙 = −√−𝟗  

𝒙 = 𝟑√−𝟏 or 𝒙 = −𝟑√−𝟏 

𝒙 = 𝟑𝒊 or 𝒙 = −𝟑𝒊 

The 𝒙-intercepts of the graph of the function 𝒇(𝒙) = 𝒙𝟐 + 𝟗 are the real solutions to the equation 𝒙𝟐 + 𝟗 = 𝟎.  

However, since both solutions to 𝒙𝟐 + 𝟗 = 𝟎 are not real, the function 𝒇(𝒙) = 𝒙𝟐 + 𝟗 does not have any 𝒙-

intercepts. 

 

2. Find the solutions to 𝟐𝒙𝟓 − 𝟓𝒙𝟑 − 𝟑𝒙 = 𝟎.  What are the 𝒙-intercepts of the graph of the function  

𝒇(𝒙) = 𝟐𝒙𝟓 − 𝟓𝒙𝟑 − 𝟑𝒙? 

(𝟐𝒙𝟒 − 𝟓𝒙𝟐 − 𝟑) = 𝟎 

𝒙(𝒙𝟐 − 𝟑)(𝟐𝒙𝟐 + 𝟏) = 𝟎 

𝒙(𝒙 + √𝟑)(𝒙 − √𝟑)(𝟐𝒙𝟐 + 𝟏) = 𝟎 

𝒙(𝒙 + √𝟑)(𝒙 − √𝟑) (𝒙 +
𝒊√𝟐

𝟐
) (𝒙 −

𝒊√𝟐

𝟐
) = 𝟎 

Thus,  𝒙 = 𝟎,  𝒙 = −√𝟑,  𝒙 = √𝟑,  𝒙 = −
𝒊√𝟐

𝟐
,  or  𝒙 =

𝒊√𝟐

𝟐
.  

The solutions are 𝟎, √𝟑, −√𝟑,  
𝒊√𝟐

𝟐
, and−

𝒊√𝟐

𝟐
. 

The 𝒙-intercepts of the graph of the function 𝒇(𝒙) = 𝟐𝒙𝟓 − 𝟓𝒙𝟑 − 𝟑𝒙 are the real solutions to the equation  

𝟐𝒙𝟓 − 𝟓𝒙𝟑 − 𝟑𝒙 = 𝟎, so the 𝒙-intercepts are 𝟎, √𝟑, and−√𝟑. 

 
 
Problem Set Sample Solutions   

 

1. Rewrite each expression in standard form.  

a. (𝒙 + 𝟑𝒊)(𝒙 − 𝟑𝒊) 

𝒙𝟐 + 𝟑𝟐 = 𝒙𝟐 + 𝟗 

 

b. (𝒙 − 𝒂 + 𝒃𝒊)(𝒙 − (𝒂 + 𝒃𝒊)) 

(𝒙 − 𝒂 + 𝒃𝒊)(𝒙 − (𝒂 + 𝒃𝒊)) = ((𝒙 − 𝒂) + 𝒃𝒊)((𝒙 − 𝒂) − 𝒃𝒊) 

= (𝒙 − 𝒂)𝟐 + 𝒃𝟐 

= 𝒙𝟐 − 𝟐𝒂𝒙 + 𝒂𝟐 + 𝒃𝟐 

 

c. (𝒙 + 𝟐𝒊)(𝒙 − 𝒊)(𝒙 + 𝒊)(𝒙 − 𝟐𝒊) 

(𝒙 + 𝟐𝒊)(𝒙 − 𝟐𝒊)(𝒙 + 𝒊)(𝒙 − 𝒊) = (𝒙𝟐 + 𝟐𝟐)(𝒙𝟐 + 𝟏𝟐) 

= (𝒙𝟐 + 𝟒)(𝒙𝟐 + 𝟏) 

= 𝒙𝟒 + 𝟓𝒙𝟐 + 𝟒 
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d. (𝒙 + 𝒊)𝟐 ⋅ (𝒙 − 𝒊)𝟐 

(𝒙 + 𝒊)(𝒙 − 𝒊) ⋅ (𝒙 + 𝒊)(𝒙 − 𝒊) = (𝒙𝟐 + 𝟏)(𝒙𝟐 + 𝟏) 

= 𝒙𝟒 + 𝟐𝒙𝟐 + 𝟏 

 

2. Suppose in Problem 1 that you had no access to paper, writing utensils, or technology.  How do you know that the 

expressions in parts (a)–(d) are polynomials with real coefficients? 

In part (a), the identity (𝒙 + 𝒂𝒊)(𝒙 − 𝒂𝒊) = 𝒙𝟐 + 𝒂𝟐 can be applied.  Since the number 𝒂 is real, the resulting 

polynomial will have real coefficients.  The remaining three expressions can all be rearranged to take advantage of 

the conjugate pairs identity.  In parts (c) and (d), regrouping terms will produce products of polynomial expressions 

with real coefficients, which will again have real coefficients.  

 

3. Write a polynomial equation of degree 4 in standard form that has the solutions 𝒊, −𝒊, 𝟏, −𝟏. 

The first step is writing the equation in factored form:  

(𝒙 + 𝒊)(𝒙 − 𝒊)(𝒙 + 𝟏)(𝒙 − 𝟏) = 𝟎. 

Then, use the commutative property to rearrange terms and apply the difference of squares formula: 

(𝒙 + 𝒊)(𝒙 − 𝒊)(𝒙 + 𝟏)(𝒙 − 𝟏) = (𝒙𝟐 + 𝟏)(𝒙𝟐 − 𝟏) 

= 𝒙𝟒 − 𝟏. 

So, the standard form of the equation is  

𝒙𝟒 − 𝟏 = 𝟎. 

 

4. Explain the difference between 𝒙-intercepts and solutions to an equation.  Give an example of a polynomial with 

real coefficients that has twice as many solutions as 𝒙-intercepts.  Write it in standard form. 

The 𝒙-intercepts are the real solutions to a polynomial equation with real coefficients.  The solutions to an equation 

can be real or not real.  The previous problem is an example of a polynomial with twice as many solutions than 𝒙-

intercepts.  Or, we could consider the equation 𝒙𝟒 − 𝟔𝒙𝟑 + 𝟏𝟑𝒙𝟐 − 𝟏𝟐𝒙 + 𝟒 = 𝟎, which has zeros of multiplicity 𝟐 at 

both 𝟏 and 𝟐.  

 

5. Find the solutions to 𝒙𝟒 − 𝟓𝒙𝟐 − 𝟑𝟔 = 𝟎 and the 𝒙-intercepts of the graph of 𝒚 = 𝒙𝟒 − 𝟓𝒙𝟐 − 𝟑𝟔. 

(𝒙𝟐 + 𝟒)(𝒙𝟐 − 𝟗) = 𝟎 

(𝒙 + 𝟐𝒊)(𝒙 − 𝟐𝒊)(𝒙 + 𝟑)(𝒙 − 𝟑) = 𝟎 

Since the solutions are 𝟐𝒊, −𝟐𝒊, 𝟑, and −𝟑, and only real solutions to the equation are 𝒙-intercepts of the graph, the 

𝒙-intercepts are 𝟑 and −𝟑.  

 

6. Find the solutions to 𝟐𝒙𝟒 − 𝟐𝟒𝒙𝟐 + 𝟒𝟎 = 𝟎 and the 𝒙-intercepts of the graph of 𝒚 = 𝟐𝒙𝟒 − 𝟐𝟒𝒙𝟐 + 𝟒𝟎. 

𝟐(𝒙𝟒 − 𝟏𝟐𝒙𝟐 + 𝟐𝟎) = 𝟎 

𝟐(𝒙𝟐 − 𝟏𝟎)(𝒙𝟐 − 𝟐) = 𝟎 

Since all of the solutions √𝟏𝟎, −√𝟏𝟎, √𝟐, and −√𝟐 are real numbers, the 𝒙-intercepts of the graph are 

√𝟏𝟎, −√𝟏𝟎, √𝟐, and −√𝟐. 
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7. Find the solutions to 𝒙𝟒 − 𝟔𝟒 = 𝟎 and the 𝒙-intercepts of the graph of 𝒚 = 𝒙𝟒 − 𝟔𝟒. 

(𝒙𝟐 + 𝟖)(𝒙𝟐 − 𝟖) = 𝟎 

(𝒙 + √𝟖𝒊)(𝒙 − √𝟖𝒊)(𝒙 + √𝟖)(𝒙 − √𝟖) = 𝟎 

The 𝒙-intercepts are 𝟐√𝟐 and −𝟐√𝟐. 

 

8. Use the fact that 𝒙𝟒 + 𝟔𝟒 = (𝒙𝟐 − 𝟒𝒙 + 𝟖)(𝒙𝟐 + 𝟒𝒙 + 𝟖) to explain how you know that the graph of 𝒚 = 𝒙𝟒 + 𝟔𝟒 

has no 𝒙-intercepts.  You need not find the solutions. 

The 𝒙-intercepts of 𝒚 = 𝒙𝟒 + 𝟔𝟒 are solutions to (𝒙𝟐 − 𝟒𝒙 + 𝟖)(𝒙𝟐 + 𝟒𝒙 + 𝟖) = 𝟎.  Both 𝒙𝟐 − 𝟒𝒙 + 𝟖 = 𝟎 and  

𝒙𝟐 + 𝟒𝒙 + 𝟖 = 𝟎 have negative discriminant values of −𝟏𝟔, so the equations 𝒙𝟐 − 𝟒𝒙 + 𝟖 = 𝟎 and  

𝒙𝟐 + 𝟒𝒙 + 𝟖 = 𝟎 have no real solutions.  Thus, the equation 𝒙𝟒 + 𝟔𝟒 = 𝟎 has no real solutions, and the graph of  

𝒚 = 𝒙𝟒 + 𝟔𝟒 has no 𝒙-intercepts.  

Since 𝒙𝟒 + 𝟔𝟒 = 𝟎 has no real solutions, the graph of 𝒚 = 𝒙𝟒 + 𝟔𝟒 has no 𝒙-intercepts. 
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Lesson 40:  Obstacles Resolved—A Surprising Result  

 
Student Outcomes  

 Students understand the fundamental theorem of algebra and that all polynomial expressions factor into 

linear terms in the realm of complex numbers.  

 
Lesson Notes  

There is no real consensus in the literature about what exactly constitutes the fundamental theorem of algebra; it is 

stated differently in different texts.  The two-part theorem stated in this lesson encapsulates the main ideas of the 

theorem and its corollaries while remaining accessible to students.  The first part of what is stated here as the 

fundamental theorem of algebra is the one that students are not mathematically equipped to prove or justify at this 

level; this part states that every polynomial equation has at least one solution in the complex numbers and will need to 

be accepted without proof.  The consequence of this first part is what is really interesting—that every polynomial 

expression factors into the same number of linear factors as its degree.  Justification for this second part of the 

fundamental theorem of algebra is accessible for students as long as they can accept the first part without needing 

proof.  Since every polynomial of degree 𝑛 ≥ 1 will factor into 𝑛 linear factors, then any polynomial function of degree 𝑛 

will have 𝑛 zeros (including repeated zeros). 

 

Classwork  

Opening Exercise  (5 minutes)  

At the beginning of the lesson, focus on the most familiar of polynomial expressions, the quadratic equations.  Ensure 

that students understand the link provided by the remainder theorem between solutions of polynomial equations and 

factors of the associated polynomial expression.  Allow students time to work on the Opening Exercise, and then debrief. 

 

Opening Exercise 

Write each of the following quadratic expressions as a product of linear factors.  Verify that the factored form is 

equivalent.  

a. 𝒙𝟐 + 𝟏𝟐𝒙 + 𝟐𝟕 (𝒙 + 𝟑)(𝒙 + 𝟗) 

b. 𝒙𝟐 − 𝟏𝟔 (𝒙 + 𝟒)(𝒙 − 𝟒) 

c. 𝒙𝟐 + 𝟏𝟔 (𝒙 + 𝟒𝒊)(𝒙 − 𝟒𝒊) 

d. 𝒙𝟐 + 𝟒𝒙 + 𝟓 (𝒙 + 𝟐 + 𝒊)(𝒙 + 𝟐 − 𝒊) 
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Discussion  (7 minutes) 

Remind students about the remainder theorem studied in Lesson 19 in this module.  The remainder theorem states that 

if 𝑃 is a polynomial function, and 𝑃(𝑎) = 0 for some value of 𝑎, then 𝑥 − 𝑎 is a factor of 𝑃.  The remainder theorem 

plays an important role in the development of this lesson, linking the solutions of a polynomial equation to the factors of 

the associated polynomial expression.  

 With a partner, describe any patterns you see in the Opening Exercise. 

 Can every quadratic polynomial be written in terms of linear factors?  If so, how many linear factors?  

 Yes; two   

 How do you know? 

 Every quadratic equation has two solutions that can be found using the quadratic formula.  These 

solutions of the equation lead to linear factors of the quadratic polynomial. 

 What types of solutions can a quadratic equation have?  What does this mean about the graph of the 

corresponding function? 

 The equation has either two real solutions, one real solution, or two complex solutions.  These 

situations correspond to the graph having two 𝑥-intercepts, one 𝑥-intercept, or no 𝑥-intercepts.  

Be sure that students realize that real numbers are also complex numbers; a real number 𝑎 can be written as 𝑎 + 0𝑖. 

 

Example 1 (8 minutes)  

The purpose of this example is to help students move fluently between the concepts of 𝑥-intercepts of the graph of a 

polynomial equation 𝑦 = 𝑃(𝑥), the solutions of the polynomial equation 𝑃(𝑥) = 0, and the factors in the factored form 

of the associated polynomial 𝑃.  Talk students through parts (a)–(e), and then allow them time to work alone or in pairs 

on part (f) before completing the discussion.   

 

Example 1 

Consider the polynomial 𝑷(𝒙) =  𝒙𝟑 +  𝟑𝒙𝟐 +  𝒙 –  𝟓 whose graph is shown 

to the right. 

a. Looking at the graph, how do we know that there is only one 

real solution? 

The graph has only one 𝒙-intercept. 

 

b. Is it possible for a cubic polynomial function to have no zeros? 

No.  Since the opposite ends of the graph of a cubic function go 

in opposite directions, the graph must cross the 𝒙-axis at some 

point.  Since the graph must have an 𝒙-intercept, the function 

must have a zero. 

 

c. From the graph, what appears to be one solution to the equation 𝒙𝟑 + 𝟑𝒙𝟐 + 𝒙– 𝟓 = 𝟎? 

The only real solution appears to be 𝟏.  

 

 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
 
 
 

 

    

 

 

NYS COMMON CORE MATHEMATICS CURRICULUM M1 Lesson 40 
ALGEBRA II 

Lesson 40: Obstacles Resolved—A Surprising Result 
 
 

 

472 

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015  Great Minds. eureka-math.org 
This file derived from ALG II-M1-TE-1.3.0-07.2015 

 

This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

d. How can we verify that this value is a solution? 

Evaluate the function at 𝟏; that is, verify that 𝑷(𝟏) = 𝟎.   

𝑷(𝟏) = (𝟏)𝟑 + 𝟑(𝟏)𝟐 + 𝟏 − 𝟓 = 𝟏 + 𝟐 + 𝟏 − 𝟓 = 𝟎 

 

e. According to the remainder theorem, what is one factor of the cubic expression 𝒙𝟑 + 𝟑𝒙𝟐 + 𝒙 − 𝟓? 

(𝒙 − 𝟏) 

 

f. Factor out the expression you found in part (e) from 𝒙𝟑  +  𝟑𝒙𝟐  +  𝒙 –  𝟓.  

Using polynomial division, we see that 𝒙𝟑 + 𝟑𝒙𝟐 + 𝒙 − 𝟓 = (𝒙 − 𝟏)(𝒙𝟐 + 𝟒𝒙 + 𝟓).   

 

g. What are all of the solutions to 𝒙𝟑 + 𝟑𝒙𝟐 + 𝒙 − 𝟓 = 𝟎? 

The quadratic equation 𝒙𝟐 + 𝟒𝒙 + 𝟓 = 𝟎 has solutions −𝟐 − 𝒊 and −𝟐 + 𝒊 by the 

quadratic formula, so the original equation has solutions 𝟏, −𝟐 − 𝒊, and −𝟐 + 𝒊. 

 

h. Write the expression 𝒙𝟑 + 𝟑𝒙𝟐 + 𝒙 − 𝟓 in terms of linear factors. 

The factored form of the cubic expression is 

𝒙𝟑 + 𝟑𝒙𝟐 + 𝒙 − 𝟓 = (𝒙 − 𝟏)(𝒙 − (−𝟐 − 𝒊))(𝒙 − (−𝟐 + 𝒊)) 

= (𝒙 − 𝟏)(𝒙 + 𝟐 + 𝒊)(𝒙 + 𝟐 − 𝒊). 

 

 We established earlier in the lesson that all quadratic expressions can be written in 

terms of two linear factors.  How many factors did our cubic expression have? 

 Three 

 Is it true that every cubic expression can be factored into three linear factors? 

 Yes, because a cubic equation will always have at least one real solution that corresponds to a linear 

factor of the expression.  What is left over will be a quadratic expression, which can be written in terms 

of two linear factors. 

If students don’t seem ready to answer the last question or are unsure of the answer, let them work through Exercise 1 

and then readdress it. 

 

Exercises 1–2  (6 minutes)  

Give students time to work through the two exercises and then lead the discussion that follows. 

  

Scaffolding: 

 For students who are 
struggling with part (g), 
point out that the 
remaining quadratic 
polynomial is the same as 
one of the problems from 
the Opening Exercise. 

 As an extension, ask 
students to create a 
polynomial equation that 
has three real and two 
complex solutions.  
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Exercises 1–2 

Write each polynomial in terms of linear factors.  The graph of  

𝒚 = 𝒙𝟑 − 𝟑𝒙𝟐 + 𝟒𝒙 − 𝟏𝟐 is provided for Exercise 2.   

1. 𝒇(𝒙) = 𝒙𝟑 + 𝟓𝒙 

𝒇(𝒙) = 𝒙(𝒙 + 𝒊√𝟓)(𝒙 − 𝒊√𝟓) 

 

 

2. 𝒈(𝒙) = 𝒙𝟑– 𝟑𝒙𝟐 + 𝟒𝒙– 𝟏𝟐  

𝒈(𝒙) = (𝒙 − 𝟑)(𝒙 + 𝟐𝒊)(𝒙 − 𝟐𝒊) 

 

 

Discussion  (3 minutes) 

 Do your results from Exercises 1 and 2 agree with our conclusions from Example 

1? 

 Yes, each cubic function could be written as a product of three linear 

factors. 

 Make a conjecture about what might happen if we factored a degree 4 

polynomial.  What about a degree 5 polynomial?  Explain your reasoning.  

 A degree 4 polynomial should have 4 linear factors.  Based on the 

previous examples, it seems that a polynomial has as many linear factors 

as its degree.  Similarly, a degree 5 polynomial should be able to be 

written as a product of 5 linear factors. 

 Our major conclusion in this lesson is a two-part theorem known as the 

fundamental theorem of algebra (FTA).  Part 1 of the fundamental theorem of 

algebra says that every polynomial equation has at least one solution in the 

complex numbers.  Does that agree with our experience? 

 Yes 

 Think about how we factor a polynomial expression 𝑃:  We find one solution 𝑎 to 𝑃(𝑥) = 0, then we factor out 

the term (𝑥 − 𝑎).  We are left with a new polynomial expression of one degree lower than 𝑃, so we look for 

another solution, and repeat until we have factored everything into linear parts.   

 Consider the polynomial 𝑃(𝑥) = 𝑥4 − 3𝑥3 + 6𝑥2 − 12𝑥 + 8 in the next example. 

 

Example 2  (8 minutes)  

While we do not have the mathematical tools or experience needed to prove the fundamental theorem of algebra 

(either part), this example illustrates how the logic of the second part of the FTA works.  Lead students through this 

example, allowing time for factoring and discussion at each step. 

  

Scaffolding: 

To meet a variety of student 

needs, ask students to: 

 Restate the FTA in their 
own words (either in 
writing or verbally). 

 Illustrate the FTA with an 
example.  For instance, 
show that the FTA is true 
for some polynomial 
function. 

 Apply the FTA to some 
examples.  For instance, 
how many linear factors 
would be in the factored 

form of 𝑥5 − 3𝑥 + 1?  
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Example 2 

Consider the polynomial function 𝑷(𝒙) = 𝒙𝟒 − 𝟑𝒙𝟑 + 𝟔𝒙𝟐 − 𝟏𝟐𝒙 + 𝟖, 

whose corresponding graph 𝒚 = 𝒙𝟒 − 𝟑𝒙𝟑 + 𝟔𝒙𝟐 − 𝟏𝟐𝒙 + 𝟖 is shown to 

the right.  How many zeros does 𝑷 have? 

a. Part 1 of the fundamental theorem of algebra says that this 

equation will have at least one solution in the complex 

numbers.  How does this align with what we can see in the 

graph to the right?  

Since the graph has 𝟐 𝒙-intercepts, there appear to be 𝟐 zeros 

to the function.  We were guaranteed one zero, but we know 

there are at least two. 

 

b. Identify one zero from the graph. 

One zero is 𝟏.  (The other is 𝟐.)  

 

c. Use polynomial division to factor out one linear term from the expression 𝒙𝟒 − 𝟑𝒙𝟑 + 𝟔𝒙𝟐 − 𝟏𝟐𝒙 + 𝟖.   

𝒙𝟒 − 𝟑𝒙𝟑 + 𝟔𝒙𝟐 − 𝟏𝟐𝒙 + 𝟖 = (𝒙 − 𝟏)(𝒙𝟑 − 𝟐𝒙𝟐 + 𝟒𝒙 − 𝟖)  

 

d. Now we have a cubic polynomial to factor.  We know by part 𝟏 of the fundamental theorem of algebra that a 

polynomial function will have at least one real zero.  What is that zero in this case? 

The original polynomial function had real zeros at 𝟏 and 𝟐, so the cubic function 𝑷(𝒙) = 𝒙𝟑 − 𝟐𝒙𝟐 + 𝟒𝒙 − 𝟖 

has a zero at 𝟐.   

 

e. Use polynomial division to factor out another linear term of 𝒙𝟒 − 𝟑𝒙𝟑 + 𝟔𝒙𝟐 − 𝟏𝟐𝒙 + 𝟖.  

𝒙𝟒 − 𝟑𝒙𝟑 + 𝟔𝒙𝟐 − 𝟏𝟐𝒙 + 𝟖 = (𝒙 − 𝟏)(𝒙𝟑 − 𝟐𝒙𝟐 + 𝟒𝒙 − 𝟖) = (𝒙 − 𝟏)(𝒙 − 𝟐)(𝒙𝟐 + 𝟒)  

 

f. Are we done?  Can we factor this polynomial any further?  

At this point, we can see that 𝒙𝟐 + 𝟒 = (𝒙 + 𝟐𝒊)(𝒙 − 𝟐𝒊), so 

𝒙𝟒 − 𝟑𝒙𝟑 + 𝟔𝒙𝟐 − 𝟏𝟐𝒙 + 𝟖 = (𝒙 − 𝟏)(𝒙 − 𝟐)(𝒙 + 𝟐𝒊)(𝒙 − 𝟐𝒊). 

 

g. Now that the polynomial is in factored form, we can quickly see how many solutions there are to the original 

equation 𝒙𝟒– 𝟑𝒙𝟑 + 𝟔𝒙𝟐– 𝟏𝟐𝒙 + 𝟖 = 𝟎. 

If 𝒙𝟒– 𝟑𝒙𝟑 + 𝟔𝒙𝟐– 𝟏𝟐𝒙 + 𝟖 = 𝟎, then (𝒙 − 𝟏)(𝒙 − 𝟐)(𝒙 + 𝟐𝒊)(𝒙 − 𝟐𝒊) = 𝟎, so the solutions are 𝟏, 𝟐, 𝟐𝒊 and 

– 𝟐𝒊. So, the polynomial 𝑷 has 𝟒 zeros; 𝟐 are real numbers, and 𝟐 are complex numbers.  

 

h. What if we had started with a polynomial function of degree 𝟖? 

We would find the first zero and factor out a linear term, leaving a polynomial of degree 𝟕.  We would then 

find another zero, factor out a linear term, leaving a polynomial of degree 𝟔.  We would repeat this process 

until we had a quadratic polynomial remaining; then, we would factor that with the help of the quadratic 

formula.  We would have 𝟖 linear factors at the end of the process that correspond to the 𝟖 zeros of the 

original function. 
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The logic students just followed leads to part 2 of the fundamental theorem of algebra, which is the result that was 

already conjectured:  A polynomial of degree 𝑁 ≥ 1 will factor into 𝑁 linear factors with complex coefficients.  

Collectively, these two results are often just referred to as the fundamental theorem of algebra.  Although students have 

only worked with polynomials with real coefficients, the FTA applies to polynomial functions with real coefficients, such 

as 𝑃(𝑥) = 𝑥3 + 2𝑥2 − 4  as well as to polynomial functions with non-real coefficients, such as  

𝑃(𝑥) = 𝑥3 + 3𝑖𝑥2 + 4 − 2𝑖.  Students have not attempted to justify the first part, but they should be able to justify the 

second part of the theorem.  

 

 Why is the fundamental theorem of algebra so “fundamental” to mathematics? 

 The fundamental theorem says that the complex number system contains every zero of every 

polynomial function.  We do not need to look anywhere else to find zeros to these types of functions.   

 Notice that the fundamental theorem just tells us that the factorization of the polynomial exists; it does not 

help us actually find it.  If we had been given a polynomial function that did not have any real zeros, it would 

have been very hard to start the factorization process.  

 

Closing  (3 minutes) 

 With a partner, summarize the key points of this lesson.  

 What does the fundamental theorem of algebra guarantee? 

 A polynomial of degree 𝑁 ≥ 1 will factor into 𝑁 linear factors, and the associated function will have 𝑁 

zeros, some of which may be repeated.  

 Why is this important? 

 The fundamental theorem of algebra ensures that there are as many zeros as we’d expect for a 

polynomial function and that factoring will always (in theory) work to find solutions to polynomial 

equations. 

 Illustrate the fundamental theorem of algebra with an example. 

  

Fundamental Theorem of Algebra 

1. Every polynomial function of degree 𝑁 ≥ 1 with real or complex coefficients has at least 

one real or complex zero.  

2. Every polynomial of degree 𝑁 ≥ 1 with real or complex coefficients factors into 𝑁 linear 

terms with real or complex coefficients.  
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Exit Ticket  (5 minutes)  

  

Lesson Summary  

Every polynomial function of degree 𝒏, for 𝒏 ≥ 𝟏, has 𝒏 roots over the complex numbers, counted with multiplicity.  

Therefore, such polynomials can always be factored into 𝒏 linear factors, and the obstacles to factoring we saw 

before have all disappeared in the larger context of allowing solutions to be complex numbers.   

The Fundamental Theorem of Algebra: 

1. If 𝑷 is a polynomial function of degree 𝒏 ≥ 𝟏, with real or complex coefficients, then there exists at least 

one number 𝒓 (real or complex) such that 𝑷(𝒓) = 𝟎.  

2. If 𝑷 is a polynomial function of degree 𝒏 ≥ 𝟏, given by 𝑷(𝒙) = 𝒂𝒏𝒙𝒏 + 𝒂𝒏−𝟏𝒙𝒏−𝟏  + ⋯ + 𝒂𝟏𝒙 + 𝒂𝟎 with 

real or complex coefficients 𝒂𝒊, then 𝑷 has exactly 𝒏 zeros 𝒓𝟏, 𝒓𝟐, … , 𝒓𝒏 (not all necessarily distinct), such 

that 𝑷(𝒙) = 𝒂𝒏(𝒙 − 𝒓𝟏)(𝒙 − 𝒓𝟐) ⋯ (𝒙 − 𝒓𝒏). 
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Name                                   Date                          

Lesson 40:  Obstacles Resolved—A Surprising Result 

 
Exit Ticket 
 

Consider the degree 5 polynomial function 𝑃(𝑥) = 𝑥5 − 4𝑥3 + 2𝑥2 +

3𝑥 − 5, whose graph is shown below.  You do not need to factor this 

polynomial to answer the questions below. 

1. How many linear factors is 𝑃 guaranteed to have?  Explain. 

 

 

 

 

 

2. How many zeros does 𝑃 have?  Explain. 

 

 

 

 

 

3. How many real zeros does 𝑃 have?  Explain. 

 

 

 

 

 

4. How many complex zeros does 𝑃 have?  Explain. 
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Exit Ticket Sample Solutions 

 

Consider the degree 𝟓 polynomial function 𝑷(𝒙) = 𝒙𝟓 − 𝟒𝒙𝟑 + 𝟐𝒙𝟐 + 𝟑𝒙 − 𝟓 whose graph is shown below.  You do not 

need to factor this polynomial to answer the questions below. 

1. How many linear factors is 𝑷 guaranteed to have?  Explain. 

The polynomial expression must have 𝟓 linear factors.  The fundamental 

theorem of algebra guarantees that a polynomial function can be written in 

terms of linear factors and must have the same number of linear factors as its 

degree.  

 

2. How many zeros does 𝑷 have?  Explain. 

Since 𝑷 can be written in terms of 𝟓 linear factors, the equation 𝑷 must have 

𝟓 zeros (counted with multiplicity). 

 

3. How many real zeros does 𝑷 have?  Explain. 

The graph crosses the 𝒙-axis 𝟑 times, which means that three of the zeros are real numbers. 

 

4. How many complex zeros does 𝑷 have?  Explain. 

Since 𝑷 must have 𝟓 total zeros and only 𝟑 of them are real, there must be 𝟐 complex zeros. 

 
 
Problem Set Sample Solutions 

 

1. Write each quadratic function below in terms of linear factors. 

a. 𝒇(𝒙) = 𝒙𝟐 − 𝟐𝟓 

𝒇(𝒙) = (𝒙 + 𝟓)(𝒙 − 𝟓) 

 

b. 𝒇(𝒙) = 𝒙𝟐 + 𝟐𝟓 

𝒇(𝒙) = (𝒙 + 𝟓𝒊)(𝒙 − 𝟓𝒊) 

c. 𝒇(𝒙) = 𝟒𝒙𝟐 + 𝟐𝟓 

𝒇(𝒙) = (𝟐𝒙 + 𝟓𝒊)(𝟐𝒙 − 𝟓𝒊) 

d. 𝒇(𝒙) = 𝒙𝟐 − 𝟐𝒙 + 𝟏 

𝒇(𝒙) = (𝒙 − 𝟏)(𝒙 − 𝟏) 

e. 𝒇(𝒙) = 𝒙𝟐 − 𝟐𝒙 + 𝟒 

𝒇(𝒙) = (𝒙 − 𝟏 + 𝒊√𝟑)(𝒙 − 𝟏 − 𝒊√𝟑) 

 

 

2. Consider the polynomial function 𝑷(𝒙) = (𝒙𝟐 + 𝟒)(𝒙𝟐 + 𝟏)(𝟐𝒙 + 𝟑)(𝟑𝒙 − 𝟒). 

a. Express 𝑷 in terms of linear factors. 

𝑷(𝒙) = (𝒙 + 𝟐𝒊)(𝒙 − 𝟐𝒊)(𝒙 + 𝒊)(𝒙 − 𝒊)(𝟐𝒙 + 𝟑)(𝟑𝒙 − 𝟒) 

 

b. Fill in the blanks of the following sentence. 

The polynomial 𝑷 has degree   𝟔  and can, therefore, be written in terms of   𝟔  linear factors.  

The function 𝑷 has   𝟔   zeros.  There are  𝟐  real zeros and  𝟒  complex zeros.  The 

graph of 𝒚 = 𝑷(𝒙) has   𝟐   𝒙-intercepts. 
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3. Express each cubic function below in terms of linear factors. 

a. 𝒇(𝒙) = 𝒙𝟑 − 𝟔𝒙𝟐 − 𝟐𝟕𝒙 

𝒇(𝒙) = 𝒙(𝒙 − 𝟗)(𝒙 + 𝟑) 

b. 𝒇(𝒙) = 𝒙𝟑 − 𝟏𝟔𝒙𝟐 

𝒇(𝒙) = 𝒙𝟐(𝒙 − 𝟏𝟔) 

c. 𝒇(𝒙) = 𝒙𝟑 + 𝟏𝟔𝒙 

𝒇(𝒙) = 𝒙(𝒙 + 𝟒𝒊)(𝒙 − 𝟒𝒊) 

 

4. For each cubic function below, one of the zeros is given.  Express each cubic function in terms of linear factors. 

a. 𝒇(𝒙) = 𝟐𝒙𝟑 − 𝟗𝒙𝟐 − 𝟓𝟑𝒙 − 𝟐𝟒; 𝒇(𝟖) = 𝟎 

𝒇(𝒙) = (𝒙 − 𝟖)(𝟐𝒙 + 𝟏)(𝒙 + 𝟑) 

b. 𝒇(𝒙) = 𝒙𝟑 + 𝒙𝟐 + 𝟔𝒙 + 𝟔; 𝒇(−𝟏) = 𝟎 

𝒇(𝒙) = (𝒙 + 𝟏)(𝒙 + 𝒊√𝟔)(𝒙 − 𝒊√𝟔) 

 

5. Determine if each statement is always true or sometimes false.  If it is sometimes false, explain why it is not always 

true. 

a. A degree 𝟐 polynomial function will have two linear factors. 

Always true 

 

b. The graph of a degree 𝟐 polynomial function will have two 𝒙-intercepts. 

False.  It is possible for the solutions to a degree 𝟐 polynomial to be complex, in which case the graph would 

not cross the 𝒙-axis.  It is also possible for the graph to have only one 𝒙-intercept if the vertex lies on the 𝒙-

axis. 

 

c. The graph of a degree 𝟑 polynomial function might not cross the 𝒙-axis. 

False.  A degree 𝟑 polynomial must cross the 𝒙-axis at least one time. 

 

d. A polynomial function of degree 𝒏 can be written in terms of 𝒏 linear factors.   

Always true 

 

6. Consider the polynomial function 𝒇(𝒙) = 𝒙𝟔 − 𝟗𝒙𝟑 + 𝟖.   

a. How many linear factors does 𝒙𝟔 − 𝟗𝒙𝟑 + 𝟖 have?  Explain. 

Since the degree is 𝟔, t𝒉e polynomial must have 𝟔 linear factors. 

 

b. How is this information useful for finding the zeros of 𝒇? 

We know that the function has 𝟔 zeros since there are 𝟔 linear factors.  Each factor corresponds to a zero of 

the function.  

 

c. Find the zeros of 𝒇.  (Hint:  Let 𝑸 = 𝒙𝟑.  Rewrite the equation in terms of 𝑸 to factor.) 

𝟏, 𝟐, −𝟏 + 𝒊√𝟑, −𝟏 − 𝒊√𝟑, 
−𝟏+𝒊√𝟑

𝟐
, 

−𝟏−𝒊√𝟑

𝟐
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7. Consider the polynomial function 𝑷(𝒙) = 𝒙𝟒 − 𝟔𝒙𝟑 + 𝟏𝟏𝒙𝟐 − 𝟏𝟖.  

a. Use the graph to find the real zeros of 𝑷. 

The real zeros are −𝟏 and 𝟑. 

 

b. Confirm that the zeros are correct by evaluating the function 𝑷 

at those values. 

𝑷(−𝟏) = 𝟎, and 𝑷(𝟑) = 𝟎 

 

c. Express 𝑷 in terms of linear factors. 

𝑷(𝒙) = (𝒙 + 𝟏)(𝒙 − 𝟑) (𝒙 − (𝟐 + 𝒊√𝟐)) (𝒙 − (𝟐 − 𝒊√𝟐)) 

 

d. Find all zeros of 𝑷. 

−𝟏, 𝟑, 𝟐 − 𝒊√𝟐, 𝟐 + 𝒊√𝟐 

 

8. Penny says that the equation 𝒙𝟑 − 𝟖 = 𝟎 has only one solution, 𝒙 = 𝟐.  Use the fundamental theorem of algebra to 

explain to her why she is incorrect. 

Because 𝒙𝟑 − 𝟖 is a degree 𝟑 polynomial, the fundamental theorem of algebra guarantees that 𝒙𝟑 − 𝟖 can be 

written as the product of three linear factors; therefore, the corresponding equation has 𝟑 solutions.  One of the 𝟑 

solutions is 𝟐.  We know that 𝟐 cannot be the only solution because (𝒙 − 𝟐)(𝒙 − 𝟐)(𝒙 − 𝟐) ≠ 𝒙𝟑  − 𝟖 . 

 

9. Roger says that the equation 𝒙𝟐 − 𝟏𝟐𝒙 + 𝟑𝟔 = 𝟎 has only one solution, 𝟔.  Regina says Roger is wrong and that the 

fundamental theorem of algebra guarantees that a quadratic equation must have two solutions.  Who is correct and 

why? 

Roger is correct.  While the fundamental theorem of algebra guarantees that a quadratic polynomial can be written 

in terms of two linear factors, the factors are not necessarily distinct.  We know that  
𝒙𝟐 − 𝟏𝟐𝒙 + 𝟑𝟔 = (𝒙 − 𝟔)(𝒙 − 𝟔), so the equation 𝒙𝟐 − 𝟏𝟐𝒙 + 𝟑𝟔 = 𝟎 has only one solution, which is 𝟔. 

MP.3 
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